Purdue University

Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1997

Active Gateway: A Facility for Video Conferencing
Traffic Contro

Shunge Li

Bharat Bhargava
Purdue University, bb@cs.purdue.edu

Report Number:
97-011

Li, Shunge and Bhargava, Bharat, "Active Gateway: A Facility for Video Conferencing Traffic Control" (1997). Computer Science
Technical Reports. Paper 1349.
http://docs.lib.purdue.edu/cstech/1349

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

ACTIVE GATEWAY:
A FACILITY FOR VIDEO
CONFERENCING TRAFFIC CONTROL

Shunge Li
Bharat Bhargava

Department of Computer Sciences
Purdue University
West Lafaytte, IN 47907

CSD-TR 97-011
February 1997

Active Gateway:
A Facility for Video Conferencing Traffic Control*

Shunge Li and Bharat Bhargava
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907, U.S.A
{lis,bb}@cs.purdue.edu

Abstract

Active technology is emerging as one of the most promising fields in networking and
distributed computing. It permits customized and more flexible control over the underlying
networks. End users can systematically and strategically study and change the network
behaviors by programming individual nodes of the network. The functionality of an active
network goes beyond the traditional data transmission; each node of an active network
has the ability to executing certain programs (or commands) passing through it. This
paper describes our research work of applying active technology to video conferencing traffic
control. We present the architecture and the design of an application-level facility, called
active gateway, for video conferencing traffic and quality of service (QoS) control. We
show that this facility enables more control functions for video conferencing which are
not seen in conventional video conferencing tools. We illustrate its features through several
experiments. Many important issues related to the design of an active network are discussed.
Some technical solutions and future improvement are suggested.

1 Introduction

Recent technological advances in computing has come to a point where human’s understanding of
computation model and the way computing should be done are about to change. Computers are
not stand-alone entities any more. They are networked globally, or at least within an enterprise
or an organization. On the other hand, people have realized that the computer network itself

~This research is supported by NSF under grant number NCR-9405931

can function as a computer. It is no longer just a passive medium for moving data {rom one
place to another. It can actively generate, store, exchange, and control information, and can be
programmed by end users. In other words, it can be a computer itself!

Active technology, under this situation, is emerging as one of the most promising fields in dis-
tributed computing. Under the networking context, each network node is active if it can not only
perform its traditional task of data transmission, but also execute programs or commands passing
through it. Therefore, end users of an active network can systematically and strategically study
and change the network’s cooperative or non-cooperative behaviors by, for example, injecting to
each active node a piece of programs in certain way and letting them be executed simultaneously
to create some useful scenarios that aren’t easily repeated in practice. With active technology,
end users can have more flexible control of the network by programming the network as a whole.
They can conduct scientific experiments repeatedly in a more controllable fashion. They can
also customize the network computing environments by manipulating the network resources as
well as the performance parameters of each node. By programming the network routers, end
users can have better control over the way shared system and network resources are managed.
Bandwidth mismatch problem among different network links, personalized QoS requirements, as
well as traffic scheduling, can be handled more easily.

Active network or programmable network also brings to the network community another
benefit that isn’t seen in traditional network systems. Currently, it is difficult to incorporate new
algorithms or services into routers or switches without going through the complex standardization
process that can last for at least 5 years. This is due to the fact that whatever new services come
to the intermediate gateways are expected to have a wide range of applications to build upon and
therefore must be adopted with care. Active network permits rapid development, deployment,
and utilization of new network services, protocols, functionalities by giving users the ability to
programming network nodes and to experimenting their new ideas right away.

Active technology opens up a door with many opportunities in networking. For example,
resource management is a big issue in multimedia communications. Resource reservation usually
results in resource under-utilization. With active technology, bandwidth which has been reserved
for some application can be temporarily borrowed by other applications needing it if the former is
not using full amount of reserved bandwidth. This can be easily achieved by forcing the involved
gateway to run a program that properly marshals the bandwidth among applications.

Active network is a timely service because its ability to executing programs at each node is
much needed by many application domains: security, multimedia, network management, traffic
control, service customization, to name a few. This paper describes our research work of applying
active technology to video conferencing control. We present the architecture and the design of
an application-level facility called active gateway. We show that its facility enables more control
functions which are not seen in conventional video conferencing tools. We illustrate its features

2

through several experiments. Many important issues related to the design of an active network
are discussed. Some technical solutions and future improvement are suggested.

2 Related Work

An active network isn’t something that is different from current networks in its entirety. Some
forms of preliminary active network capabilities can be found in several products or systems.
For example, a typical commercial router encapsulates multiple protocol modules that can be
easily configured by system administrators based on their running environments. This kind
of configurability is very limited compared to the programmability the active network offers,
however, because human knowledge about when and what to configure in the router under a
certain condition has not been incorporated into a program; the configuration task is currently
performed through human interaction with the router at run time. With active network, we
can program this human knowledge into the configuration task and launch the program at the
intermediate routers. Routers will no longer need the system administrators to configure them;
the program does it all.

Similarly, video gateway ([AMZ95]) and mixer mechanism defined in RTP ([SCFJ96]) can
perform, at intermediate network nodes, certain application-level processing functions such as
transcoding, stream synthesizing, and filtering. Firewalls, Web proxies, and agents are also
mechanisms that allow fixed sets of processing tasks to be performed at some network nodes.
The fact that all these technologies are applied within individual end systems and above the
end-to-end network layer ([TW96]) has led to several recent research activities that leverage and
exlend these technologies lor use within the network.

The laboratory for Computer Science at MIT has implemented a network service called Active
IP Option ([WT96]), in which Tcl scripts are embedded in IP packets using IP option fields. Any
gateway recognizing the special options can interpret and execute the scripts. Others just ignore
them. With this new service, many traditional networking services, such as finding MTU of a
remote network link, can be re-implemented in a more efficient fashion. More importantly, new
functionalities can be built upon.

