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Abstract

This paper presents a framework for implementing collaborative network agents. Agents
arc assembled dynamically from components into a structure described by a multi-plane state
machine model. This organization lends itself to an elegant implementations of remote control,
collaboration, chcckpointing and mobility, defining features of an agent system. It supports
techniqucs, like agent surgery difficult to reproduce with other approaches.

The reference implementation for our model, the Bond agent system, is distributed under
an open source license and can be downloaded from http;llbond.cs.purdue.edu.

1 Introduction
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The field ofagents is witnessing the convergence of researchers from several fields. Some see agents as
a natural extension of the object-oriented programming paradigm, [14, 15]. One of the most popular
books on artificial intelligence reinterprets the whole field in terms of agents [2J. Contemporary work
on the theory of behavior provides the foundations for theoretical models of agents [13, 15]. Interface
agents are considered the next evolutionary step in the development of visual interfaces. The field
of robotics is using agents to model the behavior of their artifacts. This diversity of views as well
as the wide range of applications of agents leads to numerous programming paradigms, languages,
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communication methods, and design concepts in agent system implementation. So far no design
methodology has emerged as a clear winner, applicable for the majority of situations.

When implementing an agent framework for developers with different backgrounds and appli­
cations, the goal should be to maximize the flexibility and provide a rich palette of options. We
believe that the agent model and the design concepts presented in this paper ensures flexibility in
the choice of programming paradigms, languages, communication models, and operating modes for
the agent.

The agent model we propose reflects our philosophy regarding the critical aspects of an agent
architecture namely, agent communication, remote instantiation and control, checkpointing and
mobility. A unique feature of our model is the ability to modify agents at run time, what we call
agent surgery. There are several examples of self-modifying programs, mutating viruses being one
of them. Programs written in Lisp and Lisp-like languages often treat code as data, and the remote
modification of code is possible, though seldom used. Still, to our best knowledge the Bond system
is the only mainstream, Java-based agent toolkit which allows a radical, remote intervention in
the structure of an agent. On the other hand, the mobility model in this design is weaker than in
systems designed for mobility like Aglets [8J or Telescript [7J.

Our preliminary work on the theoretical foundations of this model can be consulted elsewhere
A reference implementation for this design is the agent framework of the Bond distributed agent
system [3]. In this paper we attempt to keep to a minimum references to the implementation details
of the Bond system, but these references are sometimes unavoidable, because they provide the proof
of concept for our design decisions.

This paper is organized as follows. In the next section we position our approach in the context
of various agent systems and contra~t the agent execution model to reactive and non-interactive
models. Then, in Section 3, we introduce a component-based architecture and present the structure
of an agent in our model. In Section 4 we follow the lifecycle of an agent, and explain how this
agent structure can be used to implement the trademarks of an agent, e.g. the pursue of the agenda,
remote control, mobility, checkpointing, and surgery. In Section 5 we present several usage scenarios
based upon our experience with the Bond system. Conclusions are drawn and further research goals
are presented in Section 6.

2 Agent Systems and Models

A number of agent systems arc developed in universities and research laboratories and few of them
reach the commercial product stage. In this section we overview several agent systems and agent
models that influenced our ideas and position our design and implementation in the context of the
existing systems. We present the elements specific to our design model and the implementation of
Bond in the context of other systems and justify the important design decisions.

Let us consider first the relationship to theoretical models. Currently the most elaborated
and rigorous model of agency is currently the Belief - Desire - Intention model [13, 15]. Although
BDI is a very powerful model, its complexity and reliance on the notation of mathematical logic,
preclude its wide-spread use for implementing agent systems. \Ve are currently lacking the tools
to map easily this model to object-oriented languages like Java or C++. Most Javel-based agent
systems do not rely explicitly on a theoretical model for agents. There are some exceptions, for
example the JACK agent system [10] is using an extension to the Java language to implement the
BDI model.

Our system is based upon the AM\mp model. We believe this model to be well suited to an
object-oriented implementation, though less powerful than DD! (we sometimes call it "poor man's
BD!"). This model allows us to reason about agents while using an object-oriented programming
style.

