Plate-fin and Tube Heat Exchangers Refrigerant Circuiting Optimization in Vapor Compression Refrigeration Systems

Luis Carlos Castillo Martínez
Universidad Católica del Perú

Jose Alberto Reis Parise
Pontifical Catholic University of Rio de Janeiro

Samuel Fortunato Yana Motta
Honeywell - Buffalo Research Laboratory

Elizabet de Carmen Vera Becerra
Honeywell - Buffalo Research Laboratory

Follow this and additional works at: http://docs.lib.purdue.edu/iracc
Plate-fin and Tube Heat Exchangers Refrigerant Circuiting Optimization in Vapor Compression Refrigeration Systems

Luis Carlos CASTILLO MARTÍNEZ1, José Alberto Reis PARISE2*, Samuel Fortunato YANA MOTA3, Elizabet VERA BECERRA4

1Universidad Tecnológica del Perú, Facultade de Ingenieria Naval
Lima, Peru
Phone: +51-1-3159600, E-mail: nvluis@hotmail.com

2Pontifícia Universidade Católica do Rio de Janeiro, Departmento de Engenharia Mecânica,
Rio de Janeiro, RJ, Brazil
Phone: +55-21-35271380, Fax: +55-21-35271165, E-mail: parise@puc-rio.br

3Honeywell, Buffalo Research Laboratory
Buffalo NY, USA
Phone: +1-716-8271485, E-mail: Samuel.YanaMotta@Honeywell.com

4Honeywell, Buffalo Research Laboratory
Buffalo NY, USA
Phone: +1-716-8271485, E-mail: Elizabet.VeraBecerra@Honeywell.com

* Corresponding Author

ABSTRACT

Refrigerant circuitry in condensers and evaporators has a significant effect in the performance of refrigeration systems. The optimized project of the refrigerant circuits in refrigeration systems with plate-fin heat exchangers is not trivial, due to the complexity of their representation as well as the high number of possible combinations, even when methodologies of intelligent optimization are used. The present work proposes a new methodology for the simultaneous optimization of refrigerant circuiting in air-air refrigeration systems with plate-fin and tube heat exchangers. This new methodology proved to be more efficient than traditional methods. The method was applied, in conjunction with a full refrigeration system simulator for the optimization of a high performance commercial air-conditioning unit, considering the use of heat exchangers with tubes of different diameters. Overall, a predicted COP enhancement between 5.5% and 8.3% for system with R-22, and 6% - 6.5% for R410A, was observed with the optimization method.

1. INTRODUCTION

A most effective way of improving refrigeration cycle efficient is, of course, to improve the efficiency of its components. Concerning air-to-air heat pump and refrigeration cycles, among possible options for optimization (Fowler et al. 1997; Matos et al. 2004), one advantageous measure is to search for an optimum refrigerant circuitry of the condenser and evaporator coils (trough appropriate junction of the coil tubes). This approach, besides practical and low-cost, can provide a significant increase in heat transfer capacity and, consequently, cycle performance, without major changes in the way of the manufacturing process of the heat exchanger. This has been experimentally verified by Chwalowski et al. (1989) and Liang et al. (2001). Inasmuch as the number of possible laboratory tests towards circuitry optimization is restricted by time and cost, simulation tools have to be employed (Kaufman e Michalski, 2004). A number of works on coil circuitry optimization can be found in the literature.
Granryd and Palm (2003) proposed a simplified method to determine an optimum number of circuit branches in evaporators, for a given thermal capacity. Correlations were proposed based on a minimum pressure drop.

Circuiting optimization is a particularly complex task, even more if air flow distribution is not uniform. And the experience gained with the optimization for a given refrigerant may not be automatically extended to other substances (Groll, 2008). Considering the typical characteristics of the optimization problem (discrete or continuum domain, large search space, complex relationship among the different components, multiple variables and restrictions), the use of genetic algorithm - a well known technique (e.g., Goldberg, 1989) - seems to be an appropriate choice. Presently, cycle optimization of systems with plate-fin and tube heat exchangers is carried out in a sequential manner, i.e., the circuitry of each heat exchanger is individually optimized for maximum thermal capacity (Domanski et al., 2005).

Kaufman and Michalski (2000) developed a hybrid algorithm called ISHED1 (Intelligent System for Heat Exchanger Design), to optimize the circuit of a plate-fin and tube heat exchanger for maximum heat capacity. The EVAP-COND program (Domanski, 2001) was used to simulate the heat exchangers. The ISHED1 method (Kaufman and Michalski, 2000) succeeded to obtain better results than those of a human expert (Cervone et al., 2000), and has been used with relative success in the optimization of evaporators (Kaufman and Michalski, 2004) and condensers (Domanski and Yashar, 2007a) for refrigerants R600a, R134a, R290, R22, R410A and R32.

