An All-Silicon Passive Optical Diode

Li Fan
Birck Nanotechnology Center, Purdue University, lfan@purdue.edu

Jian Wang
Birck Nanotechnology Center, Purdue University

Leo T. Varghese
Birck Nanotechnology Center, Purdue University, vleotom@purdue.edu

Hao Shen
Birck Nanotechnology Center, Purdue University, shen1@purdue.edu

Ben Niu
Birck Nanotechnology Center, Purdue University, bniu@purdue.edu

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub
Part of the Nanoscience and Nanotechnology Commons

Fan, Li; Wang, Jian; Varghese, Leo T.; Shen, Hao; Niu, Ben; Xuan, Yi; Weiner, Andrew M.; and Qi, Minghao, 'An All-Silicon Passive Optical Diode' (2012). Birck and NCN Publications. Paper 1258.
http://dx.doi.org/10.1126/science.1214383

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
An All-Silicon Passive Optical Diode
Li Fan et al.
Science 335, 447 (2012);
DOI: 10.1126/science.1214383

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of September 12, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/content/335/6067/447.full.html

Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2011/12/22/science.1214383.DC1.html
of biofuels (23), production of biofuels (24), environmental remediation (25), and oil extraction in the food industry (19)—have a strong demand for solvent-resistant nanofiltration membranes with superior permeability characteristics. For these purposes, nanorope-free-standing sheets of carbon nanotubes (26, 27) and other inorganic membranes (28) have been studied globally. However, it has been a challenge to produce such membranes in an industrially applicable process. DLC membranes have been found to be extremely dense and suitable for use in gas barrier applications (29, 30). In this Report, we demonstrate that DLC membranes can be prepared with extremely high solvent permeability while maintaining considerable mechanical strength.

References and Notes

14. We used the term of DLC to emphasize the mechanical stability of the membranes. However, the fraction of sp² carbon is relatively high and is close to that in disordered carbon (see SOM).

Acknowledgments: We gratefully acknowledge financial support from JST, CREST, and a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no. 23500205). A part of this Report was used for a Japanese patent [application no. (2010) 180194].

Supporting Online Material

www.sciencemag.org/cgi/content/full/335/6067/444/DC1

Materials and Methods
Figs. S1 to S15
Tables S1 to S3
References (S1-S5)

2 August 2011; accepted 7 November 2011
10.1126/science.1212101

An All-Silicon Passive Optical Diode

Li Fan,1,2*, Jian Wang,1,2*, Leo T. Varghese,1,2* Hao Shen,1,2 Ben Niu,1,2 Yi Xuan,1,2 Andrew M. Weiner,1,2 Minghao Qi1,2,3,*

A passive optical diode effect would be useful for on-chip optical information processing but has proven difficult to achieve. Using a method based on optical nonlinearity, we demonstrate a forward-backward transmission ratio of up to 28 decibels within telecommunication wavelengths. Our device, which uses two silicon rings 5 micrometers in radius, is passive yet maintains optical nonreciprocity for a broad range of input power levels, and it performs equally well even if the backward input power is higher than the forward input. The silicon optical diode is ultracompact and is compatible with current complementary metal-oxide semiconductor processing.

Nonreciprocal transmission is fundamental to information processing. Electrical nonreciprocity, or the diode effect, had been realized in integrated form with a semiconductor p-n junction. Optical nonreciprocity (ONR) is inherently difficult because of the time-reversal symmetry of light-matter interaction (1). Previously reported observations of ONR were based on the magneto-optic effect (2-4), optical nonlinearity (5-8), electro-absorption modulation (9), cholesteric liquid crystals (10), optomechanical cavities (11), indirect interband photonic transitions (12), and the opto-acoustic effect (13). However, complementary metal-oxide semiconductor (CMOS)-compatible passive optical diodes with a footprint and functionality analogous to those of p-n junctions have not been realized at the near-infrared wavelengths that are preferred for silicon (Si) photonics.