Another aspect of agents is the communication method. Most agent systems use a
message-oriented style although recently agents based upon COREA MASIF specification [11],
e.g. Grasshopper {12] are emerging. The agents using message-oriented communication either rely
on an agent communication language like KQML [9] or FIPA, or use free-fonnat communication.
Examples of agent toolkits using KQML are JATLite from Stanford [5] and the commercial prod­
uct AgentBuilder [16J. Systems using free-format communication are the Aglets [8] or Voyager [17].
The Bond agent system uses KQML as the communication language, but the design principles arc
largely independent on the communication language.
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Another important consideration in the design of an agent system is mobility. Frameworks
like IBM's Aglets [8J or General Magic's Telescript [7J consider migration a defining property of
an agent and a basic design principle is to allow the agent to migrate at any time. In Bond,
migration is considered a rare event in the life of an agent and migration is possible only und<!r
certain circumstances. We deliberately choose to implement a weak migration model as discussed
in Section 4.

Our design has Wlique features, direct consequences of our philosophy to represent the behavior
of the agent as a multi-plane state machine as discussed in depth in Sections 3, and 4.

• Behavior embedded into a data structure. The overall behavior of the agent is described by
the blueprint. The strategy associated with a state defines the behavior in that state.

• Explicit concurrency. The agent structure is based on several state machines running concur­
rently.

• Dynamic agent modification, agent surgery.

• Integration of heterogeneous behavior models. The design allows the creation of BDI agc!Ilts
conforming to the theoretical model, actor based models or ad-hoc behavior models. A variety
of programming languages and styles can be used in the same agent.

• Possibility of automated prograrruning. While the automated programming at the fine grain
level is still Wlrealistic at the current level of knowledge, the structural components of the
model are coarse grain enough and their semantics is simple enough that we can envision that
they can be created automatically based on the needs and circumstances.

The design presented in this paper can be positioned among the mainstream, multipurpose agent
toolkits with some unique features. While it may be weaker than specialized tools for specific tasks,
it offers the advantage of flexibility.

A model for specifying behavior frequently used in embedded systems and UML [23] based
systems is the statechart model [24] designed by David Harel. Our multiplane agent state machine
can be seen as a different way of expressing the parallelism which in statecharts arc expressed
as concurrent substates. On the other hand we have chosen to use a simpler state machine than
those used in state charts. For example, in statecharts transitions can have conditions and actions
associated with them, while in our model, only states can generate actions and transitions are
unconditional. The theoretical foundation behind this decision is that in our model the structural
component (the multipla.lle state machine), the active components (the strategies) and the model
of the world are clearly separated. If we would introduce a condition on a transition, that would
clearly be a boolean function on the model, thus making the state machine dependent on the model.
If an action would be associated with the transition that would either imply that actions can be
generated outside strategies, or alternatively that there is a strategy which is not determined by
the state vector. Both these semantics are expressed in our model by inserting an intermediate
node between the source and destination, the strategy of these node than performing the desired
action or evaluating the condition. Thus, the multiplane state machines in our model can be larger
for the same task than the corresponding statechart, but they are easier to analyze and generate,
because of the simpler semantics. On the other hand, real time systems are easier to specify in the
statechart format. Another feature of statecharts, the possibility to define embedded substates is
also missing in our system. It's functionality in most cases can be replaced by the state vector of
the multiplane state machine. We are currently investigating the possible benefits of introducing
substates in our model: although they improve the expressiveness of the system, they also introduce
difficulties in implementing checkpointing, migration and agent surgery.

Although there are numerous papers dealing with the definition of "agents" we choose to clarify
our position to justify design decisions presented later in the paper. We adhere to the definition of
Stan Franklin and Art Gracsser [1]: an autonomous agent is a system situated within and part
of an environment that senses that environment and acts on it, over time, in pursuit of its own
agenda and so as to effeet what it senses in the future. The agent execution model assumes that
the agent has an explicit goal. Agents receive external events and generate actions. However the
actions of an agent are determined by the pursue of its goal. Of course, events may trigger immediate
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responses, but agents perform actions even without any external input. An agent terminates its
execution when its goal is accomplished.