To overcome the deficiencies of genetic operators in the applications of heat exchanger circuiting optimization, a technique called Learnable Evolution Model (LEM) was implemented to increase the velocity of the evolution process (Michalski, 1998; Cervone et al., 2000). The history of the population was taken into account (Saleem and Reynolds, 2000; Vervoce et al., 2003). A similar methodology was presented by Wu et al. (2008). The same circuiting representation of Kaufman and Michalski (2004) and Domanski and Yashar (2007b) was employed.

To simulate the vapor compression cycle, a computational package, Genesym v1.0 (Yana Motta, 2001), was employed. It has three modes of operation: heat pump, air conditioning and air-cooled chiller. For the purposes of the present work, it simulated an air-to-air vapor compression cycle air-conditioner operating in steady-state condition. The simulation model comprises a number of models, one for each component. The compressor is modeled based on compressor operating maps and fundamental equations. The maps are made available in the program data-base for a number of compressor models. Tube-by-tube local models are employed to simulate the condenser and evaporator. Air-side convective heat transfer coefficient is determined for different types of areas (flat, wavy, lanced or louvered fin) from a number of correlations available in the literature (Wang, et al., 1998, 1999a, 1999b, 2000a, 2000b and 2001). Refrigerant-side local condensing and evaporating heat transfer coefficient were determined from Cavallini et al. (1999), and two-phase flow pressure drop, from Choi (1999). The expansion device can be: (i) a capillary tube, for which mass flow rate correlations were taken from Yana Motta (1999); (ii) a short tube orifice (Payne, 1997); or (iii) an expansion valve (Hwang et al., 2004; Chen, 2008). Refrigerant thermophysical properties are calculated with built-in libraries from REFPROP v7.0 (Lemmon et al., 2002). Reported validation of the program against experimental data can be found in (Domanski and Payne, 2002), for refrigerants R-22 and R-410a, and (Hwang et al. 2004), for R-22 and R-290. The program has also been used for a number of refrigerant R-22 replacement studies (Spatz and Yana Motta, 2004; Chen, 2008).
Evaporator and condenser coils require the following input data: number of repeating sections of coil (slabs), number of rows (depth), number of tubes per row, coil width, height of the coil, pitch between tubes of the same row, tube depth pitch (distance between rows), distance between coil bottom and last tube, number of fins per unit length, fin thickness, type of fin, finned area specific characteristics, fin and tube materials thermal conductivities, type of inside tube surface, tubes outer and inner diameters. Refrigerant circuitry (which implies coil inlet and outlet tubes, refrigerant flow direction and points of merging and splitting circuits, i.e., the refrigerant flow path through the coil) as well as air flow distribution are also provided as input data. Refrigerant mass flow rate and power consumption maps, as a function of evaporating and condensing temperatures, are provided by user and comprise the compressor input data. Each heat exchanger fan is characterized by its volumetric flow rate and power consumption. Three refrigerant lines are considered: suction, discharge and liquid lines. For them, the following input data are required: tube length, outer diameter, thickness and material thermal conductivity and density, insulation thickness, density and thermal conductivity, and prevailing external ambient conditions (dry bulb temperature, relative humidity and pressure). Indoor and outdoor conditions (dry bulb temperature, relative humidity and pressure) are provided, together with the cycle evaluation mode (options of prescribed degree of superheat, prescribed refrigerant charge, both or prescribed degrees of superheat and subcooling). Finally, for refrigerant cycle input data, operating conditions were also characterized, in addition to the prescribed values of above, by condensing and evaporating temperatures.

Solution was obtained sequentially, evaluating component module by module. During iterations, refrigerant mass flow rate was adjusted so that the prescribed conditions could be met. Evaporator and condenser coils were also solved sequentially, tube by tube. Overall cycle results include: refrigerating capacity, compressor power consumption, COP, refrigerant mass flow rate, air volumetric flow rate in condenser and evaporator, refrigerant charge, thermodynamic states at the inlet and outlet of each relevant control volume. Given the local nature of heat transfer correlations, which requires a local analysis of both condenser and evaporator, local values of the thermodynamic states of air and refrigerant, alongside the refrigerant coil, are also available.