Researchers at MIT also proposed to build an experimental ActiveNet on the Internet ([TGSK96]).

ActiveNet is intended to be designed as a2 network infrastructure that will serve as a testbed and
environment for active network researches. It is proposed to be built very much the same way
the MBone ({Eid94]) was built, that is, through tunneling. This is a cost-effective approach
because it does not build a separate network. The ActiveNet will be made transparent to other
Internet users as they won’t be aware of the existence of the ActiveNet. The Internet and the
AcliveNet will co-exist, and the Internet will operate as usual. About a dozen institutes have
agreed to work towards this goal and many other organizations have expressed their interests in

participating 1 such a construction.

NetScript ([YdS96]) is another effort by researchers at Columbia University towards build-
ing active programmable networks. The NetScript project focuses on the architecture issue for
programmable network. Each intermediate programmable network node is considered as a Vir-
tual Network Engine (VNE) interconnected by Virtual Links (VL). A VNE is programmed by
NetScript agents to process packets and route them to other VNEs via some VLs. Agents them-
selves receive services from the Agent Services layer which supports delegation, execution, and
contro)] of agent programs, as well as communication services among agents. NetScript is a small
and simple dataflow language specifically designed for communications-based tasks.

The idea of active network can be applied to network hardware facility as well. SwitchWare,
proposed by researchers at University of Pennsylvania and Bellcore, is an instance of active
network engineering practice [Sea96]). A SwitchWare is a programmable, software-controlled net-
work switch intended to replace the special-purpose switching hardware. It consists of input and
output ports controlled by a software-programmable element. Sequences of messages contain-
ing programs are sent to the SwitchWare switch’s input ports, which interpret the messages as
programs.

In this paper, we demonstrate a practical prototype system that controls video conferencing
streams via active application gateways. We show that by programming active application
gateways, we can achieve new control services that would otherwise hardly be achievable with
traditional video conferencing technology.

3 Active Application Gateways

3.1 Design Methodology
3.1.1 Application Domains

One of the primary objectives for us to develop the facility of active gateways is to build a testbed
for conducting experiments on real-time multimedia communications. This facility will allow us
to study these issues in a more controllable and more systematic way. Study of new protocols for
multimedia communications, new resource management schemes, and new QoS control mecha-
nisms will be largely facilitated through the use of such a facility. However, the facility is not
just limited to these domains. It can also be used in network management, distributed object
systems, security, world-wide information systems, etc. In this paper, we focus on its use in video
conferencing traffic control.

3.1.2 Kernel Implementation vs. Application-Level Implementation

We implemented the facility of active gateways as an application-level service because of the

following reasons:

1. Because many features of active gateways are in experimental stage, they are expected to
be added, removed, or updated {requently. Developing them directly within kernels would
mean frequent kernel changes, compilations, and installations, which are time-consuming
tasks.

2. An active network provides end users with an ability to customizing the systems for specific
applications. A specific application, however, usually has specialized requirements that
cannot be generalized to other applications. This highly application-oriented nature makes
1ts development and deployment unsuitable to be done in the operating systems’ kernels,
which are supposed to offer services for all applications.

3. Developing active gateways as an application service allows current systems to continue
operation without being affected by the development process.

4. Most developers don’t have access to the kernel source codes, making application-level
development the only choice.

Not only does the development of active gateways not need to change kernel, it does not re-
quire super-user permission o run it, either. In fact, during development process we deliberately
avoided using those system services that would require root permission. A superuser permission
requirement limits the usability of a software to a great extent. It may also leave some security
holes to malicious users. Easy compilation, installation, execution, and great degree of usability
are what we seek for this software.

3.1.3 Program Encoding Schemes

The scheme in which a program is encoded or expressed plays an important role in an active
network. A good scheme must support mobility, portability, and efficiency. It may optionally
support built-in security features, or simply let network protocols to handle the issue.

Mobility not only refers to heterogeneity or platform-independency, but also implies the ability
to adjusting to running environments of different network nodes. Because a program is expected
to flow through a number of network nodes on a range of possibly different platforms in an active
network before it reaches its ultimate destination, either the program encoding scheme must be
platform-independent or each active node must be capable of doing on-the-fly compilation on the
program source codes. If the program is expressed in binary code, it may not be recognizable
by some active nodes unless it also carries binary codes that can be recognized by the nodes.

5

However, simultaneously carrying binary codes for multiple platforms increases code redundancy
and wastes considerable network bandwidth. Therefore, although binary encoding scheme is the
most efficient one, it works only on platforms with binary compatibility. In a heterogeneous
environment such as the Internet, this approach has very limited interoperability.

There are two ways to deal with programs expressed in source code scheme: interpretation and
on-the-fly compilation. On-the-fly compilation, while achieving the greatest interoperability, has
severe performance penalty because the nodes must first compile a program and link the object
code with libraries before they can execute it. This time-consuming process is sometimes not
affordable for real-time applications. Even though an application is not time-critical, run-time
compilation usually takes long time, which will result in unpleasant response time. Interpretation,
on the other hand, allows programs to be evaluated right away without requiring knowledge about
the binary code formats of local platforms. For programs of small sizes, it has reasonable response
time. [Furthermore, it supports rapid prototyping.