Our optical diode (Fig. 1A) is based on strong optical nonlinearity in high-quality factor (Q) Si microrings (14-17). It consists of a high-Q all-pass notch filter (NF) operating near the critical coupling regime (17) (Fig. 1B) and an add-drop filter (ADF) (14, 16, 18) with asymmetric power coupling to the bus waveguides (Fig. 1C). The resonant wavelength of the NF is thermally tuned to match that of the ADF through the thermo-optic effect of silicon (19).

A microring accumulates optical energy at its resonant wavelength. The schematics in Fig. 1, E and F, show that light couples into the microring in the ADF through two different gaps, G2 and G1. If we define forward and backward input power as P_{FW} and P_{BW}, respectively, the optical energy stored in the microring near its resonant wavelength, λ_{ADF}, can be expressed as

$$U_{forward} (\lambda) = \frac{P_{FW}}{Q_{G2}} Q_{ADF} K(\lambda)$$

and

$$U_{backward} (\lambda) = \frac{P_{BW}}{Q_{G1}} Q_{ADF} K(\lambda)$$

where Q_{ADF} is the ring’s loaded quality factor, Q_{G1} and Q_{G2} are power coupling quality factors that are exponentially proportional to the gap sizes, and $K(\lambda)$ represents all other terms that are independent of propagation direction for a linear system (14).

The energy enhancement factor in the ring depends on the propagation direction because of our asymmetric design ($Q_{G2} \approx 300,000, Q_{G1} \approx 192,000$, and $Q_{ADF} \approx 43,800$, all through curve-fitting), and

$$\left(U_{forward} / U_{backward} \right) = \left(Q_{G2} / Q_{G1} \right) = 0.64$$

for $P_{FW} = P_{BW}$. With high input power at $\lambda_0 = \lambda_{ADF}$, the power density inside the ring will be amplified substantially because of its high Q factors and small radius; this induces optical nonlinearity in silicon (20-23) and a red shift in the ring’s resonance ($\lambda_{ADF} > \lambda_0$, Fig. 1F). Because less energy is stored in the ring during forward

1Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA.
2School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.
3Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail: mqj@purdue.edu

www.sciencemag.org SCIENCE VOL 335 27 JANUARY 2012 447
propagation, the amount of resonance shift in the forward direction is smaller than that in the backward direction. If we define wavelength detuning as \(\delta_{\text{ADF}}(\lambda_0) = 2Q_{\text{ADF}}(\lambda_0 - \lambda_0')/\lambda_{\text{ADF}} \), we have \(\delta_{\text{ADF}, \text{forward}}(\lambda_0) < \delta_{\text{ADF}, \text{backward}}(\lambda_0) \). This leads to a case in which forward transmission, \(T_{\text{ADF, forward}}(\lambda_0) \), exceeds backward transmission, \(T_{\text{ADF, backward}}(\lambda_0) \), because

\[
T_{\text{ADF, forward}}(\lambda_0) = \frac{1}{\delta_{\text{ADF, forward}}(\lambda_0) + 1} F \tag{3}
\]

and

\[
T_{\text{ADF, backward}}(\lambda_0) = \frac{1}{\delta_{\text{ADF, backward}}(\lambda_0) + 1} F \tag{4}
\]

where \(F = 4Q_{\text{ADF}}^2/Q_{\text{G}}^2 Q_{\text{G}} \) is a constant that is independent of propagation direction. Therefore, an ADF with asymmetric power coupling can function as an ONR device for strong optical inputs, and we call it the ONR initiator.

For the NF, the power transmission near its resonance (\(\lambda_{\text{NF}} \)) is

\[
T_{\text{NF}}(\lambda_0) = \frac{\delta_{\text{NF}}^2(\lambda_0) + [1 - (2Q_{\text{NF}}/Q_{\text{G}})]^2}{\delta_{\text{NF}}^2(\lambda_0) + 1} \tag{5}
\]

where \(Q_{\text{NF}} \) is the loaded quality factor of the NF ring and \(\delta_{\text{NF}}(\lambda_0) = 2Q_{\text{NF}}((\lambda_0 - \lambda_{\text{NF}})/\lambda_{\text{NF}}) \) is wavelength detuning. Our design leads to \(Q_{\text{G}} = 55,000 \) \(\approx 27,000 \), so \([1 - (2Q_{\text{NF}}/Q_{\text{G}})] > 0 \). A weak input will pass the NF with a strong attenuation of ~20 dB at \(\lambda_0 = \lambda_{\text{NF}} \) because \(\delta_{\text{NF}}(\lambda_0) = 0 \). A strong input will red-shift the NF ring (\(\lambda_{\text{NF}} \rightarrow \lambda_{\text{NF}}' \)), resulting in a nontrivial \(\delta_{\text{NF}}(\lambda_0) \), and will pass the NF with a much smaller attenuation at \(\lambda_0 \) (Fig. 1D). We call the NF an ONR amplifier because it will significantly attenuate the weakened signal that has passed the ONR initiator in the backward direction.

When we cascade the ONR amplifier to an ONR initiator with similar onset power for nonlinearity (Fig. 1A), strong ONR can be achieved for a broad range of forward and backward input power levels. Without nonlinear effects (i.e., at a very low input power of ~85 nW at the device, with 1 nW measured at the input laser), our optical diode has a transmission that is independent of propagation direction (Fig. 1H).

With the input power increased to ~85 \(\mu \)W, a nonreciprocal transmission ratio (NTR) of ~20 dB was observed at \(\lambda_0 = 1630 \) nm (Fig. 1I). For forward propagation, input from port I enters the NF first and has sufficiently high power to red-shift the NF resonance, thus allowing it to pass with low attenuation at wavelength \(\lambda_0 \) (solid curve in Fig. 1D). When this input reaches the ADF, the optical energy accumulated in the ADF ring is not high enough to appreciably red-shift the resonance—that is, \(\delta_{\text{ADF, forward}}(\lambda_0) \rightarrow 0 \) in Eq. 3—because of the large gap of \(G_2 \) as well as the power reduction after passing the NF. Thus, light can transmit to the drop port through the resonance and achieve reasonably high transmis-
sion in port II at λ_0 (solid curve in Fig. 1E). For backward propagation (input at port II), light will enter the ADF first. With the small gap, G_2, the energy in the ADF ring is high enough to red-shift its resonance—that is, $|\delta_{\text{ADF, backward}}(\lambda_0)| > 0$ in Eq. 4—and transmitted light at λ_0 will be reduced (Fig. 1F, solid curve). At the NF, the reduced light intensity, due to both the resonance shift and the insertion loss of the ADF, will not be able to red-shift the NF ring—that is, $\delta_{\text{NF}}(\lambda_0) \to 0$ in Eq. 5—and its intensity will be significantly reduced as it passes through the critically coupled NF at resonance ($\lambda_0 = \lambda_{\text{NF}},$ Fig. 1G).

At higher input power levels ($\sim 850 \mu W$ and $\sim 2100 \mu W$), larger NTRs up to 29 dB were observed (Fig. 2). This is due simultaneously to the increase of the NTR from the ADF (compared to Fig. 1F, which occurs at a rather moderate input power of $\sim 85 \mu W$) and to the sustained large NTR from the NF at high input power levels. Figure 3 shows the forward and backward transmissions of an individual ADF with coupling gaps of 420 nm and 630 nm (without a cascaded NF). In the forward direction, the transmitted power increases with the laser input power near resonance (1630.011 nm). The forward-transmitted power is more than 20 dB higher than the backward-transmitted power at a specific wavelength and then measuring the transmitted power level at forward and backward directions) (Table S1).

The device operation is robust against the mismatch of resonant wavelengths between the two filters, and it can achieve high NTR for various input power levels at a fixed wavelength. Within a resonance mismatch range of $\sim 0.04 \text{ nm}$, the NTR remains over 25 dB (Fig. 4A). Given such tolerance, we were able to fix the operating wavelength of the diode by tuning the NF resonance in the backward direction to 1630.011 nm and achieved at least 18 dB of NTR for input power between 85 and 2100 μW (Fig. 4B).

An electronic diode blocks the backward current for a large range of applied backward voltages. Analogously, Table S1 shows that our optical diode attenuates the backward-transmitted power to a low level (around $\sim 50 \text{ dBm}$) for a broad range of laser input power (5 to 14 dBm) at the operating wavelength of 1630.011 nm. The forward-transmitted power is more than 20 dB higher than the backward-transmitted power within this laser power range. Therefore, our optical diode tolerates not only input power variation, but also forward/backward input power disparity. Similar to all resonance-enhanced optical devices, our all-silicon optical diode is bandwidth-limited. However, its operating wavelength can be thermally tuned (19) and should work across a large wavelength band. It also has a relatively high insertion loss after subtracting the coupling losses (10.7 dB per facet). For laser input power levels between 5 and 10 dBm, the forward insertion losses were $\sim 12 \text{ dB}$. This number could be reduced if the intrinsic quality factor of both rings is increased to 250,000 (16, 17) and if the thermal isolation of the rings is improved, such as by suspending the NF ring away from the substrate (27).

The optical nonlinear effects in silicon include the Kerr effect (28, 29), two-photon absorption (TPA) (30), the free carrier effect (FCE) (31), and the thermo-optic effect (26) from Joule heat generated through TPA, FCE, and linear absorption. Because of the large thermal dissipation time of the SiO$_2$ undercladding ($\sim 2 \mu$s) (21–23) and the input power at tens of microwatts, the thermo-optic effect was dominant in our experiments. In addition to its role in enabling low-power operation, the thermo-optic effect (which reacts to optical powers averaged over a microsecond range) has a slow response time; this may benefit one-way transmission of data streams with high modulation speed, because the long integration time should desensitize nonlinear operation to fluctuations associated with rapidly varying data patterns or different modulation formats. Alternatively, when the slower thermal effect is mitigated through efficient thermal dissipation, fast nonlinearity such as FCE in silicon may dominate (23, 31), opening doors to nonreciprocal high-speed optical signal processing where instantaneous response is required.

Our optical diode uses only the materials already used in CMOS processing and does not require external assistance such as magnetic fields, radio-frequency modulation, or optical pumping. The broad input power range within which our device performs may be sufficient for on-chip photonic applications. Its ability to block backward inputs that are much stronger than the forward inputs makes it functionally similar to electrical diodes. Our diode has an ultracompact footprint and is robust against resonance mismatch between the two microrings. These attributes make it attractive as a potential component for future highly integrated photonic information processing chips.

References and Notes

Reversible Reduction of Oxygen to Peroxide Facilitated by Molecular Recognition

Nazario Lopez,1 Daniel J. Graham,2 Robert McGuire Jr.,2 Glen E. Alliger,2 Yang Shao-Horn,2 Christopher C. Cummins,2,* Daniel G. Nocera2*

Generation of soluble sources of peroxide dianion (O$_2^{2-}$) is a challenge in dioxgen chemistry. The oxidizing nature of this anion renders its stabilization in organic media difficult. This Report describes the chemically reversible reduction of oxygen (O$_2$) to cryptand-encapsulated O$_2^{2-}$. The dianion is stabilized by strong hydrogen bonds to N-H groups from the hexacarboxamide cryptand. Analogous stabilization of peroxide by hydrogen bonding has been invoked recently in crystalline saccharide and protein systems. The present peroxide adducts are stable at room temperature in dimethyl sulfoxide (DMSO) and N,N’-dimethylformamide (DMF). These adducts can be obtained in gram quantities from the cryptand-driven disproportionation reaction of potassium superoxide (KO$_2$) at room temperature.

Reduction of molecular oxygen to the level of peroxide dianion (O$_2^{2-}$) is typically accomplished in chemical and biological systems in the stabilizing coordination sphere of a transition metal (1). Such peroxide transition-metal complexes are important intermediates in natural oxidation processes (2–4), and they have long been used as reagents for organic synthesis (5). We hypothesized that peroxide dianion could be stabilized alternatively in a molecular environment of hydrogen bond donors so arranged as to completely surround O$_2^{2-}$ with partial positive charge. A structural basis for peroxide stabilization via hydrogen bonding to organic matter has appeared recently in the context of sodium peroxide crystallization with 1,6-anhydro-β-maltose (6). The reported complex salt of formula [Na$_2$(1,6-anhydro-β-maltose)$_2$(H$_2$O)$_3$]O$_2$ has a layered structure featuring six hydrogen bonds that encase each O$_2^{2-}$ ion, with sugar O-H groups acting as the hydrogen-bond donors. This peroxide environment is reminiscent of that determined for Na$_2$O$_2$·8H$_2$O, in which chains of edge-connected [NaOH$_2$]$_2$ octahedra are linked together by O–H–O peroxide/water hydrogen bonds (7). Now, we show that hexacarboxamide cryptand molecules of a type introduced originally as receptors for halide ions (8, 9), and investigated by us as binucleating ligands for transition-metal ions (10, 11), form soluble 1:1 complexes with peroxide wherein O$_2^{2-}$ resides in a molecular interior surrounded by six carboxamide N-H hydrogen bond donors in a trigonal antiprismatic array. The receptors stabilize peroxide dianion to such an extent that, if it is present in the same solution, superoxide (O$_2^-$) undergoes disproportionation to form O$_2$ and encapsulated O$_2^{2-}$, thus coupling the anion receptor molecular recognition phenomenon (12) to an oxidation-reduction process.

Preparation of the cryptand peroxide adduct can be achieved starting from either superoxide or O$_2$ Treatment of a slurry of tert-butyl-substituted hexacarboxamide cryptand (mBDCA-5t-H$_6$) with 2.2 equiv of KO$_2$ in N,N’-dimethylformamide (DMF) resulted in the formation of the O$_2^{2-}$ adduct [K$_2$(DMF)$_5$][(O$_2$)·mBDCA-5t-H$_6$] in 74% isolated yield (Fig. 1). Vigorous bubbling was observed immediately after adding KO$_2$; mass spectrometry (MS, fig. S1) establishes that the gas is a result of O$_2$ production from the cryptand-driven disproportionation of O$_2^-$ (13). The 1H nuclear magnetic resonance (NMR) spectrum (fig. S2) indicates the formation of an O$_2^{2-}$ adduct in which the amide chemical shift is in the range of a normal charged hydrogen bond (NCHB) interaction (13). The generality of peroxide dianion recognition was probed by using the related 3,5-dipropoxyphenoxyl-substituted hexacarboxamide cryptand (mBDCA-5p-H$_6$) (10). Similar large downfield shifts of 1H NMR signals for N-H [14.69 parts per million (ppm)] and aromatic protons (10.03 ppm) pointing inside the cavity were observed, indicative of O$_2^{2-}$ encapsulation at room temperature (fig. S3). The [(O$_2$)·mBDCA-5t-H$_6$]$^+$ adduct can also be obtained by reducing O$_2$ in situ with 2 equiv of cobaltocene (Co$_2$P$_2$, where Co is cyclopentadienyl) in the presence of 1 equiv of free cryptand in DMF (fig. S4), where the first reduction potential of Co$_2$P$_2$ is coincident with the reduction of oxygen (fig. S5).

Both cryptand peroxide adducts were characterized by x-ray diffraction studies using single crystals obtained by vapor diffusion of diethyl ether into DMF solutions (Fig. 2 and figs. S6 and S7). A view down the pseudo-threefold axis of the adduct indicates that the cryptand adopts a propeller-like conformation (Fig. 2B and fig. S7B). The O–O bond lengths of 1.504 ± 0.0002 Å (1.5042) (number in parentheses indicates the estimated standard deviation in the final digit) Å for [K$_2$(DMF)$_5$][(O$_2$)·mBDCA-5t-H$_6$) and 1.4992 Å (for [(O$_2$)·mBDCA-5t-H$_6$)]$^+$] are comparable to that in ribonucleotide reductase Ib (1.47 Å) (14), in 1,6-anhydro-β-maltose adduct [1,4962 Å] (6), and in Na$_2$O$_2$ (1.49 Å).