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Scandium nitride (ScN) is a rocksalt semiconductor that has attracted significant attention from

various researchers for a diverse range of applications. Motivated by the prospect of using its

interesting electronic structure for optoelectronic and dilute magnetic semiconductor applications,

we present detailed studies of the electronic transport and optical properties of ScN and its alloys

with manganese nitride (MnN). Our results suggest (a) dilute manganese doping in ScN

compensates for the high n-type carrier concentrations arising due to oxygen impurities and (b) an

n-type to p-type carrier type transition occurs at a composition between 5.8% and 11% Mn on Sc

sites. In terms of its optical properties, our analysis clearly indicates direct and indirect bandgap

absorption edges of ScN located at 2.04 eV and 1.18 eV, respectively. In addition to the direct gap

absorption edge, (Sc,Mn)N samples also show Mn-defect induced electronic absorption.

Photoluminescence measurements at room temperature from ScN films exhibit a yellowish-green

emission corresponding to direct gap radiative recombination. Direct gap recombination is not

expected given the smaller indirect gap. A possible role of high excitation intensities in

suppressing relaxation and recombination across the indirect bandgap is suspected. Raman

spectroscopic and ellipsometric characterization of the dielectric permittivities of ScN and

(Sc,Mn)N are also presented to assist in understanding the potential of ScN for optoelectronic

applications. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817715]

INTRODUCTION

Scandium nitride (ScN) is a non-tetrahedral indirect

bandgap semiconductor1,2 that has generated significant in-

terest and is being explored by various researchers for its

potential applications including thermoelectricity,3–7 hot-

carrier photovoltaic devices,8 photonic metamaterials,9 and

others. Like most transition metal nitrides, ScN is mechani-

cally hard, chemically stable, exhibits high corrosion resist-

ance, and has an extraordinarily high melting temperature of

2600 �C. Currently efforts are also underway to grow high

quality epitaxial superlattices and multilayers composed of

rocksalt metal (ZrN, HfN, WN, and others) and ScN for their

potential applications in thermionic energy conversion devi-

ces.3,4 Recent theoretical proposals10,11 have also indicated

that Mn-doped ScN might exhibit dilute magnetic semicon-

ducting properties having a Curie temperature in excess of

400 K. All of these developments in the theoretical under-

standing of the physical properties of ScN would be furth-

ered with experimental investigations of the room

temperature electronic and optical properties of ScN, con-

necting these results with its electronic structure. In this arti-

cle, we present our detailed studies of the electronic

transport characteristics and optical properties characterized

by spectroscopic ellipsometry, absorption spectroscopy, pho-

toluminescence, and Raman scattering of thin films of ScN

and (Sc,Mn)N alloys12 to understand their potential applica-

tions and suitability for optoelectronic devices.

In terms of its electronic properties, although ScN was

long believed to be a semimetal,13 recent modelling analysis

from our group1 and others14–16 have suggested that ScN is

an indirect bandgap semiconductor with a C-X indirect gap

of 0.9 eV and a C-C direct gap of 2.2–2.7 eV. The high

n-type carrier concentration of �1� 1020 cm�3 in typical

films is due to the presence of defects,17 nitrogen vacancies,

and other impurities (usually oxygen). This high n-type car-

rier concentration is a challenge for electronic and optoelec-

tronic device applications. Thus, reducing the concentration

of unintentional donor dopants or defects combined with

controlled introduction of acceptors will be necessary to

fully realize the potential of ScN in devices. Manganese

(Mn), being an electron acceptor in III–V nitrides, is a suita-

ble choice for compensating donors and generating p-type

material. Besides its potential for controlling the carrier con-

centration in ScN, its high solid solubility in rocksalt nitrides

makes it ideal for exploring the possibility of a ScN-based

dilute magnetic semiconductor.

In reference to optical properties, very little is known

about ScN. As far as we have been able to verify, there are

no reports of ScN’s photoluminescence and spectroscopic

dielectric properties in the UV-visible to near-IR range.

Although there have been reports of properties such as opti-

cal reflection and transmission18,19 in the visible to near-IR

range, none of the reports describe the most salient feature of

the optical properties of ScN, nor do they explain those prop-

erties in terms of its electronic structure. In this paper, we

0021-8979/2013/114(6)/063519/10/$30.00 VC 2013 AIP Publishing LLC114, 063519-1
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first address the optical properties of ScN in employing

the analysis of its electronic structure described in Ref. 1.

Subsequently, we describe the optical properties of

(Sc,Mn)N alloys.