Intermediate code scheme is a compromise between compilation scheme and interpretation
scheme in terms of efficiency and portability. This approach introduces a concept of Virtual
Machine (VM), whose intermediate code format is supported universally. Every active node
recognizes the intermediate code format and has a translation routine that does the mapping
from the intermediate code format onto binary code format of the local platform. A program
is compiled and translated into the intermediate code format at the dispatcher node before
dispatched to active nodes. Each active node then translates this intermediate code into its
own binary code which is linkable and executable on its local machine. This approach achieves
a good balance between portability and efficiency, therefore is the most promising approach.
The only requirement for this approach to work globally is that every node must support VM
intermediate code format (e.g., the bytecode format in Java)} and must have a translation routine
to map between its local platform binary code format and the VM intermediate code format.

Therefore, a good candidate of the program encoding schemes must be both platform-
independent and interpretable. In addition, it must be simple and concise in order to save
network bandwidth. Many scripting languages, such as Tel ([Ous93)) and Perl ([Lar96)), meet
these requirements. Java ([GM95]), though not a scripting language, falls into this category well
due to its Virtual Machine (VM) model. Its nice integration with the World-Wide-Web (WWW)
and its built-in security features make it especially attractive in future deployment of active
network technology through WWW. Perl, as one of the major languages for Common Gateway
Interface (CGI) programming in the WWW stage, has been very successful in the WWW world,
which is by nature heterogeneous. It has great potential towards being developed as one major
working language for active network. Tcl has already been used in the Active IP Option re-
search. Its conciseness, ease to build GUIs with, and ease to integrate with C language, make it
a non-negligible choice as a working language for active network. Other languages, such as ML,

have also been used in active network programming ([Sea96]}). [YdS$96] developed a dataflow
language called NetScript as a means for programmable network research. However, they need
to be further developed towards mobilily, portability, and efficiency, in order to be accepted
globally.

We use Tcl scripting language in our development of active gateways due to following reasons:

1. Rapid prototyping. It took us about one month to build our prototyped (demonstratable)
active gateways, though constant improvement is always needed.

2. Embeddability into C programming language, which is used to implement major gateway
functionalities. Tcl’s interpreter is implemented as a library of C functions that can easily
be incorporated into applications.

3. GUI support by Tk, 2 companion toolkit of Tcl. Accessibility, customization, flexible
control, and systematic manipulation of active network imply an easy-to-use and friendly

GUL

4. Lfficiency and portability. For small programs, Tcl achieves reasonably good efficiency.
Compared to Java-approach, which will be described later, no compilation process is in-
volved. As to portability, Tcl’s interpreters are available on most platforms.

3.2 Architecture of the Active Network

We have constructed an experimental active network prototype on top of our campus network
environment. The active network consists of a set of active application gateways, a set of end
systems, and a set of dispatchers, all of which can be placed on arbitrary network nodes. Such
an active network is virtual because it does not exist physically; it is built on top of conventional
IP networks. However, it is a network from end users’ perceptions because they are not aware
of the existence of the underlying physical network, which actually delivers dispatched programs
transparently. They are aware only of the logical entities (e.g., routes, connections) in the active
network. Creafing such a virtual network is useful because it does not change the routers in the
physical network al all and thus allows them to continue operation without being affected by
the active network. Figure 1 depicts the relationship between an active (virtual) network and a
physical network.

To avoid kernel changes within the routers of an active network and superuser permission
requirement, we use UDP instead of raw IP as the basic networking service. Tel scripts, along
with other meta information (see the next subsection), are encapsulated in UDP datagrams,
which are in turn delivered in conventional networks.

Virtual Network

Physical Network

Figure 1: A Virtual Network and Its Physical Network

Figure 2 shows a simple but typical case of active network setup where an active gateway is
placed in a network node between two networks each respectively connecting an end system. Also
connected to the gateway via a separate network is a dispatcher, which serves as an operational
platform for the active gateway. The dispalcher issues programs or scripts to the gateway
over some network and receives from the gateway return messages that report the status of
applications, resource usages, statistical information about network traffics, etc. The purpose
of such a construction is to enforce the communication between iwo end systems to go through
the gateway, therefore facilitating experimentation. The active gateway can perform traditional
packet routing function in the logical sense in addition to executing programs dispatched from
remole dispatcher softwares.

In general, an active network may contain arbitrary number of dispatcher programs and/or
active gateways in the same physical network at the same time. They can provide services
to arbitrary number of end systems and can communicate with each other using a built-in
routing facility. Because the dispatcher programs and the active gateways are implemented at
application-level, both can be launched as standalone applications from any nodes and run on
any target machines in the network, allowing easy installation and utilization by end users. In
practice, only one dispatcher is needed because it can concurrently dispatch various programs to
as many gateways as possible.

3.3 Communication Facility

The communication facility in our active network is constructed to support dispatch of programs
as well as communications among active gateways. An active gateway is responsible for normal
packet routing as well as handling programs passing through it. A well known port number has

Dispatcher

Network
N

Gateway

Recceiver

Ncitwork

Figure 2: A Simple Active Network

been established for application-level packet routing. To demultiplex normal data packets and
dispatched programs, we designate a separate port number to handle programs {lowing through
active gateways. Any active gateway listening to this particular port will receive program-
embedded UDP datagrams passing through it.

Note that it is possible to share the same port between application data packets and program-
embedded UDP datagrams. However, doing so would require to define a new type field in the
packet header. For every application the active gateway wants to support, its packet structure
has to be updated to incorporate this typefield. Specifying a separate port number for dispatched
programs would provide a more general mechanism that can work with as many applications as
possible while minimizing modifications that have to be made to the applications.

Tel scripts are encapsulated into UDP datagrams and dispatched to the network. Besides
the scripts themselves, also included in UDP datagrams are extra control and meta information
such as program encoding scheme, routing and addressing information, meta information about
the scripts (length, constants, environment variables, parameters). For security reasons, the
Tcl-scripts (or any other programs) need to be encrypted using some cryptographic scheme such
as public key cipher. Meta information therefore may also contain digital signatures and public
keys. These information are packaged as a message header of the Tcl scripts and are placed at
a layer above UDP (table 1).

3.4 Components of Active Gateways

An active gateway is currently implemented with two threads. The Tcl interpreter runs as a
thread and the router, which performs normal functions of routing, event handling, scheduling,

9

Table 1: Format of Script-Embedded UDP Datagrams Dispatched to Active Gateways

| UDP Header | Meta Data [[Encrypted] Tcl Script]

Input Packet Queues

Data Packets Programs/Scripts
Interpreter e
¥ ¥ |
Packet Router Packet Scheduler Resource Manager
¥ / / ¥ ’

Cutput Packet Queues

Figure 3: Components of An Active Gateway
runs as the other. Figure 3 shows the components of an active gateway.

3.4.1 Routing Tables

The most basic functionality a gateway performs is packet routing. Kach active gateway has its
own built-in routing table that is controllable by end users through program dispatching. This
routing table specifies logical routes in the active network, not physical routes in underlying
physical network. For example, one hop away (from A’ to C’) in an active network may be
several hops apart (from A to C) in an actnal physical network (figure 1). Users of the active
network are unaware of the routing operations performed in the underlying network; instead,
they are aware only of the routing operations performed in the active network.

From implementation point of view, the routing table of an active gateway 1s no difference
from that of a conventional IP gateway. For each destination IP address, it contains the IP

10

address of the next hop gateway (in the logical sense). The routing table at each active node
(hosts as well as intermediate gateways) is configurable through some primitives and is consulted
to determine the next logical route to send the UDP datagrams to. The content of the routing
table can be changed at any time by the active node by executing programs dispatched to it.
This logical facility allows end users to casily perform application-specific traffic flow control
without changing physical routes for other applications. Packets of other applications are routed
the same way as if there were not active gateways in the network.

3.4.2 Primitives

Primitives are the smallest programmable units that can perform the most basic funclionality
for a specific application in an active network. They form a base from which all the application’s
control functions can be derived. In this paper, we are not intended to define primitives for
the active network’s control language. Rather, the primitives we are talking about here are

application-oriented.

QOur primitives can be categorized into two classes:

¢ Communication primitives. These are are basic operations involving communications
among active network nodes. Examples include operations on routing table (setting, chang-
ing, or removing routes), network resources {setting bandwidth), network QoS (querying
link latency, throughput), and application QoS (querying delay, jitter, connection informa-
tion).

¢ Non-communication primitives. These are are basic operalions that deal only with
the local entities such as resources. Examples include operations on resource management,
scheduling, priorization, policy, etc. Also provided are primitives regarding time event
management, including invoking an event or a procedure at a particular time, delaying an
event by a time interval, etc.

3.4.3 Policies

Policy-based control mechanism is a must for many distributed systems and applications. QoS
control in real-time multimedia communications is by definition policy-based simply because
there does not exist a single universal control scheme that works for all cases.

Policies used in active gateways can be classified based on different criteria. In terms of
functionality, they can be classified as control policy and scheduling policy; in terms of the way
they are defined and dispatched, they can be classified as static policy and dynamic policy; and
in terms of generality, they can be classified as application-specific policy and general policy.

11

Control policies deal with how to perform a certain type of control. For example, a control
policy may define which packets should be dropped or which connections (or channels) should
be closed when the available network bandwidth falls below a threshold. Scheduling policies
deal with how to schedule system and network resources. For example, a scheduling policy may
state how to allocate and schedule resources among multiple connections. Static policies are
predefined. Dynamic policies are defined and dispatched by end users on-the-fly.

Active gateways support many control policies and scheduling policies that can be either
static or dynamic or both. During initialization, an active gateway loads predefined policics.
During execution of a program, a newly defined policy can be taken into effect by replacing
the current policy. This dynamic reconfigurability of policies can be programmed in Tcl scripts.
Each policy has a unique policy number and is implemented as a Tcl procedure. Therefore, a
policy can be overwritten by redefining the corresponding Tel procedure on-the-fly.

3.4.4 GUI

A graphical user interface (GUT) has been designed and implemented for the dispatcher software
to make its operations easy. It serves as a software platform for launching Tcl-scripts on active
gateways. It greatly facilitates our experimentation.

Our GUI consists of a control panel {a sel of control buttons/scales), an information panel
reporting network status or statistical information, a text-editable window for users to type in
commands/scripts and to dispatch to the gateways for execution. Menu bars and accelerate
keys are also provided to facilitate and speed up operations. A graphical panel that can picto-
rially show state/status information is to be added to enhance the visualizability of information
presentation.

3.4.5 Bvents

Many events are encountered in a real multimedia communication session. They include data
loss, data corruption, and retard of data delivery. To study their effects on QoS, a mechanism is
needed to control the generation of these events.

Active gateways support many operations other than routing. These events include dropping
a packet, delaying the delivery of a packet by a certain amount of time, recording a packet, cor-
rupting a packet, and transcoding a packet. The purpose of supporting these special operations
at intermediate gateways is to simulate various network service models and traffic models on
a more controllable network environment such as a campus network. Often, communications
with UDP in LANs witness less or no data loss. Even in a lossy environment, the quantity of
the loss rate is hard to control. By dropping packets flowing into an intermediate gateway with
certain probability, we introduce a loss rate into packet delivery over a specific link. Also, many

12

infrequently-occurred events can be re-produced as many times as we want. With this approach,
coupled with active technology, data loss or other events becomes more controllable, manageable,
and programmable.