The other execution models are: the non-interactive (batch) execution model, and the
reactive application execution model, see Figure 1. The first is characteristic for traditional
numerical simulation. The goal is to generate output results given a set of input data. All the inputs
are available at the start of the application. The execution does not involve any interaction between
the user and the environment from start to finish. In the reactive execution model, applications
provide immediate responses to user inputs or external events. The application does not have an
explicit goal, never takes the initiative and its termination is also a response to an external event.
In absence of external events, the application is in an idle cycle. Examples are interactive programs
like wOrd processors, operating system shells, traditional servers e.g. file servers or http servers,
embedded systems.

Event

R8Spo~e

'goo'

Event

Action

--..

Figure 1: The execution model for non-interactive, reactive applications and agents. The first are
characterized by a continuous progression from the input to the generation of output. Reactive
applications are characterized by the well defined event-response pairs. The behavior of agents
is characterized by the spontuneous generation of actions, although event-response pairs may also
exist.

The execution model for agents is the more general and complex of the three models. Combi­
nations of execution models are also possible, e.g. some modern servers like those used in airline
ticket reservation or c-commerce perform a number of actions between the original request and the
reply. These servers can be viewed as agents.

Since an agent can emulate every other execution model, some researchers are inclined to view
every program as an agent. Although this approach may be sometimes useful, it does not lend itself
to efficient implementations, the simpler the execution model the more optimal implementation is
possible. For example we can optimize the response time of a stateless server far better than of an
agent with a complex state.

The agent structure presented in this paper is designed to fulfill the requirements of the agent
execution model presented above and to ensure optimal performance for situations when the agent
must keep a complex state, interact with other agents and take actions on its own. Although this
framework can be used to implement non-interactive programs or servers in the classical sense,
these implementations may be suboptimal.

3 A Component-Based Architecture for Agents

Now we present a component-based architecture for software agents. In this architecture an agent
consists of a group of active objects linked together by a data structure, rather a large monolithic
code. The behavior of the agent is determined by the active and passive objects and the data
structure. The active objects usually consist of compiled code, thus can be executed with little
additional overhead. The data structure can be modified with ease allowing for flexible behavior.

The structure of the agent is presented in Figure 2. The four major components of an agent
are: the model, the agenda, the state machines, and strategies.

• The model of the world is a container object which contains the information the agent has
about its environment. There is no restriction of the format of this information: it can be
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a knowledge base or ontology composed of logical facts and predicates, a pre-trained neural
network, a collection of meta-objects or different forms of handles of external objects (file
handles, sockets, etc), or typically, a heterogeneous collection of all these. The model also
stores the information the agent has about itself: one example being plans or intentions (if
the agent conforms to the BD! model).

• The agenda object defines the goal of the agent. The agenda implements a boolean function
and a distance function on the model. The boolean function shows if the agent accomplished
its goal or not. The agenda acts as a termination condition for the agents, except for agents
with a continuous agenda where their goal is to maintain the agenda as being satisfied. The
distance function may be used by the strategies to choose their actions.

• The multi-plane state machine of the agent is a data structure composed of a number of
state machines arranged in planes. The state of each state machine is defined by the active
node. The state of the agent is defined by a vector 01 states. An agent changes its state
by performing transitions. In turn transitions are triggered by internal or external events.
External events are messages sent by other agents or programs. The set of external messages
that trigger transitions of the agent's state machi.ne defines the control subprotocol of the
agent.

• Each node of the multi-plane state machine has associated a strategy object. Strategy
objects generate actions based upon the model and the agenda of the agent. Strategies do
not reveal internal state information - their behavior is determined exclusively by the model
and the agenda. The strategies must store their state in the model. Actions arc considered
atomic from the agent's point of view, external and/or internal events interrupt the agent only
between actions. Each action is defined exclusively by the agenda of the agent and the current
model. A strategy can terminate by triggering a transition or by generating an internal event.
After the completion of the transition the agent moves into a new state where a different
strategy defines its behavior.

The implementation we propose for the agent execution model is based on strategies. Informa1ly,
a strategy is a function which takes as parameters the model of the world and the agenda of the
agent and returns actions. From the implementation point of view, a strategy is a Java object with
a function called actionO that performs the actions needed at the given instance.

The strategies arc activated: (a) in response to external events and (b) as the flow of control
requires while pursuing the agent's agenda. Messagesfrom remote applications, and u.~cr interlace
events like pressed keys, mouse-clicks are examples of external events. The strategies are activated
by the event handling mechanism - the Java event system for GUI events, or the messaging thread
for messages in case of external events, or by an action scheduler.

The state of the agent is defined by a vector 01 states, which implies that the behavior or the
agent is determined by a vector 01 strategies.

This structure allows us to assign different strategies for handling different types of events - for
example a strategy from one plane handles the messages, while the other plane is handling the user
interface events. One of the planes may provide reasoning or planning functions, one the execution,
another one carry out housekeeping operations. The strategies in these planes are activated by the
action scheduler.

The multi-plane structure provides the means to express concurrent agent activities. The actual
nature of the parallelism is determined by the scheduling mechanism used by the action scheduler.
In case of a round-robin activation mechanism the actions belonging to different strategies are
interleaved without overlapping while multi-threaded execution allows for truly concurrent actions.
Other possible activation schemes are priority-based and preemptive.

The agents are described by their active components (the strategies) and the structural compo­
nents· the multi-plane state machine.

A strategy should be compatible with the agent implementation language, Java in case of Bond.
There are two requirements a software component should meet to be a valid strategy: it should
allow its state to be linked to the model and it should break its behavior into actions. JavaBeans,
ActiveX objects, C++ libraries or functions in interpreted languages can all be valid strategies. In
the Bond system, besides Java-written strategies, we are currently supporting strategies written in
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Jess [6] and Python through the JPython interpreter [4]. Any other language can be used tbrougb
the Java native interface.

The structural component of an agent, the multi-plane state machine, can be constructed as a
program, but a more flexible approach is a tex-tual description, interpreted by an agent factory. In
the Bond system we are using the blueprint language to describe the structure of an agent. Other
possibilities, like a visual programming interface are also possible.

4 The lifecycle of the agent

The true test of any agent design framework is in implementation. How difficult is it to construct
an agent? What is the overhead of the migration? How difficult is to remotely control an agent, or
to create a federation of agents? These primary questions translate into how easy, and how efficient
the basic operations related to the life cycle of an agent can be implemented and how to minimize
the user's interactions during the agent's life time. In this section we present the implementation
of the life cycle of the agents in our implementation of the design, the Bond system.

The main events in the life cycle of an agent are the creation, starting, running and terminating.
Also agents can be interrupted and restarted. If the agent is restarted at a different location, we are
talking about migration. Bond agents can be modified during runtime, an operation called agent
surgery.

The agent factory, is an object involved in several operations during the life cycle of all agents
coexisting at a Bond site. The agent factory is created on demand by the autoprobe object of a Bond
resident. Once created, the agent factory responds to messages in the agent control subprotocol and
creates new agents, performs agent surgery, assists in agent migration. The agent factory object
accepts a structural description of an agent written in the Blueprint language. Bond agents can
be created without the use of Blueprint, but our experience shows that the use of a it provides
substantial advantages from the developers' point of view.

4.1 Creating and starting an agent

Bond agents are created by sending a Create message to the agent factory. This meS5age may
contain the blueprint of the agent or specifying the location of the blueprint. The agent factory
assembles the agent using components available locally or remotely.

An agent is started by sending the StartAgent message to the agent. Upon receipt of this
message: (a) the state vector of the multi-plane state machine becomes the initial state specified in
the blueprint, (b) the current strategies are installed, (c) the execution thread is created, and (d)
the action scheduler starts to execute actions according to the current strategies.

4.2 Running and external control

In the default running mode the active strategies of the agent perform actions. By default the
action scheduler, the agent's main thread of control schedules various strategies to perform their
actions. The default scheduler basically performs a round-robin scheduling, but it can be replaced
by other schedulers, for multi-threaded or priority based scheduling.

There are some exceptions from this rule. The actions of event·handler strategies are triggered
by the arrival of external messages, while the actions of aUI strategies are triggered in response to
user events e.g. clicking on a button.

Any Bond object including an agent, may receive messages. In Bond we group semantically
related messages into subprotocols [18]. Examples of subprotocols are monitoring, security, agent
control, and so on. The control subprotocol of an agent consists of messages corresponding to
external transitions in the multi-plane state machine. External as well as internal transitions are
specified in the Blueprint script. Transitions indicating the success or failure of certain operations
are internal.

An external program or an agent may trigger a transition of the multi-plane state agent by
sending the message associated with the transition. If we want to inhibit the external control of an
agent all the transitions should be declared internal. The control subprotocol is created dynamically
and it disappears after the termination of the agent. When an agent undergoes surgery, the control
subprotocol is modified dynamically.
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4.3 Soft stop, checkpointing and restart

The execution of Bond agents can be stopped with the SoftStop message. This message instructs
the action scheduler to stop the execution of the agents on the next action boundary. Thus a a soft
stop is not instantanenous, and the time until it occurs depends upon the action scheduler (single
threaded or multi-threaded) and on the granularity of the actions. At a soft stop of an agent the
message handling is blocked, so the strategies triggered by messages or user input are blocked too.

mthe stopped state, the agent can he checkpointed, by saving its model to persistent storage.
The easiest way for doing this is by serializing the model, which implements the Java Serializable
interface. However users might want to implement an incremental saving system, for example for
transaction processing.

An agent in the softstopped state can be restarted by sending the Restart message. The state
of the restarted agent is identical with the agent before the soft stop. However, for multi-threaded
agents certain race conditions may be modified, and also certain messages or user actions may be
lost, depending on the queueing properties of the underlying transport protocol or event system.

4.4 Migration

Bond agents implement the notion of weo.k migmtion, to migrate an agent a soft stopped state must
be traveresed. The migration is triggered by sending a Migrate message to the agent factory at
the site of the agent.

The sequence of the events in the migration process is: (a) the agent factory performs a soft
stop on the agent and generates the blueprint of the agent, (b) the agent factory on the remote side
is contacted and the blueprint of the agent is sent, (c) the agent factory on the new side reassembles
the agent from the blueprint and transfers the model from the original site. In Bond this operation
is called realizing an object. (d) the relocateO function is called on the model. By default this
function call propagates further to other elements of the model. This function can be filled in by
the user to adjust the objects to their new location. (e) the agent at the old site is disposed of.
If the: forwarder yes parameter was specified, a forwarder object is installed which will forward
messages sent to the old site to the new location of the agent. (f) the agent Cactory on the new site
sends a success message to the originator of the migration message and restarts the agent on the
new location.

The success of migration requires that the information in agent's model be moved to another
site. Information like handles to open files are meaningful only locally. A set of rules must be
observed to make the model mobile - for 8.'l:ample, keeping all immovable information inside atomic
actions. This implies that we should open and close a file inside a single action.

Our view is that migration should be a relatively rarc event in the life of agents, so we did not
take additional actions to enforce the mobility of the model, which might diminish the performance
of the agent.

4.5 Agent surgery

We call agent surgery the dynamic modification of an agent. The behavior of a Bond agent is
described as a data structure (multi-plane state machine). This data structure can be modified,
and this modification changes the behavior of the agent.

The agent surgery is triggered by the Modify message sent by an external object to the agent
factory controlling the agent. One of the parameters contains or points to a surgical blueprint script
describing the modifications in the structure of the agent.

The sequence of actions in this process is:
(l)A transition freeze is installed on the agent. The agent continues to execute normally, but if

a transition occurs the corresponding plane is frozen. The transition will be enqueued.
(2) The agent factory interprets the blueprint script and modifies the multi-plane state machine

accordingly. There are some special cases to be considered: (a) If a whole plane is deleted, the
plane is brought first to a soft stop - i.e. the last action completes. (b) If the current node in a
plane is deleted, a failure message is sent to the current plane. If there is no failure transition from
the current state, the new state will be a null state. This means that the plane is disabled and will
no longer participate in the generation of actions.
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(3) The transition freeze is lifted, the pending transitions performed, and the modified agent
continues its existence.

4.6 Termination, zombie state and disposal

Agents are terminated when their agenda function is true. The agenda function is checked by the
action scheduler after each action, so the last action of an agent is fully terminated. At this moment
the agent performs a soft stop to carry out the executing actions on parallel planes and then the
strategies are uninstalled. This uninstalls the message handlers for the message handling strategies.
Uninstalling CUI strategies usually closes the windows associated with the program.

In this state the agent do not have an active thread anymore, the control subprotocol and the
subprotocols implemented by strategies are not recognized any more. Nevertheless, the agent can
still process the subprotocols implemented in the agent object like agent control and property access.
This is important because allows remote objects to access the model of the agent, which contains
important information. 1 We call this state of the agent the zombie state in analogy with the Unix
concept of zombie processes (although the analogy is not quite perfect, zombie agents being still
useful).

