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ABSTRACT 
 

A new air-source heat pump technology optimized for cold climates was designed and fabricated by the authors in 

close cooperation with three industrial partners. The constructed unit will undergo a field demonstration in a military 

barrack to identify heat pumps as cost effective systems that have less primary energy consumption when compared 

to traditional cold climate heating methods. A simulation model developed in EES predicted the designed heat pump 

performance at different ambient conditions. The EES results were incorporated with a TRNSYS model to couple 

the military barrack building load with the available heat pump capacity using weather data. The TRNSYS model 

enables the assessment of the field demonstration performance during the heating season.   

 

The heat pump design is based on two-stage compression with economizing. Commercially available components 

were selected for all parts of the heat pump. A variable-speed scroll compressor is used as the high-stage compressor 

matched with a tandem fixed-speed scroll compressor used as the low-stage compressor. The configuration has a 

predicted capacity of 18.34 kW (62,580 BTU/h) at the design ambient temperature of -20
o
C (4

o
F) based on the EES 

simulation results. The building has a heating load of less than 18 kW for more than 95% of the heating season that 

lasts 8 months out of the year. The heat pump design therefore is predicted to satisfy the building heating load for 

the entire heating season.  The heating season COP based on TRNSYS hourly simulation results is 3.67 with a 

yearly heating capacity of 30,970 kWh (105,674 kBTU) and 8,438.37 kWh (28,793 kBTU). The CCHP simulations 

predict over 30% savings in primary energy and CO2 emissions with a 25% cost savings for annual heating energy 

use compared to an 85% AFUE natural gas furnace. 

 

1. INTRODUCTION 
 

1.1 Air-Source Heat Pump Motivation 
Buildings consume 40% of the primary energy used in the U.S. (DOE Buildings Energy Data Book) and generate 

40% of the U.S. greenhouse gas emissions (Roth, Westphalen, Dieckmann, Hamilton, & Goetzler, 2002). In colder 

climates with longer heating seasons, heating for buildings is by far the biggest consumer of total energy 

consumption, accounting for as much as 60% of the energy used.  The heating energy requirement can be reduced 

significantly by improving building efficiency through the use of technologies that can achieve higher heating 

performances. Ground-source and air-source heat pumps are two types of HVAC technologies available to 

residential and small commercial buildings capable of offering increased efficiencies. However, a large disadvantage 
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of available air-source heat pumps is how their performances decrease significantly when the ambient temperatures 

drop below 25 
o
F (-4 

o
C), whic typically limits their applications to warmer climates. Ground-source heat pumps 

avoid problematic ambient air temperatures to maintain high efficiencies, but have extensive installations, which 

amplify the initial costs. Implementing an air-source heat pump optimized for cold climates can abate both energy 

consumption and produced emissions due to building HVAC systems by replacing existing combustion based 

heating systems. Moreover, the higher installation costs and related maintenance expenses of ground-source heat 

pumps can be avoided. 

 
1.2 Department of Defense Relevance 
The development and deployment of a cold-climate heat pump supports a number of mandates to improve the 

efficiency of federal buildings, including buildings operated by the Department of Defense.  One directive is 

Executive Order 13514 “Federal Leadership in Environmental, Energy, and Economic Performance” that was signed 

by President Obama in October of 2009.  The latest of several Executive Orders, it includes mandatory energy 

reductions for federal buildings and the overarching goal of achieving net-zero energy buildings by 2030. The 

Energy Independence and Security Act of 2007, Section 315, specifically discusses “Improved Energy Efficiency 

for Appliances and Buildings in Cold Climates”. Calling for the improved efficiency of mechanical systems as well 

as an increase use of renewable resources, current heating technologies employed in cold-climates are challenged if 

to operate from renewable resources. DoD has also developed its’ own Energy Security Initiatives with one 

component of the strategic plan to create more efficient facilities (Energy Security Initiatives, 2010). A mandate for 

DoD installations requires reductions in energy consumption by 3% per year through 2015.  A fully commercialized 

and widely deployed technology similar to an air-source heat pump optimized for cold-climates would help to 

achieve these goals. 

