MoS2 Dual-Gate MOSFET With Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric

Han Liu
Birck Nanotechnology Center, Purdue University, hanliu@purdue.edu

Peide Ye
Birck Nanotechnology Center, Purdue University, yep@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub

Part of the *Nanoscience and Nanotechnology Commons*

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
MoS₂ Dual-Gate MOSFET With Atomic-Layer-Deposited Al₂O₃ as Top-Gate Dielectric

Han Liu and Peide D. Ye, Senior Member, IEEE

Abstract—We demonstrate atomic-layer-deposited (ALD) high-k dielectric integration on 2-D layer-structured molybdenum disulfide (MoS₂) crystals and MoS₂ dual-gate n-channel MOSFETs with ALD Al₂O₃ as the gate dielectric. Our C–V study of MOSFET structures shows good interface between 2-D MoS₂ crystal and ALD Al₂O₃. Maximum drain currents using back gates and top gates are measured to be 7.07 and 6.42 mA/mm, respectively, at V_{ds} = 2 V with a channel width of 3 µm, a channel length of 9 µm, and a top-gate length of 3 µm. We achieve the highest field-effect mobility of electrons using back-gate control to be 517 cm²/V·s. The highest current on/off ratio is over 10⁸.

Index Terms—Atomic layer deposition, MOSFET, MoS₂.

I. INTRODUCTION

EVER since the advent of graphene in 2004 [1], the electronic properties of 2-D layer-structured materials have been intensively investigated since their thickness can be pushed down to a few nanometers or even less, where a series of novel physical, chemical, and mechanical properties is observed. The layer-structured material family includes graphene, boron nitride (BN), MoS₂, topological insulators such as Bi₂Te₃ and Bi₂Se₃, and many others [1]–[5]. As Moore’s law is approaching its physical limit, an alternative material is urgently needed as a substitute for future logic transistor applications [6], [7]. Although graphene has been widely believed as a promising candidate, its gapless nature limits its potential application as logic transistors [8], [9]. However, in great contrast to graphene, MoS₂ enjoys its uniqueness in the device applications due to its semiconductor-like bandgap [5]. Also, due to the nature of their layered structure, single-atomic-layer MoS₂ transistors with an ultrathin body channel have the advantage in nanometer-scale MOSFETs of being immune to the short-channel effects, compared to the state-of-the-art SOI counterparts which are greatly limited by short-channel effects. Research in MoS₂ electronics is still in its infancy. The first experimentally demonstrated single-layer MoS₂ transistor has already been shown to have a mobility of over 200 cm²/V·s, a subthreshold swing (SS) of 74 mV/dec, and an on/off ratio of \(\sim 10^8 \) [3]. NEGF simulations reveal that the theoretical limit for MoS₂ thin-film transistors is an on/off ratio of over \(10^{11} \), a sub-10-mV/V drain-induced barrier lowering, and a near-perfect SS (SS = 60 mV/dec), owing to the absence of dangling bonds in their layered structure [10]. In this letter, we focus on the integration of atomic-layer-deposited (ALD) high-k oxides on this kind of layered structure with potentially chemical inert surface. We demonstrate a top-gated Al₂O₃/MoS₂ MOSFET with an electron mobility of 517 cm²/V·s and an on/off ratio of \(10^8 \).

II. EXPERIMENT

MoS₂ thin flakes were mechanically exfoliated by the classical scotch-tape technique and then transferred to a heavily doped Si substrate capped with 300-nm SiO₂. Al₂O₃ was deposited on MoS₂ flakes within an ASM F120 ALD reactor. Trimethylaluminum (TMA) and water were used as precursors at a temperature between 200 °C and 400 °C with 111 cycles, which yields \(\sim 10 \)-nm Al₂O₃ for an ideal ALD process. Pulse times are 0.8 and 1.2 s for TMA and water, respectively, while purge time is 6 s for both. A Dimension 3100 AFM system was used to examine the surface morphology before and after ALD deposition. MOSFET fabrication was then performed after identifying the appropriate ALD process window. A 16-nm ALD Al₂O₃ was deposited on MoS₂ flakes under 200 °C growth temperature. After Al₂O₃ growth, source and drain regions were defined using optical lithography with a spacing of 9 µm. A 20-nm/50-nm Ni/Au film was deposited as the source/drain contacts, and a Ti/Au film was used for the gate. The gate length is \(\sim 3 \) µm with \(\sim 3 \)-µm spacings to source/drain. HP 4284A and Keithley 4200 were used for C–V and I–V characterizations.

III. RESULTS AND DISCUSSION

Fig. 1(a) and (b) shows the representative AFM images of MoS₂ surface morphology after 111 cycles of Al₂O₃ deposition under 200 °C and 400 °C, respectively. In the absence of intensive research of ALD growth on 2-D electronic materials, we can simply take the graphene as a reference. Earlier studies have shown that direct Al₂O₃ growth by TMA and water is not possible on the graphene basal plane, while growth occurs only at the graphene edges. This is understood by the fact that dangling bonds only exist in graphene edges but not on the basal
plane [11], [12]. However, for MoS₂, it is obvious that the ALD growth is easier than that on graphene. From Fig. 1(a), we can see that, at 200 °C, the Al₂O₃ thin film is visually uniform. In addition, the step height between the flake and SiO₂ substrate is around 8 nm, which is similar to that before ALD growth. At the elevated temperature of 400 °C, although we still observe continuous ALD growth at flake edges, as shown in Fig. 1(b), the step height has disappeared as Al₂O₃ is growing only on SiO₂, while only small areas of Al₂O₃ are formed on the MoS₂ basal plane. This temperature sensitivity observed in Al₂O₃ deposition indicates that the growth mechanism on MoS₂ mostly relies on physical absorption on the basal plane during the initial growth stage, whereas desorption is greatly enhanced at higher temperature. At the step edges of the layers, stronger chemical bonds between MoS₂ and ALD precursors are formed due to dangling bonds; thus, even at higher temperature, the ALD growth on step edges is still uniform and continuous. Al₂O₃ films grown at 300 °C on MoS₂ also show nonuniformity and poor electrical insulating properties. The ALD window for 2-D layered-structure materials is significantly reduced, compared to that of bulk materials, such as Si, Ge, and III–V. Therefore, the ALD process must be carefully optimized to simultaneously achieve geometrical uniformity and good electrical properties (high dielectric constant, large electrical strength, low gate leakage current, etc.).

The MoS₂ MOSFET was fabricated on an ~15-nm-thick flake which contains about 23 MoS₂ monolayers, which has a bulklike bandgap of ~1.2 eV. The final device structure is shown in Fig. 2(a). We did not reduce the flake thickness to a monolayer since the bandgap of ultrathin MoS₂ crystal increases and could become 1.8 eV for the monolayer [5]. C–V measurement is carried out in order to evaluate the interface quality between ALD Al₂O₃ and MoS₂ crystals, as shown in Fig. 2(b). The source and drain are grounded, while a voltage bias on the top gate is applied. The area of the capacitor is only ~12 μm², making the low-frequency C–V curve rather noisy (not shown). The high-frequency C–V curve (with hysteresis) at 1 MHz shows a clear transition from accumulation to depletion for a typical n-type MOS capacitor. A moderate hysteresis of ~80 mV is exhibited in the curves, showing that the ALD Al₂O₃ film grown at 200 °C on MoS₂ and the interface are both of good quality.

Fig. 3(a) and (b) shows the transfer characteristics and transconductance of the device from both the top gate and the back gate. The charge neutrality level of MoS₂ is located slightly under the conduction band, thus making it easy for an accumulation-type nMOSFET [13], [14]. The transfer characteristics of the top gate suffer from a very large negative threshold voltage (Vth) shift, as attributed to the existence of large amount of positive fixed charges in the bulk oxide, due to the comparatively lower deposition temperature [15]. The leakage current is also measured in the same device and is less than 2 × 10⁻⁴ A/cm² in the measurement range of −6 to +3 V. The highest drain current density achieved at Vgs = 1 V using back-gate modulation is 3.07 mA/mm, and an on/off ratio greater than 10⁸ is also obtained. This superior on/off ratio compared to graphene exists because of the 1.2-eV bandgap. The greatest current density from the top gate is about two orders of magnitude smaller than that from the back gate. This big difference comes from the non-self-aligned top-gate device structure. From Fig. 2(a), we can see that the heavily doped Si substrate has a “global” control over the entire flake. With increasing back-gate voltage, the carriers in the MoS₂ flake are accumulated, and thus, the contact resistance between the Ni/Au source/drain and the MoS₂ flake would be reduced, as the flake is being heavily “doped” by the electric field, while the top gate can only modulate part of the channel underneath the top gate. The peak extrinsic transconductance (gm) from back-gate control is 0.165 mS/mm at Vds = 1 V. We can extract the field-effect mobility to be 517 cm²/V · s, which is a factor of 2.6 larger than the reported value in [3], mainly because of the smaller bandgap of our multilayer MoS₂ as the channel material, compared to the single-layer one used in [3]. Since the significant contact resistance is not subtracted, the intrinsic field mobility of the MoS₂ channel is even larger. The extrinsic gm, from top-gate modulation is 0.61 mS/mm, corresponding to a reduced surface mobility of 4.13 cm²/V · s, which is much smaller than the back-gate surface mobility, due to the large
contact resistance and access resistance when the back gate is floating, which will be discussed hereinafter. The hysteresis of the top-gate transfer curves is much smaller than that of the back-gate curves, similar to the top-gate transfer curves is much smaller than that of the back-gate curves, similar to the top-gate measurement, a back-gate voltage of 50 V is applied.

![Fig. 4](image)

Fig. 4. I_D-V_D characteristics of MoS$_2$ dual-gate MOSFET with back-gate voltage stepped from 50 to 20 V. (b) I_D-V_D characteristics of MoS$_2$ dual-gate MOSFET with top-gate voltage stepped from −3 to −6 V while a back-gate voltage of 50 V is applied.

IV. Conclusion

In summary, we have experimentally demonstrated MoS$_2$ MOSFET with ALD Al$_2$O$_3$ as the top-gate dielectric. AFM, C−V, and I−V studies show that ALD high-k dielectrics can be directly deposited on MoS$_2$ at low growth temperatures and the MoS$_2$/Al$_2$O$_3$ interface is of good quality. The high electron field mobility, good SS, and excellent drain current on/off ratio are demonstrated on the fabricated MoS$_2$ nMOSFET.

Acknowledgment

The authors would like to thank M. Xu, L. Dong, H. B. Lu, H. H. Li, Y. Song, G. Q. Xu, A. Neal, and N. Conrad for the valuable discussions.

REFERENCES