Agents in the zombie state can be revived by an external start message. This is meaningful only
when the model was modified too, because otherwise the agenda will be immediately satisfied and
the agent will tenninate again.

Agents are disposed by sending the unregister message. At that time agents are unregistered
from the local directory and garbage collected.

5 Usage scenarios

In this section we present five scenarios for Bond agents. The goal is to show how the architecture
we propose leads to elegant implementations of practical applications. The scenarios are based on
the experience we have accumulated using the Bond system to implement various agents. Although
we try to be as general as possible, this section necessarily contains more references to our specific
implementation (the Bond system) than other sections of this paper.

5.1 Using planes to implement facets of behavior

-[J";IDIr:-"*'"I 1-- I
---------r----"-c:-.,--~7J/~~-~-~i=~~-=!

f[ r-~

L~[---- ----"""""',-
J

~------~

Figure 2: Different plans of the agent represent different facets of the behavior of the agent. In
this case we have a plane controlling the visual interface, a plane for reasoning and a plane for
performing actions.

The behavior of an agent is often multifaceted, it consists of several loosely coupled aspects. A
full-featured agent may exhi.bit several facets:

1In soml! cases, lhl! whole result of running the agent is lO called some infonnation, to perfonn computations etc.
This information is kept in the model, and the agenda is satisfied when the information is obtained. or course one
can choose to keep the agent alive until the information is transfered • but this is just a waste of proccssing power
because or the idle threads.
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• Reasoning. Agents with reasoning abilities usually run in a cycle, generating new true
statements based upon current knowledge.

• Visual interface. Most agents present a visual interface and interact to the user by: (a)
presenting a part of the knowledge of the agent (i.e. a part of the model) in a visual format,
and (b) collecting user interface events from the user.

• Reactive behavior. Agents react to external events e.g. messages, user interface events,
signals, etc.

• Active behavior. Agents perform actions in pursuit of their agenda even without external
events.

In most cases, a separation of these facets is possible, and the relative independence of the facets
justifies their separate treatment. For example the various steps taken by an agent to pursue its
goal are changes in its active behavior, but these changes may not necessarily lead to a change in
its reactive behavior, the look of the user interface, or the reasoning process of the agent.

We argue that the multi-plane state machine structure provides an elegant way to express the
multifaceted behavior of an agent, every plane expresses a facet of the behavior of the agent. There
are no restrictions on the nature and behavior of planes, so the agent designer can create the
structure most suitable to the problem at hand. However, the independence of facets is relative,
significant interdependence existing between them. In the multi-plane state machine structure, the
interdependence amongst planes is captured by the fact that (a) all planes share a common model
(knowledge) and (b) transitions triggered by one plane are applied to the whole structure, providing
a signaling mechanism amongst planes.

Figure 2 represents an example of an agent that presents a visual interface to the user, performs
a background reasoning, and takes actions. These three facets of the behavior are reflected into an
agent with three planes, each one dedicated to a facet.

All Bond agents use the multi-plane structure to implement the facets of the agent behavior.
For example oUI stock-market watcher agent [20] contains a communication plane for gathering
data from online quote services, a Jess·based [6] reasoning plane for processing the information and
a visual interface plane to present the information to the user.

5.2 Using messages to implement remote control

iAgenda I !
Agent ~

!
(

110<101..
~

~",

\

!
\- --. )

~/

Figure 3: Example of remote control using messaging. The message sent by agent A triggers a
transition on the first plane of agent B thus changing its behavior.

A significant part of the inter-agent communication can be described as control: the behavior
of the controlled agent is changed as a result of an action of a controller agent.

In terms of our structure, the behavior of the agent is described by the state vector, and it can
be changed by transitions, which alter one or more states in the state vector. One way to trigger
transitions is by an external message.

In our implementation of the model, transitions can be triggered by KQML messages. Messages
are grouped in subprotocols which is determined by the multi-plane state machine of the agent,
which in its turn is described by the blueprint. For consistency reasons not all transitions in the
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multi-plane state machine can be triggered remotely, because the semantics of certain transitions,
for example success depends upon the current strategy.

Figure 5.2 present an example of use. Agent A wants to change the behavior of agent B, by
changing the strategy on the first plane. Thus it sends a message labeled with the given transition.
The transition will be performed on all the planes of agent B, if there is a transition with the specific
label. In our case, only on the first plane it is a transition with the label as specified, thus the only
state from the state vector which is changed is the state of the first plane.

The use of messages as information control is used in most multi-agent implementations using
Bond. One example is the network of agents for solving partial differential equations [19] where
external transitions are used to synchronize the results between independent solver agents.

5.3 Cooperation through information sharing

Figure 4: Example of inter-agent cooperation llsing knowledge sharing. Agent A pushes part of its
model into the model of agent B.

Another important aspect of agents is that they can cooperate towards achieving certain goals.
We argue that every agent cooperation can be described in terms of knowledge sharing. In our
structure this means that a part of the model of an agent is copied to the model of another agent.

There are basically two ways of sbaring knowledge, depending upon the agent initiating of the
process:

• push mode an agent copies part of its model to the model of the other agent .

• pull mode an agent copies a part of the model of the remote agent into its own model.

Security and semantic concerns related to the information sharing models must be addressed.
We have to determine what part of the model will be shared, the identities of the agents, the
confidence level in the shared knowledge and so on.

Our implementation, the Bond system contains support for information sharing at the commu­
nication layer level, and contains various mechanisms enforcing security for inter-agent cooperation
[22]. Figure 5.3 presents an example of cooperation through knowledge sharing using the push
mode. Agent A is pushing a part of its model to the model of agent B.

Although the knowledge sharing model applies to any possible cooperation model, it may not be
the best way of dealing with some cooperation patterns. For example, a service negotiation would
be implemented as a successive series of very small information interchanges. Obviously, this case is
better handled if we view the negotiation as a message interchange and apply the results of recent
research in tILis area. In our model we may create several negotiation planes such that multiple
negotiations may be conducted simultaneously by the agent.

Coopcration through knowledge sharing is normally used when an agent starts a new agent and
passes part of its knowledge to the newly created agent. One example is the PDE solver agent
system mentioned before where partial results of computations are communicated in this way.
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Figure 5: Joining agents: the new agent contains all the planes of the initial agents and a combi­
nation of their models. The agenda, in this case is the conjunction of the agendas of the original
agents.

Figure 6: Splitting agents: the new agents contain a part of the planes of the original agent - in our
case one plane is replicated in both new agents. The agents inherit the full model of the original
agent while the conjunction of their agendas is the agenda of the original agent.

5.4 Joining and splitting agents

Two of the simplest surgical operations on agents are the joining and splitting. When joining two
agents, see Figure 5, the multi-plane state machine of the new agent contains all the planes of the
two agents and the model of the resulting agent is created by merging the models of the two agents.
The safest way is to separate the two models (for example through use of namespaces), but a more
elaborate merging algorithm may be considered. As our design does not specify the knowledge
representation method, the best approach should be determined from case to case. The agenda of
the new agent is a logical function (usually an "and" or an "or") on the agendas of the individual
agents. It is tempting to consider the joining of agents as a boolean operation on agents, and
maybe to envision an algebra of agents. While the subject definitely justifies furthC!r investigation,
the design presented in this paper do not qualify for such an algebra. The more difficult problem
is handling the "not" operator, which applied to the agenda would render the current multi-plane
state machine useless.

In case of agent splitting we obtain two agC!nts, the union of thC!ir planes gives us the planes of
the original agent (Figure 6). The splitting need not be disjoint, some planes (e.g an error handling
or housekeeping) may be replicated in both agents. Both agents inherit the full model of the original
agent, but the models may be reduced using the tC!chniques presented in section 5.5. The agendas
of the new agents are derived from the agenda of the original agent. The conjunction or disjunction
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of the two agendas gives the agenda of the original agent.
There are several cases when joining or splitting agents are useful: (a) Joining control agents

from several sources, to provide a unified control, (b) Joining agents to reduce the memory footprint
by eliminating replicated planes, (c) Joining agents to speed up communication, (d) Migrating only
part of an agent, (e) Splitting to apply different priorities to parts of the agent.

Joining and splitting of agents is used by our implementation of agents implementing workflow
computing.