An event generator has been implemented to generate these special events systematically.
Associated with each event is a routine that implements the semantics of that event. These
routines will be called when corresponding events are activated. The event generator follows a
probabilistic model, that is, each event is generated with a certain probability. The probability
distribution of these events is characterized by a probability distribution function, which can
be cither predefined or defined on-the-fly, or overwritten dynamically. A primitive (set_pdf) is
created specifically for defining this function programmatically. The probability distribution
functions can be per-application based or per-traffic flow based.

3.4.6 Priority

Priority is used to represent the relative importance among entities. It is the simplest and
yet powerful mechanism for guaranteeing QoS such as end-to-end delay bound. Let’s envision
a scenario where a gateway is handling multiple incoming real-time and non real-time traffics
concurrently. Obviously, assigning higher priority to real-time traffics over non real-time coun-
terparts would give the former an ability to preempt shared resources and guarantee it to get
scheduled/serviced within certain time bound to meet its deadlines.

Among the entities that can be prioritized are processes, connections (or channels), frames,
and packets. The way in which priorities are assigned can vary. Policies can be defined to reflect
different priority assignment schemes.

4 Experiments

4.1 Example Application — Video Conferencing

In previous section, we showed that active gateways support many mechanisms that are essential
for providing control functions for distributed multimedia applications. For example, using the
primitives provided, an active gateway allows resource utilization information such as buffer
size, CPU time, and network bandwidth to be collected and the contents of routing tables
to be investigated. It enables the adjustment of the amount of resources allocated to each
individual application in order to meet its QoS requirements and tuning of its performance
for some particular purposes. It can influence the outcome of packet scheduling by enabling
dynamical reconfiguration of parameters and policies of packet scheduling. It can make a better
resource utilization by smartly allocating unused resources to demanding applications.

13

In the following subsections, we are going to illustrate features of active gateways through
a concrete distributed real-time multimedia application ~ video conferencing. We oblained a
popular Internet video conferencing tool called Network Video ([Fre94]), developed at Xerox
PARC. We modified the NV software to include routing facility. Active gateways are placed
in the middle of video senders and video receivers so as to enforce the communications between
video senders (service providers) and video receivers (service consumers) to go through the active

galeways.

NV uses RTP ([SCFJ96]) as the transport protocol to transmit video data. In order to
munimize the change to the NV code, we built our protocol on top of RTP, which is in turn built
on top of UDP (table 2).

Table 2: Data Encapsulation in Modified Version of NV

UDP Header | RTP Header I QoS Parameters , Video Data |

We have explored several adaptability features for video conferencing ([LGB95]). However,
our approach towards performing QoS control was an end-to-end solution, i.c., adaptation was
achieved at the end points of a video conferencing session. Moreover, QoS control decision was
made based on end-point observations of network conditions and end users’ requirements. End
users had no control over how the video frames are routed within the network, nor could they
perform adaptation based on the network conditions at intermediate nodes.

This is not the case any more with active gateways, however. We can perform customized
control at any intermediate network nodes. Adaptation can be achieved not only at the end-
points but at any intermediate nodes as well, based on their network conditions. This allows users
to study a new type of adaptability that wouldn’t be possible before. In the subsections that
follow, we will demonstrate the functionalities of the active gateways through several experiments
we conducted with our modified video conferencing tool NV.

4.2 Performance Tuner .

The performance of a video conferencing session is affected by such factors as available resources
(e.g. network bandwidth, buffer space, process priority), network characleristics (loss rate, la-
tency, etc). These factors have been characterized as a set of parameters that can be set by Tcl
scripts. For example,

setbw 200

14

/ngcway Receiver

Coam -

Secnder

Dispoicher

Figure 4: Performance Tuner

Pirx raid4

ector kalypso

Figure 5: Redirection of Video Conferencing Traffic

sets the simulated bandwidth to 200 kbps on a node that executes this command. The change
of bandwidth will cause the frame sending rate to be recomputed. Similarly, we can migrate the
adaptability features from end-points to any intermediate nodes.

Figure 4 shows a simple setup of a video conferencing session. The sender and the receiver
are having a one-way video conferencing session via an intermediate gateway. They periodically
report Lheir status information to the dispatcher, who, based on the feedback information, issues
appropriate Tcl-scripts to the gateway for execution. Depending upon the policies defined,
performance parameters at the sender side may be tuned, or certain actions are taken at the
inlermediate gateway to guarantee QoS perceived by the receiver, all through the execution of
the Tcl-scripts at the gateway. The performance parameters that can be tunable include sender’s
sending rate receiver’s loss rate, receiving rate, and response time. Primitives have been defined
to support performance tuning operations.

4.3 Switching of Receivers

Switching of receivers of a video conferencing session is equivalent to turning off one recipient
and turning on another one, which is useful in traffic control.

This experiment has the following setup (figure 5). Originally, pirr and raid{ are having a

15

video conferencing session through an intermediate router eclor, which is also an active gateway.
Now we want to set kalypso to be the new recipient of pirz. All we have to do is to issue a
command, redirect, that tells ecfor to redirect the destination for all the frames being sent by
pirz to kalypso. raid{is no longer a recipient of pérz, though it can remain as an active sender (to
pirz). To remove raid4 as a sender to pirz, command delconn can be used. redirect takes three
arguments that specify for which connection the new destination will be redirected to. The Tl
script that does the switching is as follows:

addconn pirx raid4 /* set up connection pirx ---> raidd %/
addconn raid4 pirx /* set up commnection raid4 --> pirx */
redirect pirx raid4 kalypse /* do switching, now pirx ---> kalypso */
delconn raid4 pirx /¥ delete connection raid4 --> pirx */

Although this example seems no direct applications, it illustrates a basic functionality that
can be further deployed to support more sophisticated operations at gateways. For example, it is
now easy to switch the recipient among multiple parties in a round-robin or some orderly fashion.
Some illusions of broadcasting a video conferencing session can be simulated in this way with
proper timing control, though we have an alternate way to achieve broadcasting, which will be
described below. Also, it is now easy to dynamically control the receiving of video frames based
on resource availability. For example, the following code turns off some channels if its bandwidth
is below a certain threshold.

for (i = 0; i < MAX_CHANNEL; i++) {
if (channel[i] .bandwidth < threshold) {
reduce the data quality or shut off the channel
available_bandwidth += channel[i] .bandwidth;

}

The bandwidths released from corresponding applications are now available to other applica-
tions. This can make the resource scheduling more flexible.