 

1.3 Selected Heat Pump Configuration 
The heat pump investigated and simulated here is an air-source heat pump using R-410A as the working fluid where 

two compressors can operate in series resulting in two, separate stages of compression. The discharge port of the 

low-side (low-pressure) compressor is piped into the suction port of the high-side (high-pressure) compressor with a 

mixing chamber in between. Attached to the mixing chamber between the compressors is the economizer line 

Figure 1: Piping schematic of 2-stage air-source heat pump with economizing and low-side compressor bypass 
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bringing a two-phase, high-quality refrigerant mixture from the liquid side of the cycle to mix with the hot discharge 

gases of the low-side compressor.  Figure 1 provides a more detailed depiction of the economizer location within the 

cycle. The purpose of the two-phase refrigerant mixing with the hot discharge gas of the first-stage compressor is the 

resulting cooling effect of the low-side discharge gases, which in turn allows for a cooler high-side compressor 

discharge gas. The lower suction temperature of the high-side compressor increases the isentropic efficiency and 

allows for higher pressures ratios to be obtainable. In addition, a second benefit occurs on the liquid side of the 

economizer. To evaporate the economized refrigerant to a two-phase mixture of sufficient quality, a temperature 

difference needs to exist between the separated refrigerant streams. By introducing an expansion valve, the 

economized refrigerant stream is expanded from the condenser outlet to an intermediate pressure. Based on the 

expansion, the economized refrigerant becomes a cooler low quality two-phase mixture. The remaining refrigerant 

stream at the condenser outlet is maintained at the higher pressure, and thus higher temperature. As these two 

separate refrigerant streams pass through the economizer, additional subcooling occurs to the high pressure 

refrigerant stream while the economized refrigerant becomes a high quality two-phase stream that mixes with the 

discharge gases of the low-stage compressor. The additional subcooling of the high-pressure refrigerant stream 

allows for a higher system capacity through an increase in evaporation enthalpy difference, which has a larger 

impact on the system capacity than the reduction in refrigerant mass flow rate through the evaporator. With the 

added benefits of increased system capacity and a higher system coefficient of performance, COP, two-stage 

compression results in some difficulties that need to be addressed. In particular, an oil management system that 

allows single-stage and two-stage compressor operation needs to be carefully evaluated.  In the current system, two 

oil separators are located in the discharge lines for each compressor, as shown in Figure 1. Additionally, a dedicated 

line for oil equalization between the compressors, including a shut-off valve 3, V3, which closes during two-stage 

operation, was introduced. The importance of the oil management system is to maintain the longevity of each 

compressor. 

 

1.4 Compressor Selected 
A design heating load of 19 kW (64.8 kBTU/hr) at an ambient temperatures of -20

o
C (-4

o
F) was used to select the 

compressors. Engineering Equation Solver, EES, (Kline) was used to simulate different compressor configurations 

with either digital or variable speed scroll compressors as the high-side compressor, and different sized fixed-speed 

scrolls as the low side compressor. During the analysis, it was discovered that the digital high-side scroll was not 

compatible with an expansion valve that was selected for the system. While high-side digital scroll compressors 

were found in different configurations to achieve the desired heating output, in the end, only a variable speed scroll 

compressor could be used due to the expansion valve requirement. The possible speed ranges are from 1800 RPM to 

7000 RPM with compressor maps available at speeds of 1800, 2700, 3535, 4500, and 7000 RPM. The compressor 

maps were obtained from the manufacturer and are based on the standard 3
rd

 order polynomial approach with cross-

terms according to ANSI/ARI Standard 540-1999 (Positive displacement refrigerant compressors and compressor 

units, 1999). Two different sized variable speed compressors were simulated with different fixed-speed 

compressors. The heating output was best matched with the large displacement variable speed compressor and a 

tandem, fixed-speed compressor with a total displacement of 102.3 cm
3
/rev (6.24 in

3
/rev). No single, fixed-speed, 

compressor using the available single-phase power could produce the necessary mass flow rate as the low-stage 

compressor. Thus, after consulting with the manufacturer, tandem compressors were selected. 

 

2. SYSTEM DESIGN PROCEDURE 

 
2.1 EES Results Integrated into TRNSYS 

The complete heat pump was simulated with EES to determine the capacity available at a range of ambient 

conditions and compressor speeds. Five speeds were simulated when the variable speed compressor operates alone, 

and three speeds were simulated when both compressors operate in series. When compressing in series, the 

simulation can be reduced to using only two speeds due to the small variance on capacity between the compressor 

speeds. From the two possible compressor configurations and different speeds, seven conditions give seven capacity 

curves that are a function of ambient temperature. Also, the COP was obtained following the same principle and 

thus, is a function of the speed and ambient temperature. The capacity and COP are needed as a function of ambient 

temperature to integrate the EES simulation results into the TRNSYS model. Figure 2 presents a flow chart 

identifying how the EES and TRNSYS simulations are utilized to predict the performance of the field 

demonstration.  
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The capacity as a function of ambient temperature and compressor speed allows TRNSYS to obtain the amount of 

heating delivered to the conditioned space. With the various available speeds of the high-side compressor, two 

capacities are possible at one ambient condition. To solve this conflict, ranges of ambient temperatures are defined 

for different compressor speeds. This allows only one possible heating capacity for the heat pump from the ambient 

temperature. The ranges are established by first assuming a linear heating load for the building between the design 

heating load and no heating load at 20 
o
C (68 

o
F). The available heat pump capacity is compared to the linear load at 

the different compressor speeds. The locations where the heat pump capacity was above or within roughly 1 kW (3.4 

kBTU/hr) were selected as the ambient temperatures for a compressor speed. The temperature ranges for the 

different compressor speeds can be seen in Table 1, where the open and closed brackets note which compressor 

speed is used at the boundaries of the temperature ranges. The same temperature ranges are used to select the 

compressor speed when referencing the heat pump COP from the EES results. 

 

Table 1: Ambient temperature ranges used to determine heat pump capacity from EES 

Compressor Configuration   Single Stage Two-Stage 

High-Side Comp. Speed  RPM 1800 2700 3535 4500 7000 3535-4500 

Temperature Range 

o
C [20,3] (3,0] (0,-4] (-4,-11] (-11,-16] (-16,-20] 

o
F [68,37] (37,32] (32,25] (25,12] (12,3] (3,-4] 

 

2.2 Military Barracks  
The military barrack for the field demonstration was selected from available buildings located at Camp Atterbury, 

outside Edinburgh, Indiana. The building selected has two identical sleeping areas that are connected by a shared 

lavatory and shower room. One important aspect of this configuration is the barrack has two separate HVAC 

systems that supply each sleeping area independently. When the heat pump is installed, one current system will be 

bypassed and the heat pump will provide all heating and cooling to one half of the building. A layout of the building 

with a picture of the exterior is shown in Figure 3. The area for one half of the building is 244m
2
 (2,626 ft

2
). The 

walls of the barracks are made of cinder blocks. All windows are single pane glass. The supply and return ducts are 

insulated within the unconditioned attic space. The foundation is a concrete slab, which is covered with stone tile. 

The currently installed HVAC system is a natural gas furnace with a split system air conditioner that is assumed to 

be a couple years old. All HVAC equipment is housed within a separate mechanical room that is unconditioned. The 

heating set point for the barracks is 20 
o
C (68 

o
F) and the cooling set point is 23.3 

o
C (74 

o
F).  

 

Figure 2: How simulation results are utilized for the field demonstration 
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2.3 Heat Pump & Furnace Primary Energy, Cost and Emissions 
The primary energy consumed for the production of electricity used by the heat pump for the entire heating system 

will be compared to the primary energy consumption of a natural gas furnace. The gas furnace has an AFUE rating 

of 85% and is assumed to have a blower electricity consumption of 200 kWh per year (Lutz, Franco, Lekov, & 

Wong-Parodi, 2006).  The heating load of the building for one year is used to obtain the amount of primary energy 

used by the furnace in the form of natural gas. The heat pump is assumed to have all electricity consumed to be 

generated by natural gas at the rate of 2.627 kWh per kWh of generated electricity (Deru & Torcellini, 2007). 

Transmissions losses are modeled with an efficiency of 90%. The associated CO2 emissions from the burning of 

natural gas from the primary energy consumption are compared. The EPA rates the amount of CO2 emitted from 

natural gas as 1,920,000 kg/10
6
m

3
 (120,000 lb/10

6
 ft

3
) where the volume is of natural gas fired (AP 42, Fifth Edition, 

Compliation of Air Pollutant Emission Factors, Vol. 1, Ch 1.4, 1998). A cost analysis of both systems is performed 

with an electricity rate of $0.1151/kWh and a natural gas cost of $10.42/1000 ft
3
 (Average Annual Price, 2011). The 

energy costs are assumed to be constant throughout the year. 

 

3. MODELING 
3.1 Overall TRNSYS Model 
The two main components within the TRNSYS model are the cold climate heat pump and the military barrack 

building. Additional components, also known as types within TRNSYS, are used for the supply and return ducts, 

indoor blower, and HVAC controller. The different connection made between each type is shown in Figure 4. The 

weather data TRNSYS uses is TMY2 referencing the location Monroe County, Indiana. The entire calendar year is 

used when running the simulation, but only the results for the heating season are investigated. The cooling season is 

not considered within the analysis of this paper since the heat pump is assumed to achieve a similar performance 

Figure 3: Schematic and a photograph of the selected barrack at Camp Atterbury, Indiana 

Figure 4: TRNSYS model layout 
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when compared to the currently installed split system air conditioner. The TRNSYS simulation is run on an hourly 

basis and all calculated values at the hour are held constant until the next hour is calculated. The monthly electricity 

consumption and COP, coefficient of performance, are calculated using an hourly bin method where all hourly 

values are integrated over each month.  Equation 1 shows the integration where the known hourly heat pump 

capacity,  ̇     and COPhour are used. 

 

          
∫  ̇   
  
 

   

∫  ̇       
  
 

  
∫  ̇   
  
 

   

∫
 ̇   

       
   

  
 

 (1) 

 

The integration bounds are between zero for the first hour of the each month and hf for the hour corresponding to the 

last hour for the month. The hourly electric consumption,  ̇      of the heat pump is substituted using the heating 

COP definition. 

 

3.2 Input Parameters for TRNSYS Types 
The occupants’ load, lighting energy and the infiltration rate are modeled at hourly values that either vary over a 24 

hour period or are constant for the 24 hours. Four types of days are considered giving four separate hourly variations 

in a 24 hour period; typical workday, a Saturday, a Sunday, and a holiday. The number of occupants for the barracks 

is 40. All occupants are assumed to be seated at rest resulting in a heat gain per person of 60 W (205 BTU/hr). The 

hourly percentage of the number of occupants for the four different 24 hour days is plotted versus time in Figure 5. 

The occupant percentage is drastically reduced after 6:00 am for most of the days due to the soldiers leaving the 

barracks in the morning. The percentage increases back to a base level by 8:00 to 9:00 pm as the soldiers return for 

the night. 16 fluorescents lights result in 2.15 W/m
2
 (0.68243 BTU/hr-ft

2
) with a constant lighting fraction of 0.002 

over a 24 hour period. The total amount of infiltration is 0.001229 m
3
/s-m

2
 (0.0242 ft

3
/min-ft

2
). Similar to the 

occupant percentage, the amount of infiltration will vary by a percentage of the total over a 24 hour period and is 

dependent on the type of day. The increased amount of activity in the barracks results in higher infiltration 

percentages when soldiers are opening the exterior doors to leave in the morning and return in the evening. The 

trends are shown with the plot in Figure 6. 
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The blower type is a fixed speed blower with a fixed maximum flow capacity of 3500 m
3
/hr (2060 ft

3
/min). The 

power consumption is calculated as a linear function of mass flow rate. Due to the heat addition from the blower to 

the incoming air stream, the air outlet temperature is slightly higher than the inlet air temperature. The type allowed 

for an input parameter to be defined, a conversion coefficient, as the ratio of released thermal energy to the 

consumed blower power. The default value of 0.10 was kept.  

 

3.3 Cold Climate Heat Pump Device 
With separate data obtained from the EES simulation results for the heat pump, a custom module was created within 

the TRNSYS model to reference the available heating capacities and COPs at the different ambient temperatures and 

compressor speeds. The CCHP device capacity output and performance is decided by the ambient temperature and 

the respective temperature range it falls into to select a speed and compression mode. The implementation of the 

CCHP device within overall TRNSYS model is shown in Figure 4. The solid lines identify the air flow path and the 

dotted lines are for passing variables between the different types. The control unit is responsible for monitoring the 

building temperature, Tbuilding, and the ambient temperature, Tambient. If the building temperature drops below the 

heating set point or the ambient temperature is below 20 
o
C (68 

o
F) the CCHP system is turned on by the controller. 

Figure 7: Cold climate heat pump logic for the module developed within TRNSYS 
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The mode is set to single-stage if the ambient temperature is not below -16 
o
C (3 

o
F). The last decision by the 

controller is selecting the speed of the CCHP compressor. The temperature ranges shown in Table 1 are used to 

assign the RPM value. Both the RPM and ambient temperature are necessary to obtain a heating capacity and COP. 

The resulting capacity is compared to the calculated heating load for the building at the ambient condition. If the 

heating load is greater, the final output capacity is the capacity from the EES performance data. If the EES heating 

capacity is greater than the load, the final capacity is altered to match the building heating load to maintain a stable 

building temperature. An air-side energy balance is completed to find the air outlet temperature, Tout. The final 

capacity, specific heat of air, cp, and values from the blower, the incoming temperature, Tin, and air mass flow 

rate,  ̇ are used. The air outlet temperature is read by the controller to prevent any extreme values. The supply air 

duct is sent both the air outlet temperature and air mass flow rate. A detailed depiction of the logic inside the CCHP 

device is shown in Figure 7 with the device boundaries shown as a dotted line box. If the final capacity is not 

sufficient to satisfy the building load, an auxiliary heater of 500 W (1.7 kBTU/hr) is turned on to supplement the 

CCHP output.   

4. SIMULATION RESULTS 
 

4.1 Military Barracks Heating and Cooling Loads 
After running the TRNSYS simulation for an entire calendar year the ambient temperatures with the heating and 

cooling set points define the heating and cooling seasons. The heating season starts in the beginning of September 

and ends in April. For the majority of the heating season, the building load remains below the heat pump design 

point of 19 kW (64.8 kBTU/hr) at an ambient temperature of -20 
o
C (-4 

o
F). Figure 8 presents both the ambient 

temperature and the cooling or heating loads as a function of hours in a year. 

 

4.2 Cold Climate Heat Pump Performance 
As the ambient temperatures decreases during the heating season, the efficiency of the heat pump begins to decrease. 

Coupled with the decreasing temperatures, more capacity is needed to satisfy the building heating load while greater 

pressure ratios are encountered. The compressor speed is increased to reach higher capacities but this occurs with 

the cost of increased electricity consumption. At a certain point, the capacity is no longer sufficient and the heat 

pump enters two-staged compression. The COP is able to maintain a desirable value of approximately 2.4 during 

this transition with the aid of economizing. During the coldest part of the heating season, the COP is at a value of 3.5 

or higher. Larger COP values close to 4 are reached with the warmer ambient temperatures during the beginning and 

end of the heating season. The heating season COP from hourly simulation results is 3.67 with a yearly heating 

Figure 8: Ambient temperature and cooling or heating load at the military barracks 
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capacity of 30970 kWh (105,674 kBTU) and 8438.37 kWh (28,793 kBTU). The plot of the monthly electric 

consumption and COP is shown in Figure 9. 

 

One interesting observation of the results is the fact that the monthly COP for January and February did not change 

much. The amount of electricity consumed between the two months different by almost 300 kWh (1.023 kBTU). 

The monthly COP did not increase by much even though the amount of electricity consumed decreased. When 

looking at Figure 8, the ambient temperatures reach extreme values below -20
o
C (-4

o
F).  In this case, the CCHP 

needs to use the auxiliary electric heater. The COP for the overall system reaches low values close to 1.65 at these 

conditions. The monthly average COP is impacted by the low values resulting in little change from January to 

February. 

 

The accuracy of the CCHP device used in TRNSYS is analyzed by looking at the conditions when the selected RPM 

gives a heating output larger than the building load. At these occurrences, the difference is calculated between the 

building load and the heating output. For the entire heating season the total difference is 17,721 kWh (60,466 

kBTU/hr) which is 57% of the total heating load for the year. If the CCHP device did not change the capacity output 

to the building load energy rate, the actual heating output would become 48,629 kWh (165,929 kBTU) giving a 

larger amount of electricity used.  

 

4.3 Percent Savings 
After obtaining the heating output and electricity consumption of the CCHP for the entire heating season, the 

primary energy, cost and CO2 emissions were calculated. The simulation results present an attractive percent savings 

for the CCHP compared to a natural gas furnace. Over 30% primary energy savings and CO2 emissions and a 25% 

cost savings are predicted s shown in Table 2. 

 

Table 2: Percent savings when comparing the CCHP to a natural gas furnace 

 COP 

Thermal 

energy 

demand for 

heating 

(kWh) 

Electricity 

consumption 

for heating 

(kWh) 

Thermal 

energy 

supply for 

heating 

(kWh) 

Natural gas 

supply for 

heating 

(kWh) 

Cost 

($) 

CO2 

emission 

(ton) 

CCHP 3.67 30970 8438 -- 24630 971 4.95 

Furnace 0.85 30970 200 36435 37019 1295 7.44 

Percent Savings -- -- -- -- 33.5% 25.0% 33.5% 

 

 

Figure 9: Monthly electric consumption and COP for the heating season 
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5. CONCLUSIONS 
 

The location of the military barracks is confirmed to be in a heating dominated climate based on the simulation 

results. Also, the predicted COPs show that the heat pump performs well in cold climates with maintaining values 

above 3.5 over the entire heating season. The available capacity of the heat pump is shown to provide for at least 

95% of the expected heating requirements. The observed heating loads are for the majority, below the design point 

of the heat pump capacity. The results demonstrate the feasibility of deploying air-source heat pumps with two-stage 

compression and economizing in cold climates. Additionally, the percent savings of a cold climate heat pump versus 

a natural gas furnace are anticipated to be over 30% savings for primary energy consumption and CO2 emissions 

with a 25% cost savings on yearly energy costs. 

 

Two recommendations are given to enhance the accuracy of the simulation. One would be to consider a linear 

interpolation on compressor speeds to obtain heating capacity and COP values outside the results obtained from 

EES. Also, the percent savings calculation can be improved by considering the production of electricity from a mix 

of different sources that is consistent with the electric production used at Camp Atterbury.  
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