Laser direct synthesis of graphene on quartz

Dapeng Wei
Birck Nanotechnology Center, Purdue University

James I. Mitchell
Birck Nanotechnology Center, Purdue University, jimitche@purdue.edu

Chookiat Tansarawiput
Birck Nanotechnology Center, Purdue University, ctansara@purdue.edu

Woongsik Nam
Birck Nanotechnology Center, Purdue University, namw@purdue.edu

Minghao Qi
Birck Nanotechnology Center, Purdue University, mqi@purdue.edu

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub
Part of the Nanoscience and Nanotechnology Commons

http://dx.doi.org/10.1016/j.carbon.2012.11.026

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Laser direct synthesis of graphene on quartz

Dapeng Wei a, James I. Mitchell a, Chookiat Tansarawiput b, Woongsik Nam a, Minghao Qi b, Peide D. Ye b, Xianfan Xu a,*

a School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
b School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

ARTICLE INFO

Article history:
Received 5 July 2012
Accepted 12 November 2012
Available online 20 November 2012

ABSTRACT

We demonstrate a laser-based technique to directly synthesize few layer graphene on quartz substrates without using any metal catalyst. In our approach, a photoresist S-1805 (from Shipley Comp.) film coated on quartz wafers was heated, and then decomposed, by irradiation of a continuous wave laser. The carbon atoms from the photoresist were dissolved in the molten quartz, and then extracted to form graphene when the temperature of the quartz was decreased. Raman spectroscopy shows the as-produced graphene is two to three layers thick. This laser-based method will provide a new approach and platform for applications of graphene-based devices.

1. Introduction

Graphene, a crystal of carbon atoms arranged in a honeycomb lattice, is emerging as an ideal material for future electronic devices [1–3]. Due to its outstanding electronic transport properties including high carrier mobility and perfect charge carrier confinement [4,5], graphene holds promises for a wide range of applications including field-effect transistors, supercapacitors, and sensors [6–8]. So far, the main routes for preparing graphene are mechanical exfoliation and chemical vapor deposition (CVD), and large-scale graphene is grown on Cu or Ni surfaces [9,10]. For device fabrication, the graphene grown on Cu or Ni needs to be transferred onto another insulating substrate [11], which carries the risk of contamination.

Here we describe a laser-based method for synthesizing graphene directly on an insulating substrate, quartz. Therefore, the as-grown graphene is ready to be used for device fabrication. Laser-based method is in general an attractive alternative for materials synthesis, with the intrinsic benefits of localized, fast, and single-step process [12–15]. Different from the conventional thermal CVD approach, a focused laser beam can produce the required temperature and chemical reaction in a confined area, while the rest of the material (substrate) remains at the room temperature. Recently, it has been reported that laser technique can be used for growing graphene on nickel [14], and for epitaxially growing graphene on SiC [13]. In a previous work, we successfully grew few layer graphene on a silicon substrate using laser-based technique without any metal catalysts [16]. These laser-based methods produce graphene on a conductive substrate, and a transfer process onto an insulating substrate is therefore needed for fabricating a graphene device.

In this communication, we report the development of a laser-based technique for synthesizing graphene without any metal catalysts on an insulating substrate, quartz. This laser-induced growth route is schematically illustrated in Fig. 1. A solid film containing carbon such as a photoresist was coated on quartz by spin-coating. The film was heated, and then decomposed, by irradiation of a focused continuous wave laser beam. The carbon atoms were dissolved in the molten quartz, and then extracted to form graphene when the temperature of quartz was decreased. The sample was mounted on a high precision piezoelectric stage and a DC motorized stage, therefore, the location of the graphene growth can be precisely controlled.
2. Experimental