Also it is now possible to send a video session to multiple users simultaneously with person-
alized/customized quality of services, which will be covered in the next experiment.

4.4 Personalization of Broadcast Video Traffic

The ability to customizing systems for specific applications and/or specific end users is particu-
larly important in multimedia applications. A typical scenario of video conferencing is one-sender
and multiple-receiver {(multicasting type of communication). With active network, it is very easy

16

MPEG-2

Figure 6: Personalized QoS Control

to have personalized/customized or conditional QoS control. Figure 6 shows the setup of an
experiment with one sender S and three receivers X, Y, and Z.

Suppose that receivers X, Y, and Z all have their own QoS specifications. The active gateway
can be configured as follows: it always guarantees delivery of video conferencing sessions to X
and Z with the presentation quality X receives no worse than that Z does. It doesn’t have
to guarantee the delivery of video conferencing sessions to Y. So when the network bandwidth
decreases, the gateway can manage to drop frames sent to Y, then degrade the quality sent to

Z, and so on.

The same scenario can happen in other applications such as pay-per-view type of video-on-
demand, where users willing to pay various amounts of money receive different quality of videos
(HDTV, MPEG-II, and MPEG-I, etc). Although in theory customized services can be achieved
for different users, a practical question arises in this scenario as to the scalability of the scheme.
How do we provide customized services when the number of receivers in a network scales up?

It is certain that a hierarchical structure must be imposed on the virtual network. Figure 7
shows that many intermediate active gateways that can provide customized QoS specifications
are used. They, along with the sender and receivers, form a tree structure with the sole sender
being the root.

Each receiver submits its own QoS specification to its directly connected active gateway,
which, upon receiving a program dispatched by the dispatcher, will execute the program to
provide its QoS support. For this scheme to work correctly, however, information about QoS
requirement of every receiver must be gathered and made available to every gateway whenever
needed. If the directly connected gateway of a particular receiver is the only gateway that knows
its QoS requirement, would the QoS always be satisfied? Maybe not, because the gateway itself
may not be receiving equivalent or better QoS from the source or other gateways. Therefore, the
gateway must let other gateways and eventually the source know of QoS requirements of all its
directly-connected receivers.

17

@ Sender

) Intermedinte Gateway

(] Receiver

s

Figure 7: Personalized QoS Control

When the number of receivers is very large, propagation of the information aboul QoS re-
quirements may become overwhelming. For this scheme to work efficiently, receivers with same
or similar QoS requirements should be grouped together to reduce the size of the information.
The grouping operations are performed from the leaves of the tree up toward the root.

Architecturally, this is similar to the way today’s MBone is constructed. In fact, the RTP
mixer mechanism, which is intended to be used with MBone, can also provide limited customized
QoS support for different destinations. However, RTP mixers don’t execute programs flowing
through them; they just perform different functions (e.g. filtering and transcoding) on data
flowing through them for different destinations.

4.5 'Traffic Control

Probably the most important application of active gateways is in network traffic control, in which
case multiple gateways may be involved. Figure 8§ depicts an example scenario where A wants
to talk to B. Initially only traffic from A to B exists and goes through G;. Suppose another
traffic is also going through G). If the total amount of traffic flows exceeds what G} can handle,
congestion occurs. I it does nothing or limited congestion control (for example, ask one or both
applications to back off), both traffic flows will be hurt. Now if the dispatcher observes this
situation, it can order Gy to split some of its incoming flows from 4 to go through G by letting
it executing some programs that does that. Now part of traffics from A can detour through G,
which then delivers them to B. A more ideal scenario would be without control from dispatcher.
With the absence of a dispatcher, (3} has to figure out by itself when it likes to be congested.
This can be done by observing its incoming queue length and packet average waiting time in
queue. If the quene length reaches or exceeds a preset threshold, it may be about to experience

18

Another Traffic Flow

Figure 8: Detouring the Traffic

congestion. When this happens, it dispatches a program to the traffic source A to request that
1t send data packets with certain percentage through G,. A, who now is an active gateway as
well, updates its routing table and sends part of data packets to G, who will route them to
the ultimate destination B. Later on when Gy is relieved from potential congestion, it can again
inform A that previous route may resume.

In this example, G) plays the role of the dispatcher. A is not only the sender but also an
active gateway because it receives and executes Tl scripts from the dispatcher. The condition for
this to work is that all these gateways must be cooperative. For instance, during the congestion
of G'1, G2 must not be congested. And G; must know this information as well in order to tel] A
who will be the detour node.

Like conventional IP networks, our gateways change transmission paths for a traffic by mod-
ifying routing table contents. However, the way in which routing tables are modified is quite
different from that in conventional IP networks. In our case, updating routing table is triggered
and controlled by programs flowing around in the active network whereas in the case of conven-
tional IP networks, modifications of routing tables occur when routers execute RIP or the like
and advertise their own routes to their neighboring routers which in turn propagate the updated
routes down to other routers.