5.5 Trimming agents

1/
)

EI
A!I<IntA

Figure 7: llimming agents: the example presents the trimming of a single plane agent. The parts
of the state machine which are not reachable from the current state are eliminated. Also the part
of the model which can not be accessed by the remaining strategies is eliminated too.

The state machines describing the planes of an agent may contain states and transitions un­
reachable from the current state. These states may represent execution branches not chosen for the
current run, or states already traversed and not to be entered again. The semantics of the agent
docs not allow some states to be entered again, e.g. the initialization code of an agent is entered
only once.

If the implementation allows us to identify the set of model variables which can be accessed
by strategies associated with states, we can further identify parts of the model, which can not be
accessed by the strategies reachable from the current state. The Bond system uses namespaces to
perform a mapping of the model variables to strategy variables, thus we can identify the namespaces
which are not accessed by the strategies reachable from the current state vector.

If the agenda of the agent can be expressed as a logical function on model variables and this is
usually the case, we can simplify the agenda function for any given state, by eliminating the "or"
branches that cannot he satisfied from the current state of the agent.

All these considerations allow us to perform the "trimming" of agents, for any given state to
replace the agent with a different, smaller agent as shown in Figure 7. In this example we used an
agent with a single plane, hut the process is identical for multi-plane agents. Both the multi-plane
state machine, the model and the agenda can be simplified.

While stopping an agent to "trim" it is not justified for every situation there are several cases
when we consider it to be useful:

• Before migration. As migration is sometimes proposed in order to "bring the code to the
data" when the data is larger than the code, trimming the agent allows us to reduce the
amount of code and internal data transferred. Furthermore, as for migration the agent has
to be stopped anyhow, the penalty for the trimming time is usually compensated by the fact
that less data and code needs to be transferred over the network.

• Before checkpointing. Similar to the migration case, the agent has to be stopped for
checkpointing, and trimming can reduce the amount of data to be saved.

• At runtime. Trimming can be performed even on running agents, for example by an external
thread or by a strategy of the agent. Doing this can be justified by the need to reduce the
memory footprint of the agent. A careful examination is needed to find out whether the
eliminated parts are actually becoming free memory. For compiled languages like C or C++
it is probably impossible to free the code memory, but even Java was not being able to
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garbage collect classes as of version 1.1. Freeing data implies different approaches whether
the language has a garbage collector or not.

Our design implements just the framework and mechanisms for agent trimming. Determining
the parts which can be trimmed is a problem in itself and various techniques can be used. Trimming
the multi-plane state machine can be done by reachability analysis. Trimming the model depends
very much on the specific implementation of the strategies. The Sethi·Ullman algorithm for reusing
temporary variables from the theory of compiler construction [21] may be used. Trimming the
agenda can use techniques from the theory of lazy evaluation of boolean expressions.

Generally this method can be considered as an extension of various techniques already in use in
compiler and programming language theory to a different level of granularity, strategies instead of
individual instructions. While the technique remains the same, the different granularity produces
a shift in the cost/benefit analysis: there is not enough benefit in freeing an individual instruction
from the memory, but it may be worthwhile for a strategy consisting of a large block of code.

The default migration implementation in the Bond system is using trimming to reduce the
amount of data transferred in the migration process.

6 Conclusions and future work

In this paper we presented a multi·plane state machine structure for designing collaborative network
agents. The reference implementation for om model, the Bond agent system is in active development
at the Bond distributed systems lab at the Computer Science department of Purdue University. The
agent framework is distributed under an open source license (LGPL) and the second beta release
of version 2.0 can be downloaded from http://bond. cs .purdue. edu.

We used the Bond agent framework system for a number of applications:

• multi-agent system for solving partial differential applications [19]

• agent-based system for negotiating the bandwidth for an MPEG video stream

• shared whiteboard collaborative application,

• real-time stock market watcher,

• news gatherer application for collecting news items from various internet sites

Though it does not provide a universal solution, our agent model allows an efficient and elegant
design for a range of concrete applications. It supports techniques, like agent surgery difficult to
reproduce wUh other approaches.

Several projects building upon our agent framework are underway: (a) an workflow management
framework, (b) a resource management framework, (c) applications to data acquisition and analysis
in structural biology, (d) applications to weather modeling.
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