2.1. Synthesis of graphene

Two 1×2 cm quartz wafers were used as substrate to grow graphene. The quartz wafers were first cleaned by ultrasonication in methanol, acetone, and DI water, and were dried by high purity N₂ gas. Photoresist S-1805 (from Shipley Comp.) was diluted with a volume ratio of 1:6 in Thinner-P (from MicroChem Corp.), and was then spin-coated on the quartz wafer at 10,000 rpm. The thickness of the coated film is about 30 nm. The photoresist-coated quartz wafers were then baked for 5 min at 120 °C. One coated quartz wafer was covered by another piece of quartz wafer, and then mounted on a sample stage in a vacuum chamber. Before growing graphene, the chamber was pumped and purged by high-purity N₂ gas, and maintained at a pressure below 0.1 Torr. A continuous wave (CW) Nd:YAG laser with a wavelength of 532 nm was focused on the S-1805 film through the transparent quartz substrate using a lens of 150 mm focal length. The carbon atoms were decomposed from the laser heated photoresist, then dissolved in the molten quartz, and extracted to form graphene when the temperature of quartz was decreased. With our optical setup, the graphene was produced with a laser power of 2.8 W, irradiated for 3–5 min.

2.2. Characterization methods

Optical images were taken with a microscope in a reflection mode. Atomic force microscopy (AFM) images were taken using an AFM (Veeco Dimension 3100) operated with the tapping mode under ambient conditions. Raman spectroscopy and mapping were performed using a micro-Raman system (XploRA) equipped with a motorized sample stage with laser excitation at 532 nm. A 100× objective lens was used to produce a laser spot size of about 0.6 μm in diameter, and the accumulation time was 20 s. Each spectrum was an average of three acquisitions, 3 s of accumulation time per acquisition. For electrical measurements, electrodes (Ti/Au, 20 nm/80 nm) were patterned using e-beam lithography. Sheet resistance of graphene was obtained by 2-point current–voltage (I–V) measurement and 4-point Van der Pauw method at the room temperature.

3. Results and discussion

Fig. 2a shows an optical micrograph of a 4×4 laser processed areas where graphene is grown, with a spacing of 250 μm. The graphene are shown as visible, round dots with bright rings. The diameter of the graphene dots is about 50 μm. The higher magnification optical micrograph in Fig. 2b shows uniformity and smoothness of laser-irradiated areas with a clear boundary inside bright rings, whose brightness gradually decreases along radial direction. The bright ring is in fact a ridge which is higher than the other area by about 300 nm. This type of ridge structure is typical during laser melting, caused by surface tension in a molten material irradiated by a laser beam [17,18]. An AFM image of the central laser-irradiated area is shown in Fig. 2c, within which the surface height varies within 1–2 graphene layer height (0.6–1.2 nm).

The nature and quality of graphene formed by laser irradiation were evaluated using Raman spectroscopy. The hallmarks of graphene are the three Raman peaks in the D (1350 cm⁻¹), G (1580 cm⁻¹), and 2D (2700 cm⁻¹) bands [19,20]. The D band is the so-called defect band of graphene, and the intensity ratio of D to G bands, \(I_D/I_G \), is a parameter to identify disorder in graphene [21,22]. The 2D band is the most prominent feature in the Raman spectra of graphene, and its position, shape, \(I_{2D}/I_G \) intensity ratio, and full width at half-maximum (FWHM) are well-established characteristics of graphene layers [10,23,24]. The Raman mapping with the \(I_{2D}/I_G \) and \(I_{2D}/I_G \) ratios are shown in Fig. 3, panels a and b, respectively. The central circular area shows low \(I_{3D}/I_G \) (0.1–0.2) and high \(I_{2D}/I_G \) (0.7–1.0) ratios, and its size is similar to the size of laser-processed area. Hence, the growth of graphene only happens in the laser-processed area. The Raman spectra shown in Fig. 3c correspond to the points marked by “A”, “B” and “C” in Fig. 3a. There is no signal of the 2D band outside the laser processed area; instead, the wide and strong D and G bands reveal sp²-rich amorphous carbon on the surface [25,26]. For typical Raman spectra in the laser processed area, the position of the 2D band at
Fig. 2 – (a) Optical micrograph of 4 × 4 graphene dot arrays with the spacing of 250 μm, (b) a magnified optical micrograph of a graphene dot, (c) an AFM image of the central area of a graphene dot.

Fig. 3 – Typical Raman mapping of (a) \(I_D/I_G \) and (b) \(I_{2D}/I_G \) in the laser-processed area, (c) the Raman spectra from the marked points in (a) and (b).
2696 cm\(^{-1}\) and the FWHM (2D) of 58 cm\(^{-1}\) are different from
the 2D band position of monolayer graphene at 2680 cm\(^{-1}\) and FWHM (2D) of 30 cm\(^{-1}\)\[10,12,23\]. Up-shifted and wider
2D band indicates the laser produced graphene have bi- or
tri-layer structures.