Clearly, active network approach is more flexible because it can achieve finer granularity
when splitting traffic. For example, traditional routing tables have one nexthop entry for each
destination. In active gateways, each routing table can have multiple nezthop entries for the
same destination with each entry associated with a number specifying the percentage quantity
of the flow going this way.

To find out the shortest path between any two end points in the Internet, traditional IP routers
rank destinations using vector-distance metric, which can be as simple as a single scalar number
such as hop count. IP defines a real vector field in IP header, namely, TOS (type of service) field,
which contains such measures as throughput, reliability, delay, and packet precedence ([Pos81]).

19

However, it had not caught much attention in practice until recently. Some new generation
protocols such as IPv6 ([DH95]) have defined mechanisms for QoS-based routing support, which
has been expected by emerging applications. Active gateways facilitate QoS-based routing by
enabling dynamic incorporation of various policies into these protocols as well as vector-distance
algorithms.

Distributed algorithms lack centralized control. State information have to be exchanged
globally. Active gateways can control the degree of centralization by balancing the amounts of
centralized control and decentralized control. It can marshal traffic low among multiple active
gateways. Active gateways support congestion avoidance by splitting traffic flows a priori before
congestion actually occurs.

5 Discussions

5.1 Advantages of Active Gateway

One could argue that many of the services provided with active network could be implemented
with traditional technology. This may be true. But one has to confess that active network
provides a cleaner and more flexible and strategical way of controlling the network.

In the first section, we described the use of active technology in bandwidth allocation problem.
Of course, we could embed this type of codes into traditional gateways. However, doing so has
several disadvantages: first, it complicates the gateways; second, when and how to schedule
resources among multiple applications is an application-level policy. It is not appropriate to
incorporate application-level policies into gateways, which are supposed to provide services for
all applications. Third, end users have few choices of network controls.

With active gateway, resource management and scheduling can be achieved i a broader scope.
Traditionally, scheduling is typically done within the scope of a computer. Even though load
balancing is typically executed among a cluster of computers, they are always t1ghtly coupled.
With active gateway, it is possible to balance the load or the network trafic among network
nodes interconnected via several intermediate networks.

However, active network technology also introduces risks to the active nodes because they
execute codes that might be from an untrust user, might be eavesdropped and masqueraded.
Any practical active network must face these technical challenges.

5.2 Technical Challenges

Many technical hurdles need to be removed before active gateway can be used in practice. They
include, but are not limited to, the followings.

20

1. Security. Despite its importance, this issue is not touched at all in our current prototype.
How do we make sure that a program dispatched to an active gateway is from a trustable
source and does not get modified along the path? Public key mechanism can be used to
provide both secrecy and authenticity. For example, the digital signature of a source can
be attached to each program before being sent out. However, encryption and decryption
are the prices we must pay.

Whereas eavesdropping and masquerading from malicious users can be prevented, denial of
service, regardless of whether it is intentional or unintentional, has been a real challenge. A
dispatched program executed by an active gateway needs to consume some resources and
may require access to local file system. If the program consumes the resources unboundedly,
it may affect regular local event handling and cause the local system to hang on or behave
abnormally. Although we can restrict outside programs’ accessibility to local resources to
limit the degree of this type of attack, this action will hurt the usability and functionalities
of active gateways.

While no clear answers to this question are known, it is suggested that some policies be
embedded into local resource manager. Detailed discussion of this issue is beyond the scope
of this paper.

2. Secure Communication Protocol. If the security is not provided in network con-
trol language, it must be provided by communication protocol. When designing a secure
communication protocol for a traditional network, one must choose between end-to-end en-
cryption and link encryption. End-to-end encryption is a scheme where data are encrypted
and decrypted at the source and destination only whereas link encryption encrypts and
decrypts data at each node between the source and the destination. There are pros and
cons for each scheme ([Den82]) and they are applicable to active network as well. The
designer of a secure communication protocol for active network must decide the scheme
best suited for his intended applications.

3. Performance. Performance is always a big issue for any system to be of practical use.
Responsiveness of program execution is critical for real-time applications because the pro-
gram may require immediate attention in order to have some controlled objects influenced
right away. Therefore, packets containing programs for active nodes must be assigned to
high priorities in order to get serviced early at every active node.

Transmission of programs in active network must be reliable as well. Imagine that multiple
programs are simultaneously dispatched to all the nodes in an active network in order to
cooperatively achieve certain control function. If one program gets lost whereas others get
to their destinations, these nodes cannot perform what they are expected to. Depending on
what the application is, communication protocols should be properly chosen or developed
to meet either responsiveness or reliability or both.

21

Since our active network is a virtual network built on top of an IP network using UDP,
additional reliability guarantee must be provided. TCP, on the other hand, should work
fine for non-realtime applications that require reliable transmissions.

Another problem associated with UDP is the limit of maximum size of a datagram, which
1s 64KB. Tor a large Tcl script, we can divide it by procedures and send them in separate
datagrams because in practice a single Tcl procedure hardly exceed this limit. This way,
we can avoid using TCP. To speed up runtime execution process, we can prefetch static
and frequently used procedures during initialization time and load dynamic or infrequently
used procedures at run-time.

4. Distributed Object Identification. To program the active network as a whole, there
must be a mechanism in the network control language to identify distributed objects such
that they can be easily referenced in programs to be executed by active nodes. Pro-
grammable naming and addressing schemes must be invented to accomplish such a task.
Any logical entity, such as resource, environment, logical route, or address, is a distributed
object and must be identified in one way or another.

5.3 Future Improvement

Currently, we only conducted experiments for video conferencing applications. In the [uture, we
plan to conduct experiments for distributed video-on-demand applications and implement some
transcoding algorithms at intermediate nodes. We will, through experimentation, develop and
identify features of active gateways that will be useful for general applications such that they
can be incorporated into operating systems’ kernels in the future.