The rocksalt crystal structure and octahedral bonding

configuration of ScN make it ideal for alloying with Mn and

other transition metals without precipitation or secondary

phase formation. Yang et al.12 have reported that the h-phase

of MnN has a face centered tetragonal crystal structure with

a ¼ b¼ 4.22 Å and c¼ 4.12 Å. MnN grown on (001) MgO

using rf-plasma MBE in the temperature range of

250–450 �C exhibits (001) growth orientation and antiferro-

magnetic properties20 at room temperature. The similar

bonding and crystal structures of ScN and MnN have

allowed us to grow homogeneous solid solution alloys of

(Sc,Mn)N having a very high Mn concentration. In this arti-

cle, however, we present the optical properties of (Sc,Mn)N

films having Mn concentrations in the range of 0–11% on

the Sc sites.

GROWTH OF (SC,MN)N FILMS

(Sc,Mn)N thin films were grown on (001) MgO sub-

strates using reactive dc magnetron sputtering in a load-

locked turbomolecular pumped high vacuum deposition

system with a base pressure of 10�8 torr (PVD Products,

Inc.). The growth chamber had the capability to accommo-

date four targets and was equipped with three dc power sup-

plies. The Sc (99.998% purity) and Mn (99.99%) targets had

dimensions of 2 in. diameter and 0.25 in. thickness. All dep-

ositions were performed with an Ar/N2 mixture with the flow

rates of Ar and N2 being 2 and 8 sccm, which resulted in a

sputter gas pressure of 5 mTorr. The targets were sputtered

in constant power mode, and while the Sc target was fixed at

200 W, the Mn target power was varied from 5 to 20 Watts

in order to achieve the desired Mn concentration in the films.

The substrates were maintained at a temperature in the range

of 500–750 �C during deposition, as determined using an

infrared pyrometer operated in the wavelength range of

0.8–1.1 lm, together with a thermocouple.

Prior to the deposition of the films, MgO substrates with

an off-cut between 0� to 1� were cleaned in ultrasonic baths

of acetone and methanol to remove dust and to degrease,

followed by blowing dry with N2. The samples were then out-

gassed at 500 �C for 10 minutes in the vacuum chamber

before deposition. MgO substrates were chosen because of

their temperature stability, and the fact that they provide a sat-

isfactory lattice match to the ScN layer having an in-plane lat-

tice mismatch of 6.7%. The insulating behavior of MgO is

also useful for measuring the electrical properties of the films.

STRUCTURE AND CHARACTERIZATION

All the (Sc,Mn)N films grow epitaxially on MgO sub-

strates with (001) orientation as verified by high resolution

X-ray diffraction (XRD) studies. The surface morphology as

examined by scanning electron microscopy (SEM) suggests

columnar growth. The symmetric 2h-x X-ray diffraction

scan for a 3.8% MnN alloy sample is presented in Fig. 1.

The inset shows four asymmetric u-peaks that are separated

by 90�, which confirms that the films grow epitaxially on the

MgO substrates. The full-widths-at-half-maximum (FWHM)

of the rocking curves of all of these films are in the range of

1�–1.5�, suggesting a modest degree of mosaicity despite the

lattice mismatch with the substrate. The surface roughness of

the films measured by atomic force microscopy (AFM)

yielded an r.m.s roughness of approximately 0.56 nm for a

ScN film and approximately 0.76 nm for a (Sc,Mn)N alloy

film. The Mn concentrations in the films were determined by

Rutherford Back-Scattering Spectrometry (RBS). High reso-

lution transmission electron microscopy (HRTEM) com-

bined with electron energy loss spectroscopy (EELS)

analysis indicates the absence of any Mn secondary phase or

of Mn clustering, thus suggesting a homogeneous uniform

solid solution alloy. The details of the growth and micros-

copy characterization will be presented in a separate paper.

Here, we limit our focus to the electrical and optical proper-

ties of the films.

One important point to note is that the ScN films pre-

pared for this study were heavily n-type doped due to the

presence of oxygen, attributed to the incorporation of oxygen

from background residual water vapor, O2, CO2, and CO.

RBS along with the nuclear reaction analysis (NRA) tech-

nique that provides improved sensitivity and accuracy in

determining oxygen concentration (conducted by Evans

Analytical Group (EAG)) suggests the presence of 1.6 6 1.0

FIG. 1. Symmetric 2h-x X-ray diffrac-

tion spectrum of a (Sc,Mn)N alloy film

with 3.8% MnN in the alloy sample

grown on MgO substrate (in logarith-

mic scale). The spectrum indicates that

the film grows with (001) orientation.

The inset provides an asymmetric u-

scan of the same sample. Four equidis-

tant u-peaks are observed which

suggest that the films are epitaxial on

the MgO substrate.

063519-2 Saha et al. J. Appl. Phys. 114, 063519 (2013)
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atomic percentage of oxygen in a typical ScN film grown in

the deposition system used for this study, a level that is

expected to yield a carrier concentration (electrons) of about

1020 cm�3.

ELECTRICAL PROPERTIES

The electronic structure and the electron transport prop-

erties of ScN have been a subject of great interest for some

time. Due to the large background carrier concentrations

arising from impurities, experimental studies of the nature of

the band structure of ScN have been inconclusive. The elec-

tronic structure of ScN previously calculated by a Density

Functional Theory (DFT)-based approach1 is reproduced in

Fig. 2(a) to aid in explaining the electronic and optical prop-

erties. Since the ScN films grown for the present study con-

tain oxygen impurities, we have also performed DFT

calculations to understand the effect of oxygen on the elec-

tronic properties of ScN. Details of these calculations and

the results are presented in Ref. 7. A brief description of the

electronic structure of oxygen-doped ScN is provided here to

assist in interpreting the electrical and optical properties of

ScN and (Sc,Mn)N films. Our analysis has established that

(a) oxygen in ScN mixes uniformly on the N site, forming a

homogeneous solid-solution alloy, (b) in terms of its elec-

tronic structure; oxygen impurities in ScN shift the Fermi

energy from inside the bandgap into the conduction band

without appreciably altering the basic band structure and the

densities of states. For 1.6 6 1 atomic percent oxygen in ScN

films, our calculations suggest that the Fermi energy is about

0.08–0.34 eV above the conduction band edge.

Based on this understanding of the electronic structure,

we explain the electrical properties of ScN and (Sc,Mn)N

films. The room temperature in-plane resistivity, mobility

and carrier concentration of these films were measured using

a Hall effect system in the Van der Pauw geometry on

�300 nm thick films that were grown on 1 cm� 1 cm MgO

substrates. Fig. 3 represents the electrical resistivity and car-

rier concentration as a function of Mn concentration in ScN

films and indicates that ScN has an electrical resistivity of

2 mX-cm and a carrier concentration of 1020 cm�3. Since the

measured atomic concentration of oxygen in the ScN films is

1.6 6 1.0 at. %, this would imply that the measured carrier

concentration can be attributed to oxygen donor doping.

Fig. 3 also indicates that as Mn is incorporated in ScN films,

the resistivity increases and the carrier concentration drops.

The resistivity peaks between 5.8% and 11% MnN in the

(Sc,Mn)N alloy, beyond which the alloy becomes p-type.

The behavior of the electrical resistivity as a function of

the Mn concentration can be explained through our under-

standing of the electronic structure of ScN with oxygen

impurities. Mn in ScN acts as an electron acceptor and com-

pensates for the extra electrons arising due to oxygen impur-

ities. As the Mn concentration is increased in ScN, the carrier

concentration in the film decreases (see Fig. 3) and the Fermi

level moves from the conduction band into the bandgap,

which results in an increase of the resistivity. With the

increase in Mn concentration, a special situation arises when

the Fermi level resides in the middle of the gap resulting in

the peak of the resistivity at a %MnN between 5.8% and

11%. For higher Mn concentrations, the sample becomes

p-type as the Fermi energy approaches the valence band,

resulting in a decrease in the resistivity. The carrier concen-

tration at the compensation point is lower than 1� 1018 cm�3

suggesting that intrinsic ScN should have a carrier concentra-

tion below 1018 cm�3, and the extra 1020 cm�3 carriers origi-

nate from oxygen impurities.

The mobilities of the ScN and (Sc,Mn)N alloy samples

are presented in the inset of Fig. 3. Pure ScN films have a mo-

bility of 18.6 cm2/Vs at room temperature. Previously we

have reported (see Ref. 7) a very high mobility of 106 cm2/Vs

for the sputter deposited ScN films, and the lower values of

mobility presented here are due to the difference in the growth

conditions and growth temperature. Fig. 3 also suggests that

as MnN is added into the ScN matrix, the mobility decreases,

which is consistent with an impurity scattering mechanism.

However, mobility starts to increase as the n-type to p-type

FIG. 2. Electronic structure of ScN along the high symmetry directions of

the Brillouin zone, calculated by density functional theory. Reproduced with

permission from B. Saha et. al., J. Appl. Phys. 107, 033715 (2010).

Copyright 2010 American Institute of Physics.

FIG. 3. Electrical resistivity and carrier concentration as a function of Mn

concentration in (Sc,Mn)N films. A noteworthy n-type to p-type carrier tran-

sition is observed around 5.6% MnN in the (Sc,Mn)N matrix. We measured

the resistivity of the samples with four-point probe method also and the error

bar indicates the uncertainty in measurement when we employ two different

approaches (namely the four-point probe method and van-der pauw method).

The inset represents the mobility of the ScN and (Sc,Mn)N alloy films as a

function of Mn concentration.

063519-3 Saha et al. J. Appl. Phys. 114, 063519 (2013)
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carrier transition regime is approached and becomes maxi-

mum at 5.8% MnN in the (Sc,Mn)N matrix. The p-type

(Sc,Mn)N alloy that has 11% MnN in (Sc,Mn)N, however,

has a very low mobility of 2.6 cm2/Vs.

Thus, Mn doping in ScN provides a lever to control its

electrical properties. The high carrier concentrations and

high conductivity that results from the oxygen impurities in

ScN can be compensated by the introduction of acceptor-like

Mn atoms on Sc sites.

OPTICAL PROPERTIES

Absorption studies

In order to understand optical properties such as the

bandgap and the energy of the predominant Mn defect states

as a function of the concentration of Mn dopant, we meas-

ured the transmission (T) and reflection (R) spectra of the

samples from the UV to the near-IR-range (320 nm to

1100 nm). Since MgO is transparent in the spectral region of

our interest, all of these measurements were performed on

films grown on MgO substrates. The substrates were single-

side polished, and thus, transmittance measurements were

made using an integrating sphere configuration. A Lambda

950 UV-Vis-NIR spectrometer (PerkinElmer) with an inte-

grating sphere was used to measure the reflection and trans-

mission. The spectroscopic data were collected with a

wavelength step of 10 nm.

The absorption (A) spectra (calculated using the meas-

ured R and T and presented in Fig. 4(a)) give us insights

into the optical transitions taking place in ScN and its alloys

with MnN. Two distinct transitions can be observed in Fig.

4(a) suggesting that ScN has a direct gap absorption edge

(at the C-point of the Brillouin zone) around 570 nm. A

smaller absorption peak at �735 nm is observed and is

attributed to the electronic transitions from the C-X region

of the valence band to the corresponding regions in the con-

duction band of the Brillouin zone. Above the direct gap

edge, the absorption saturates, while in the long wavelength

limit the absorption tails off. Similar direct bandgap absorp-

tion edges have been observed in ScN samples grown with

rf-MBE.18 The absorption spectra of the (Sc,Mn)N samples

also exhibit direct gap edges similar to pure ScN; however,

they are red shifted. The degree of the shift increases with

the Mn concentration. These alloy samples also show spec-

tral features indicative of defect states, with an absorption

peak in the red to near-IR part of the spectrum whose posi-

tion shifts to longer wavelengths as the Mn concentration is

increased.

In order to understand the origin of these absorption

spectra and to quantify the absorption band edges and defect

states, the absorption coefficients (aabs) for the interband

transitions were calculated using the Beer-Lambert law from

the absorption data. Since, for semiconductors with parabolic

electronic bands, the absorption coefficient (aabs) varies with

the photon energy as21 aabs � ð�hx�EgÞ
1
2

�hx , we plot (a�hx)2 as a

function of the photon energy in Fig. 4(b) and extract the

direct bandgap (Eg). The values of the direct gap are pre-

sented in Fig. 4(c) as a function of the Mn concentration.

Our results suggest that ScN has a direct gap of 2.03 eV

consistent with the known value of its bandgap in the litera-

ture.18 This direct gap absorption edge results from the elec-

tronic transition at the C-point of the Brillouin zone, which

was overestimated to be located at 2.3–2.7 eV in our elec-

tronic structure calculations of ScN (see Fig. 2(a) and

Ref. 1). Fig. 4(c) also suggests that this direct gap shrinks as

Mn is incorporated in the films, while the bandgap values

saturate above 5.8% MnN in the alloy. The electronic density

of states of a 6.25% MnN alloy was calculated using DFT

and is presented in Fig. 4(d). The results of Fig. 4(d) suggest

that Mn doping in ScN introduces impurity states just above

the valence band edge, effectively reducing the valence to

conduction band energy difference.

Besides the direct gap absorption described above,

another absorption peak in Fig. 4(b) for ScN is evident at

1.7 eV. The origin of this absorption peak can be explained

through our understanding of the electronic structure of ScN

and its joint density of states. The joint density of states

(qcv(�hx)) is the number of states per unit volume per unit

energy range which occur with an energy difference between

the conduction and the valence bands and is given by the fol-

lowing expression:21

qc�ð�hxÞ ¼ 2

8p3

ðð
ds

jrk ðEc � E�ÞjEc�E�¼�hx
:

It suggests that in those regions in the Brillouin zone

where (Ec � E�) is constant and has the value of �hx,

rk ðEc � E�Þ is small and the probability of the inter-band

transitions is a maximum. Careful observation of the elec-

tronic structure of ScN (see Fig. 2(a)) indicates that the

energy difference (Ec � E�) has a relatively low gradient or

is nearly constant at 1.75 eV as one moves away from the

X(100) point towards the C-point. This result in a large

probability for interband transitions around this photon

energy as the joint densities of states is very high around

these regions of the Brillouin zone. The absorption peak at

1.76 eV may result directly from these transitions. A similar

behavior has been observed in another indirect bandgap ma-

terial, namely, germanium.21 The energy difference (Ec-E�)
at L points in Ge has a relatively small gradient as one

moves away from the L point, and therefore, the interband

transitions were reported to be much stronger at the corre-

sponding energy.

In the (Sc,Mn)N samples, the absorption peaks in the low

energy part of the spectrum are primarily dominated by the

absorption of Mn mid-gap defect states. The peak of these

absorption red-shifts as the Mn concentration in the ScN films

is increased. This implies that the defect states move closer to

the valence band edge as increasing amounts of Mn are incor-

porated into the ScN films (see Fig. 4(c)). It is noted that the

energy difference between the direct band absorption peak and

the mid-gap absorption peak remains nearly constant at around

0.5 eV for all the (Sc,Mn)N alloy samples. Also, the absorption

peak at lower energy becomes stronger for larger Mn concen-

trations. This suggests that Mn introduces mid-gap defect

states that are responsible for the absorption at lower photon

energies. The electronic transitions from the acceptor states to

the conduction band edge are responsible for the absorption

063519-4 Saha et al. J. Appl. Phys. 114, 063519 (2013)
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peak at around 720–830 nm. The mid-gap absorption arises

from electronic transitions between acceptor states near the va-

lence band edge and the mid-gap defect states. As the Mn con-

centration is increased, the edge of the acceptor band moves

up into the gap, thus reducing the photon energy correspond-

ing to the peaks of both the bandgap and the mid-gap absorp-

tion bands by the same amount. This explains why the energy

difference between the absorption peaks remains constant with

varying Mn concentration. The origin of the mid-band defect

states may be attributed to two plausible mechanisms: (1) Mn

d-orbitals in the octahedral environment of the nitrogen

ligands split into the t2g and eg bands due to octahedral distor-

tion, or (2) the Mn in the ScN films might have two different

oxidation states, e.g., Mn4þ and Mn3þ. Our electronic

FIG. 4. (a) Absorbance spectra, (b) absorption coefficient of ScN and (Sc,Mn)N alloy films having different Mn concentrations. Apart from the direct bandgap

absorption edge, Mn defect induced absorption is observed in the (Sc,Mn)N films. (c) The direct energy gap and the Mn-defect state energy as a function of

Mn concentrations. The energy separation of these two different absorption peaks is constant with varying Mn concentration. (d) Electronic density of states of

6.25% MnN in a (Sc,Mn)N alloy calculated within the density functional theory. (e) Square-root of the absorption coefficient plot as a function of the photon

energy and extraction of the indirect bandgap. The curve has a discontinuity at 1.44 eV due to the change in photon source at this particular energy.
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structure calculations of (Sc,Mn)N (see the density of states of

an alloy with 6.25% MnN in Fig. 4(c)) suggest that the t2g and

eg bands of Mn d-states does split inside the direct bandgap of

the semiconductor, with the peaks of the t3
2g states lying at the

Fermi energy and spreading over the Fermi edge near the va-

lence band, and the e2
g states located near the conduction band.

This explains why we see a constant energy difference

between the direct gap and the Mn defect states.

An estimate of the indirect bandgap of ScN is very diffi-

cult due to the small absorption cross-section for the indirect

bandgap edge. Our task is further complicated by the fact that

the ScN films contain oxygen atoms as impurity. As we have

mentioned before, the Fermi energy of ScN is inside the con-

duction band by 0.08–0.34 eV above the band edge, the

absorption edge is expected to be blue shifted, corresponding

to the Moss-Burstein shift of a highly doped semiconductor.

The optical absorption in an indirect bandgap material is

expressed21 by the relation aabsð�hxÞ � ð�hx� Eg 6 �hxqÞ2,

where �hxq is the energy of the phonon absorbed or emitted.

Thus, we plot the square root of the absorption coefficient in

Fig. 4(e). The plot indicates a clear indirect absorption edge

that intercepts the energy axis at �1.2 eV. As our modelling

results indicate that the level of oxygen impurity in the films

would shift the Fermi energy by 0.08–0.34 eV above the con-

duction band edge, we conclude that undoped ScN thin films

have an indirect energy gap of around 0.9–1.0 eV consistent

with our DFT calculations1 (see Fig. 2(a)).

PHOTOLUMINESCENCE AND RAMAN
SPECTROSCOPY

Photoluminescence (PL) studies of degenerate or doped

semiconductors yield information that is important for the

understanding of electronic properties, band alignment,

nature of the defect states, and other optoelectronic

properties.22–24 Direct gap luminescence from an indirect

gap material is improbable as the excited electrons in the

conduction band thermalize rapidly to the indirect conduc-

tion band minima. However, there are many reports of radia-

tive recombination or PL across direct bandgaps in otherwise

indirect gap semiconductors such as Ge.25,26 We next discuss

the direct bandgap room temperature PL properties of ScN.

We show how the observed luminescence is quenched with

the introduction of Mn into the ScN films.

A T-64000 Raman spectrometer equipped with a liquid

nitrogen cooled detector was employed to study photolumi-

nescence and Raman spectroscopic properties of ScN. An

Ar-Kr laser having an excitation wavelength of 488 nm was

used as the pump source. We also conducted measurements

with the 480 nm emission line of the Ar-Kr laser. PL spectra

FIG. 5. (a) Photoluminescence spectra of ScN at room temperature. (b) Peak height of the PL vs input laser power density. (c) PL of (Sc,Mn)N films.

Luminescence is strongly quenched with the incorporation of Mn.

063519-6 Saha et al. J. Appl. Phys. 114, 063519 (2013)

 [This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.46.221.64 On: Tue, 29 Oct 2013 19:54:52



were collected from 500 nm to 800 nm with 10 nm spectral

resolution.

The PL spectrum of a ScN thin film is presented in

Fig. 5(a), exhibiting a maximum at 557 nm that arises from

the direct bandgap excitation of the semiconductor. The full-

width-at-half-maximum (FWHM) of the luminescence peak

is about 0.25 eV which is much broader than peaks from con-

ventional direct bandgap semiconductors such as ZnO27 or

GaN,28 where the FWHM from direct gap emission is in the

range of 0.02–0.05 eV, but nevertheless comparable with the

direct gap radiative recombination peak of Ge.25 A change in

the excitation wavelength from 488 nm to 480 nm does not

change the peak position of the emission. The peak height,

however, changes a little due to the variations in the input

laser power hitting the sample. Very small emission features

are observed in the spectral region from 680 to 730 nm that

arise from defect states in the substrate (MgO) as observed

from the PL of our bare MgO substrates.

Several mechanisms ranging from the presence of defect

states, the nature of the band structure, heavy dopant concen-

trations, and high excitation intensity have been proposed for

direct gap radiative recombination in indirect bandgap semi-

conductors.26 In fact, band-structure engineering with both

n-type and p-type doping in germanium25,26 has been success-

fully used to observe direct gap emission. Direct gap emission

from undoped germanium samples has also been reported by

several groups due to high optical excitation levels.29,30

Intense optical excitation creates holes in the valence band

and electrons in the conduction band which gives rise to direct

gap emission for germanium without any dopant or impurity

involved. In pure germanium one would require an intense op-

tical excitation30 of 1 kW/cm2 to achieve such luminescence.

In our studies of the photoluminescence of ScN, we find

that a threshold power density of 660 W/cm2 is required to

observe the direct gap luminescence. Under these high power

densities (greater than 660 W/cm2), holes (minority carriers)

are created in the valence band while electrons (majority car-

riers) are photogenerated in the conduction band. The rate of

radiative recombination (rsp) is given by the expression

rsp ¼
8pn2

s

h3c2

aðEÞE2

e
E�Dl

KT � 1
;

where aðEÞ is the absorption coefficient, E is the energy

which is released during the emission, ns is the refraction

index of the surface, Dl ¼ EFn � EFp is the energy differ-

ence between the quasi-Fermi levels under quasi-equilibrium

condition, h and c are Plank’s constant and the velocity of

the light, respectively. Although the population of electrons

in the indirect gap valley at the X point of the Brillouin zone

is greater than that of the U-valley due to thermalization of

the electrons (which typically is a fast process with a charac-

teristic time of �100ps), the radiative recombination rate for

the Uc-U� transition is very fast, and under high carrier popu-

lations owing to large excitation intensity, it is very much

possible to observe the direct gap luminescence. For excita-

tion intensity less than 660 W/cm2, there are not enough

electrons in the direct gap U valley to give sufficient lumi-

nescence, or whatever little emission that takes place is

absorbed by the solid. The recombination rate also suggests

that since the absorption coefficient for the indirect gap tran-

sition is very small (see Optical Properties section), coupled

with the extra requirement of phonon participation due to

momentum conservation; the radiative recombination across

the indirect gap will be extremely small. However, we can-

not verify this indirect gap emission as our detector does not

allow detection of photons beyond the 900 nm spectral

range.

In order to further verify the above explanation for pho-

toluminescence in ScN, we varied the laser power

(0.56–12.21 mW) using neutral density filters and recorded

the PL spectra by focusing the output power down to a spot

size of 10 lm radius on the sample. The results of Fig. 5(b)

show that the amplitude of the PL at its peak value decreases

linearly as the input power is reduced above the threshold

power density required for photoemission. Such linear

behavior in photoluminescence is expected as increasing the

input power density linearly increases the hole (minority car-

rier) concentration in the valence band, while the increase in

the electron concentration is negligible compared to the high

background electron concentration. Similar linear depend-

ence of the luminescence intensity on the incident laser

power is observed in case of direct gap radiative recombina-

tion for p-type Ge.26

The luminescence spectra for the (Sc,Mn)N samples as

shown in Fig. 5(c) indicate that the introduction of Mn in the

ScN films quenches the photoluminescence, with the peak of

the PL decreasing in intensity with increasing Mn concentra-

tion. The observed quenching of the luminescence can be

explained by a trap-assisted non-radiative decay mechanism

through our understanding of the electronic structure of

(Sc,Mn)N. The Mn defect states near the valence and conduc-

tion bands trap the excited electrons and act as non-radiative

decay paths for the excited electrons, thereby reducing the lu-

minescence intensity with increasing Mn-concentration.

To understand the vibrational properties of these materi-

als, Raman spectra of ScN and (Sc,Mn)N alloy samples (see

Fig. 6(a)) were also measured and are explained with the aid

of the calculated vibrational spectra of ScN1 (see Fig. 6(b)).

As mentioned earlier, ScN has a rocksalt crystal structure,

with an octahedral bonding configuration. The theory of

Raman scattering suggests that due to symmetry restrictions,

the first-order Raman signal should be absent in such a rock-

salt crystal structure. However, the presence of defects in the

structure lifts the restriction of the q-selection rules, giving

rise to second-order Raman peaks. Thus, the strong Raman

lines in ScN and (Sc,Mn)N films can be attributed to the

defect-induced second-order scattering mechanism.

The Raman spectroscopic measurements were carried

out using a laser source with wavelength of 532 nm. The

most intense Raman line in ScN is measured at �677 cm�1

and has a peak position comparable with the measurement of

676 cm�1 by Gravalnini et al.19 Careful comparison of this

Raman line with the DFT based modelling of the vibrational

spectra of ScN (adapted from our previous work and pre-

sented in Fig. 7(b)) suggests that the Raman line at 677 cm�1

originates from transverse optical (TO) phonon modes. The

measured Raman line, however, is softer by 50 cm�1 with
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respect to the calculated values. Modelling results also sug-

gest that the TO mode vibrations observed here is primarily

an N-N vibrational state. The FWHM of this peak is

80 cm�1. Acoustic modes that are primarily dominated by

the vibration of Sc atoms have a relatively weak signature in

the Raman spectra. Although there is no distinct peak in the

Raman spectra for these acoustic phonon modes, a broad fea-

ture centred at 450 cm�1 is observed.

The Raman spectra for the (Sc,Mn)N samples (presented

in Fig. 6(a)) suggest a similar TO phonon mode as in ScN.

The peak positions of this vibrational mode shift only

slightly with increasing Mn concentration. Since the lattice

constant of the (Sc,Mn)N films varies only slightly with the

Mn concentration, such slight increases in the vibrational fre-

quency are not surprising. The peak height of the main TO

Raman line also increases with increments in the Mn concen-

tration. Since higher Mn concentrations in ScN result in

more defect states and distortions of the lattice structure, the

increase in the peak height is a manifestation of the defect-

induced second-order Raman spectra. The FWHMs of these

peaks are in the range of 65–70 cm�1. The (Sc,Mn)N

samples also show very little signature of their acoustic

vibrational modes in the Raman spectra as these are defect-

induced second-order Raman spectra.

ELLIPSOMETRY CHARACTERIZATION

To understand ScN’s suitability as a dielectric compo-

nent in the visible to near IR wavelength range, the dielec-

tric permittivity of ScN and (Sc,Mn)N were measured using

spectroscopic ellipsometry in the wavelength range of

300–2000 nm. Although Travglini et al.19 have reported

dielectric characteristics of ScN in the deep UV-range, there

exists little understanding of the optical parameters in the

visible to near IR-range and on the optical processes that

govern these dielectric properties. A combination of Drude,

Lorentz, and Tauc-Lorentz models21 was used to retrieve

the dielectric functions of the films. While the Drude model

takes care of the free-electron response primarily in the near

IR range, Lorentz and Tauc-Lorentz peaks are used to fit the

interband transitions in the visible part of the spectrum.

However, we cannot observe the electronic transitions due

to the defect states since we have performed all the ellips-

ometry measurements in the reflection mode where the rele-

vant information from defect is masked by interference

effects.

In Fig. 7(a), the real (�0) and imaginary (�00) parts of the

dielectric permittivity are plotted, which suggest that ScN

behaves as a dielectric in the visible to near-IR wavelength

range. The real part of the dielectric constant at the interband

transition position is large, having a value of 12.8, which is

consistent with our calculated value of �(1) ¼ 12.31. The

imaginary part of the dielectric constant which represents op-

tical losses shows a peak in �00 at 530 nm corresponding to

the interband transition at the direct gap. In Fig. 7(a), we

show also the Drude and the non-Drude contributions to the

permittivity. The graph indicates that in the near IR-range, �0

decreases, whereas �00 increases and this is due to free elec-

tron absorption or Drude contributions. Since ScN is a

degenerate semiconductor having a very high carrier concen-

tration of �1020 cm�3, Drude losses associated with free car-

rier absorption are expected. The non-Drude part is primarily

characterized by Lorentz peaks that describe the interband

transition in ScN. While the Lorentz peak located at 530 nm

is indicative of the direct gap transition, the Lorentz peak

shown at 400 nm is above the direct gap and does not provide

any new information.

The (Sc,Mn)N films were also characterized by ellips-

ometry based measurements, and our analysis (see Fig. 7(b))

indicates that the real part of the dielectric permittivity of the

(Sc,Mn)N alloy samples behaves in a similar way as in ScN

in the visible range. In the near IR-range, however, the free-

carrier-induced Drude response is significantly different for

these Mn doped samples when compared to the ScN Drude

response. Since the introduction of Mn in ScN reduces its

carrier concentration, the Drude contribution to the permit-

tivity decreases with increasing Mn concentration. This man-

ifests itself by a constant value of e0 in the near IR–range.

The optical losses also decrease in these (Sc,Mn)N samples

in the near IR range.

CONCLUSION

In conclusion, we have presented extensive experimen-

tal analysis of the electronic transport and optical properties

FIG. 6. (a) Raman spectra of ScN and MnN alloyed ScN films. The second-

order defect-induced Raman peaks primarily arise from longitudinal optical

(LO) phonons. (b) Vibrational spectrum of ScN calculated using Density

Functional Theory (DFT). Reproduced with permission from B. Saha et. al.,

J. Appl. Phys. 107, 033715 (2010). Copyright 2010 American Institute of

Physics.
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of ScN and its alloys with MnN. These results are explained

through theoretical calculations based on density functional

theory. The large carrier concentration and high electrical

conductivity in ScN that results from oxygen impurities are

compensated by the introduction of manganese which acts as

an electron acceptor in ScN. An interesting n-type to p-type

carrier transition is observed in this system, which opens up

the range of device possibilities for ScN. The optical studies

comprising absorption, PL, Raman, and spectroscopic ellips-

ometry provide insights into the physical origin of the optical

properties of this rocksalt semiconductor and its alloys with

MnN. The absorption studies indicate direct, indirect, and

Mn-induced defect gap absorption edges, all of which were

explained by our understanding of the electronic structure of

ScN and (Sc,Mn)N. To fully realize the potential of ScN-

based heterostructures in electronic and optoelectronic devi-

ces, it will be necessary to substantially reduce the oxygen

impurity concentration, to control native point defects (espe-

cially N vacancies) and to develop heterostructures with tun-

able band lineups. The chemical and thermal stability of

ScN, along with the broad range of heterostructures possible

in the rocksalt nitride materials system, justify further pursuit

of fundamental understanding of ScN, its alloys and hetero-

structures for future applications in useful devices.
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