The \(I_{2D}/I_G\) ratio from 0.7 to 1.0 also indicates that the
graphene has bi- or tri-layer structure\[10,23,27\]. On the other
hand, the \(I_{D}/I_G\) ratio is an indication of the graphene crystal-
lite sizes, \(L_a\) (nm), which can be estimated as
\[L_a = (2.4 \times 10^{-10}) \frac{\lambda_i^2}{(I_{D}/I_G)}\] (nm), where \(\lambda_i\) is the Raman laser line
wavelength in nanometers x\[28,29\]. From the experimental
data, the \(I_{D}/I_G\) ratio from 0.1 to 0.2 corresponds to the graph-
ene domain size between 96 nm and 192 nm.

In the commonly used CVD approach for growing graph-
ene on metals, the growth parameters such as temperature
and pressure are basic factors that determine the formation
and quality of graphene film\[30,31\]. In our case, the process
is controlled by absorption of the laser beam and the resulting
heating. The quartz substrate is transparent to the laser
wavelength (532 nm). The photoresist S-1805 is a light-sensi-
tive organic mixture of photoactive compound, resin, solvent
and some additives, and can absorb a part of power of 532 nm
laser, although its main absorption happens at the ultraviolet
band. The photoresist also provides carbon for the growth of
graphene\[16,32\]. When the laser power is high enough, the
photoresist is decomposed, and the heat transferred to quartz
melts the quartz surface. As mentioned previously, deformation
of the laser-processed area suggests that the surface
experienced melting during the formation of graphene.
Therefore, the growth of graphene on quartz is not the same
as the surface-catalyzed process\[33\] or carbon dissolution
and precipitation in solid metal\[34\] when graphene is grown
on metal.

From our experiments, it was found that the laser power
and the thickness of the photoresist film directly determined
the temperature and the quality of graphene. Using laser
power lower than 2.8 W did not produce sufficient tempera-
ture and there was no graphene growth. Similarly, a thinner
photoresist film (\(<20\) nm) did not absorb enough laser power
for producing graphene. On the other hand, using higher laser
power (with less heating time) or thicker photoresist film
(40 nm or thicker) will produce much higher temperature
and the resulting surface appears to be rough. Therefore,
the laser power and the thickness of the photoresist film were
empirically optimized.

Fig. 4a displays optical microscopy images of laser-irradi-
ated areas with different laser irradiation times, which show
the formation process of graphene on quartz. Within the first
5 s, the surface had no visible change. After 20 s, the bright
rings started to appear, and gradually became more visible.
Electrodes were performed, and the sheet resistances were determined using e-beam lithography. The spacing between the opposite electrodes was 20 μm, as shown in the inset of Fig. 5. The current-voltage (I–V) measurements between opposite electrodes were performed, and the sheet resistances were found to be in the range of 780–805 Ω/sq. These values are comparable to those obtained from wet-transferred graphene (650–900 Ω/sq) and chemically reduced graphene oxide (700–1300 Ω/sq) [37,38], lower than those of Cu-catalyzed graphene (50–75 Ω/sq) [39], and better than Ni-catalyzed graphene (6–11 kΩ/sq) and catalyst-free nano-graphene (7–11 kΩ/sq) [40,41]. Therefore, the laser-grown graphene will have potential applications similar to those prepared by other methods.

4. Summary

A single-step laser-based method was developed to directly synthesize few-layer graphene arrays on quartz wafer. This process does not require use of any metal catalysts. The melted quartz absorbs and dissolves carbon atoms which are decomposed from the photoresist from laser heating. The dissolved carbon atoms were extracted from the melted quartz during the cooling and resolidification process to form graphene. The sheet resistance of the as-grown graphene is in the range of 780–805 Ω/sq. This simple, rapid, single-step, and controllable method for synthesizing graphene will have a significant impact on the graphene-device fabrication and applications.

Acknowledgements

We acknowledge the support of the Defense Advanced Research Projects Agency (Grant No. N66001-08-1-2037) and the National Science Foundation (Grant No. CMMI-1120577).

References