3. CIRCUITY OPTIMIZATION

The optimization objective could be, for example, the maximization of COP or of the refrigeration capacity. It could also be the minimization of refrigerant charge, of overall weight or of energy consumption. Variables of the problem would be those defining the refrigerant circuitry. For example, considering a heat exchanger comprised by five tubes, numbered 1, 2, 3, 4 and 5, a vector (4, 2, 1, 3, 5) would represent a heat exchanger circuitry with inlet in tube number 4, continuing in tube number 2 up to the last tube, number 5. As in any optimization problem, the final solution is limited by constraints. In the present case they are: (i) a lower limit for thermal capacity, which is the system nominal capacity; (ii) maximum cost (for example, by maintaining the overall geometry and altering refrigerant circuitry solely, one would avoid costly manufacturing changes); (iii) user design constraints, such as inlet and outlet locations or maximum tube connection length (for example, tubes belonging to the same branch would have to be reasonably close to one another); (iv) prescribed heat exchanger volume and overall dimensions.

The objective function to be minimized could be formally described as follows:

\[\text{Objective Function} = \text{GENESYM} (\text{Circuitry}, \text{Geometry}, ..., \text{COP}, \frac{\dot{Q}}{\text{inlet}}, ..., \frac{\dot{Q}}{\text{output}}) \]

The first step of the method is to determine, even before the genetic algorithm is applied, the optimum number of circuit branches, or parallel sections. In spite of the existence of an optimization method, from Granryd and Palm (2003), a comprehensive search method was preferred. It runs the vapor compression system simulation program for every possible combination of circuits in the evaporator and condenser (from 1 circuit to a reasonable value).

After the number of branches in both heat exchangers has been determined, the circuitry optimization procedure starts. A new methodology was devised and comprises two steps: (i) the previous reduction of the domain, by
imposing the problem restrictions, in a kind of filtering process; (ii) application of the genetic algorithm in the search of the optimal solution within the filtered (and reduced) domain. The application of step (ii) only after the domain has been restricted reduces considerably the computational time spent in the application of the genetic algorithm. By its turn, the genetic algorithm is only applied to solutions that have already been filtered, i.e., that comply with the problem restrictions, thus eliminating the necessity of corrective methods. The overall approach can thus be established: (step 1) determine number of zones, or circuits; (step 2) filter solutions; (step 3) generate database of all possible circuitries for evaporator and condenser; (step 4) apply the genetic algorithm to find the optimum. Figure 1 depicts an example of evaporator and condenser coils, with schematics of tube connections, circuits and representation of inlet/outlet and connections with adjacent tubes only restrictions.

The basic procedure of application of the genetic algorithm is as follows:

1) Initial population or new circuit: Generate, in a random way, all circuits in the domain;
2) Organize – Generate maximum and minimum throughout the population: Criteria of better capacity and COP are used to organize circuits;
3) New circuits: Originated from best circuits in the previous step, (2), or created ones;
4) Evaluate and organize - Generate maximum and minimum throughout the population: Criteria of better capacity and COP are used to organize circuits;
5) Substitution: Change worse circuits for better ones;
6) Is it the best circuit?
 a. Yes: Circuit delivered.
 b. No: Go back to 2.

More details of the method can be found in (Castillo Martínez, 2009).

4. RESULTS

The method was applied to a commercially available split air conditioner of 3.2 and 3.3 TR of capacity operating with R22 and R410A, respectively. The unit comprises plate-fin and tube 3x20 tubes evaporator and a 2x26 tubes condenser, a hermetic scroll compressor and a thermostatic expansion valve (Domanski and Payne, 2002). Figure 2 shows the original heat exchangers circuitries. Two sizes of tube diameter were tested for the condenser, 7.7 mm and
6.9 mm, and evaporator, 9.4 mm and 7.9 mm. The degree of subcooling was 3.8 K and the evaporator degree of superheating, 7.6 K.

Four optimization runs were performed for each refrigerant, R22 and R410A. The objective function aimed at optimizing the system coefficient of performance. The optimal number of refrigerant parallel circuits in the evaporator was found to be 5. For the condenser this number ranged between 3, 4 and 6, with a subcooling circuit being considered for all of them. Heat exchangers characteristics were as follows, for evaporator and condenser, respectively: length = 0.660 m, 2.045 m; height = 0.508 m, 0.660 m; number of tube rows = 3, 2; number of tubes per rows = 20, 26; number of fins per m = 472.4, 866.1; type of fin = lanced-slit; tube inner surface = microfin (microfin height = 0.2 mm, number of microfins = 60 and 50), smooth. Tube inner diameters for evaporator and condenser varied according to test, as follows: test C3T1 (R22, 9.4 mm and 7.7 mm); C3T2 (R22, 7.9 mm and 7.7 mm); C3T3 (R22, 9.4 mm and 6.9 mm); C3T4 (R22, 7.9 mm and 6.9 mm). Tests C3T5 (9.4 mm and 7.7 mm), C3T6 (7.9 mm and 7.7 mm), C3T7 (9.4 mm and 6.9 mm) and C3T8 (7.9 mm and 6.9 mm) were conducted with R410A.

Tables 1 and 2 summarize the results, comparing base values of performance parameters, namely: refrigerating capacity, compressor power, COP, refrigerant mass flow rate, refrigerant charge and evaporating and condensing temperatures. One observes that, in all cases, the percentage of COP enhancement was never below 5.5%. A maximum of 8.34% was obtained. These results show that the change in tube diameter did not impact significantly the COP improvement. On the other hand, as a result of a more compact geometry, the optimized configuration provided significant reduction on refrigerant charge (from 19.8% to 30.6%). Figure 3 depicts the resulting optimized evaporator and condenser circuitries for test C3T5 (R410A).

![Figure 2: Original refrigerant circuitries of evaporator and condenser.](image-url)

| Table 1: Results for optimization tests with R22.

<table>
<thead>
<tr>
<th></th>
<th>C3T1</th>
<th>C3T2</th>
<th>C3T3</th>
<th>C3T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>compressor power [kW]</td>
<td>2.518</td>
<td>2.517</td>
<td>2.517</td>
<td>2.516</td>
</tr>
<tr>
<td>COP</td>
<td>4.499</td>
<td>4.706</td>
<td>4.901</td>
<td>4.977</td>
</tr>
<tr>
<td>refrigerant mass flowrate [kg/h]</td>
<td>0.06739</td>
<td>0.06739</td>
<td>0.06739</td>
<td>0.06739</td>
</tr>
<tr>
<td>refrigerant charge [kg]</td>
<td>3.62</td>
<td>2.37</td>
<td>2.003</td>
<td>1.98</td>
</tr>
<tr>
<td>evaporating temp. [K]</td>
<td>201.03</td>
<td>200.17</td>
<td>201.7</td>
<td>201.7</td>
</tr>
<tr>
<td>condensing temp. [K]</td>
<td>322.50</td>
<td>322.01</td>
<td>322.01</td>
<td>322.01</td>
</tr>
</tbody>
</table>
5. CONCLUSIONS

A new method for refrigerant circuitry optimization was proposed. The application of the genetic algorithm over pre-filtered domain resulted in a more efficient and faster optimization algorithm, which allowed the simultaneous manipulation of condenser and evaporator coil circuitries, towards the overall cycle optimization. The method was applied to a typical air conditioning system, for which a COP enhancement of up to 8.34% was found. For this particular case, refrigerant charge was reduced by 28.4%, showing that this can be an efficient tool in the design of air conditioning systems with lower environmental impact, from the direct (refrigerant charge) and indirect (energy consumption) emissions point of view.

NOMENCLATURE

\[\text{COP} \] coefficient of performance (-)
\[\dot{Q} \] refrigeration capacity (kW)

REFERENCES

Castillo Martínez, L.C., 2009, Otimização dos Circuitos de Refrigerante nos Trocadores de Calor de Sistemas de Refrigeração por Compressão de Vapor, Refrigerant Circuitry Optimization in Heat Exchangers of Vapor

International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, 2010
Compression Refrigeration Systems, Doctorate Thesis, Pontifícia Universidade Católica do Rio de Janeiro, Department of Mechanical Engineering, Brazil, in Portuguese.

Domanski, P.A., 2003, EVAP-COND Simulation Models for Finned Tube Heat Exchangers, National Institute of Standards and Technology, Building and Fire Research Laboratory, Gaithersburg, MD, USA.

Domanski, P. and Yashar, D., 2007b, Application of an Evolution Program for Refrigerant Circuitry Optimization, ACRECONF 2007 - Challenges to Sustainability, December 7-8, New Delhi, India.

Vervoce, G, Kaufman, K.A, Michalski, R.S., 2003, Validating Learnable Evolution Model on Selected Optimization and Design Problems, Reports of the Machine Learning and Inference Laboratory, MLI03-1 - P03-2, George Mason University, USA.

International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, 2010

ACKNOWLEDGEMENTS

This work has been conducted under contract of Consulting Agreement between Honeywell International Inc. and Pontificia Universidade Católica do Rio de Janeiro. Thanks are also due to CNPq and FAPERJ, Brazilian research funding agencies, for the financial support provided.