Our long term plan is to use Java as the nelwork control language in future active gateway
research. Support for Java bytecode encoding scheme is currently under way. We utilize Java’s
dynamic loading mechanism to achieve such a support. First of all, each Java program to be
executed at an active gateway must be a valid, well-defined class. Secondly, an active gateway
must invoke a Java runtime object, which, upon receiving a Java bytecode program, uses Java’s
dynamic class loading mechanism to verify the format of the class and resolve other classes
referenced by this class. Thirdly, depending upen the system’s security enforcement strategy,
Java’s built-in security checking mechanism can be used to ensure that the execution of the
class won’t violate any security constraints imposed by local securily policies and cause denial
of service attack. Finally, the runtime object executes the class and interacts with the router
possibly implemented in platform-dependent way such as C.

Our preliminary implementation indicates that the Java bytecode encoding scheme is a
promising one and that many nice features in Java are very useful in active gateways. Com-
pared with the Tcl-scripting approach, Java's dynamic loading mechanism is very attractive and

22

its built-in security manager facility makes security checking and policy enforcement easier. How-
ever, Java approach requires a compilation process that converts the Java source to bytecode,
which is done before dispatching. Resolving classes also possibly requires multiple rounds of
remote object/class fetchs, which are subject to the underlying network reliability. This process
must be made efficient before the approach can become practical.

We also plan to build an interface with the World-Wide-Web to (possibly) replace Tcl/Tk.
An interface with the World-Wide-Web offers great accessibility and therefore increases the
usability as well. Dispatchers will be Web clients. GUIs will be implemented using Java’s applet
mechanism.

Researches on concurrent support of different languages will be conducted. We will study the
feasibility of supporting embeddable language interpreters, language extensibility, etc. Secure
communication protocols for active network will be studied extensively. We want to take advan-
tage of the benefits active gateways offer us and develop various resource management schemes,
QoS control policies, and new adaptability features for real-time distributed multimedia apph-

cations.

6 Conclusions

Active network technology promises to offer programmability, controllability, and flexibility to
network infrastructure. It has great impacts on the study, development, and deployment of many
important research topics. It allows new services to be supported and new applications to be
generated. Our practical prototype of active gateways provides an evidence of its usefulness,
though at the application level.

In this paper, we constructed a facility, called active gateway, that is intended for video
conferencing traffic control. It is a virtual network built on top of conventional IP networks. We
presented its architecture, design, and primary components, and demonstrated through several
experiments some control functions that are not seen in conventional video conlerencing lools.
We also showed that this facility can be used in many aspects of multimedia communications,
including resource management, real-time communication protocols, and QoS control.

Active network is an emerging technology which is still in its infancy. Our prototype did not
address many important issues such as addressing/naming, security, and tunneling. It also has a
lot of limitations in program encoding schemes, communication protocols for active nodes, and
lack of experimentation for other applications. They leave a big room for future improvement.

23

References

[AMZ95]

[Den82]

[DH95]

[Eid94]

[Fre94]

[GM95]

(Lar96]

[LGBOS)

[Ous93]
[Pos81)

[SCFI96]

[Sead6]

[TGSK96]

[TW96]

[WT96]

E. Amir, 5. McCanne, and H. Zhang. An Application Level Video Gateway. In ACM
Multimedia’95, San Francisco, 1995.

Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 1883,
Dec. 1995.

Hans Fidnes. MBone: The multicasting backbone. Communications of the ACM, 37(8):54-
60, August 1994.

Ron Frederick. Experiences with Real-Time Software Video Compression. In Proceedings of
the Packet Video Workshop, Portland, Oregon, September 1994.

J. Gosling and H. McGiton. The Java Language Environment: A White Paper. Sun Mi-
crosystems, 1995.

Larry Wall and Randal L. Schwartz and Tom Christiansen. Programming Perl, 2nd Edition.
O'Reilly, 1996.

Shunge Li, Shalab Goel, and Bharat Bhargava. VC Collaborator: A Mechanism for Video
Conferencing Support. In SPIE Photonics East 95 Symposium — First International Sympo-
sium on Photonics Technologies and Systems for Voice, Video, and Data Communications,
SPIE Proceedings Vol. 2617, pages 89-99, Philadelphia, Pennsylvania U.5.A, October 1995.

John K. Qusterhout. Tecl and the Tk Toolkit. Addison-Wesley, 1993.
Jon Postel. Internet Protocol. RF'C 791, September 1981.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP, A Transport Protocol for
Real-Time Applications. RFC 1889, Jan 1996.

J. M. Smith and et al. SwitchWare: Accellerating Network Evolution (White Paper). Uni-
versity of Pennsylvania Computer Science Department, 1996.

D. L. Tennenhouse, S. J. Garland, L. Shrira, and M. F. Kaashoek. From Internet to Ac-
tiveNet. Request for Comments, Jan 1996.

David L. Tennenhouse and David J. Wetherall. Towards an Active Network Architecture.
In Proceedings of Multimedia Computing and Networking (MMCN 96), San Jose, CA, Jan.
1996.

David J. Wetherall and David L. Tennenhouse. The ACTIVE IP Option. In Proceedings of
the 7th ACM SIGOPS europcan Workshop, Connemara, Ireland. ACM, Sept. 1996.

24

[YdS96] Y. Yemini and 8. da Silva. Towards programmable networks. In IFIP/IEEE International
Workshop on Distributed Systems: Operalions and Management, L'Aquila, Italy, October,
1996.

25

	Purdue University
	Purdue e-Pubs
	1997

	Active Gateway: A Facility for Video Conferencing Traffic Control
	Shunge Li
	Bharat Bhargava
	Report Number:

