2012

Broadband Extinction of Core-Shell Microspheres

Vashista C. de Silva
Birck Nanotechnology Center, Purdue University, vcdesilva@purdue.edu

James L. Stewart
Birck Nanotechnology Center, Purdue University, stewartjl@purdue.edu

Vladimir M. Shalaev
Birck Nanotechnology Center, Purdue University, shalaev@purdue.edu

Vladimir P. Drachev
Birck Nanotechnology Center, Purdue University, vdrachev@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub
Part of the [Nanoscience and Nanotechnology Commons](http://docs.lib.purdue.edu/nanopub)

http://dx.doi.org/10.1364/CLEO_AT.2012.JTh2A.100

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Broadband Extinction of Core-Shell Microspheres

Vashista C. de Silva, James L. Stewart, Vladimir M. Shalaev, and Vladimir P. Drachev
Birck Nanotechnology Center and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
vcdesilva@purdue.edu

Abstract: Broad-band, mass-normalized extinction cross-sections up to $1 \text{m}^2/\text{g}$ are demonstrated using chemically modified gold fractal nanostructures grown on silica microparticles.

OCIS codes: (350.2450) Filters, absorption; (310.1860) Deposition and fabrication; (240.6680) Surface plasmons

Previous reports have shown that strong, mid-infrared absorption can be achieved with fractal structures, in comparison to continuous-metal structures [1], due to the unique optical properties of semicontinuous metal films near the percolation threshold [2]. In this research, we have exploited the resonance effects of metallic nanostructures synthesized as a shell on dielectric core. Resonances in a broad spectral range are achieved from localized plasmon modes supported by the fractal metal nanostructures, and very large local-field intensity enhancements are created by these localized resonances. These enhanced intensities are greater than those of propagating plasmons and are referred to as “hot spots” [3]. The resonance frequency of a plasmon oscillation in a metallic nanostructure depends on the metal’s local morphology or geometry, and hence the inherent randomness of a fractal metallic structure ensures a strong, broadband absorption characteristic. Indeed, structures that contain myriad geometries at the nanometer scale can support many resonance frequencies, building to a broad resonance band at the micrometer scale. The resonance band extends from the near-ultraviolet to the short-wavelength infrared (SWIR) depending on structural characteristic of the shells.

In this work, we have used the broadband absorption effect of metallic fractal structures to produce broad-band extinction in chemically modified, fractal-metal structures. We have studied optical response of core-shell structures based on the chemical synthesis of gold (Au) fractal nanostructures formed on silica (SiO$_2$) microspheres. The Au fractal shells on SiO$_2$ microparticles are shown to have reasonable extinction in both the visible and short wavelength-infrared spectral ranges. In our experiments, Au-coated SiO$_2$ were deposited on fused silica substrates for ultraviolet and visible (UV-Vis) spectroscopic analysis. Au-coated SiO$_2$ particles were successfully synthesized, creating reasonable mass normalized extinction in the broad spectral range.

The extinction cross section, C_{ext}, is defined from the equation (1) below for the intensity change in the incident beam under transmission of a single layer of particles. Below, I_0 is the incident intensity, while N_V and N_S are the particle volume density and surface density.

$$\Delta I = -I_0 C_{\text{ext}} N_V \Delta I = -I_0 C_{\text{ext}} N_S$$

(1)

Mass normalization is done as the following equation (2).

$$C_{\text{ext}} = \frac{\Delta I}{I_0 N_S m_p} = \frac{1 - T}{N_V m_p} [\text{m}^2/\text{g}]$$

(2)

Where $m_p = \rho V_p$ (material density * particle volume) is the average mass of a particle. Here, N_S has been measured with FE-SEM images, and average particle mass calculated with known particle density and measured mass density.

Figure 1(a) and (b) show field-emission scanning electron microscopy (FE-SEM) images of Au-coated SiO$_2$ microparticles. The mass normalized extinction spectra of Figure 2 show that Au-coated SiO$_2$ particles have sufficiently fractal-like Au coverage, which aids in obtaining the desired broadband extinction. By varying the Au shell structure, we can fabricate a plasmonic shell with a mass normalized extinction cross section up to $1 \text{m}^2/\text{g}$ in the broad spectral range.
Figure 1: Field Emission Scanning Electron Microscopy (FE-SEM) images of Au-coated SiO$_2$ microspheres of 1.5 µm (125R) (a) and 4.7 µm (119R) (b).

Figure 2: Mass normalized extinction cross section of Au-coated SiO$_2$ microspheres of different core diameters.

References:

