Innovative usage of unstructured information sources: From text- and data-mining to model-driven decision-support

Martin Hofmann-Apitius
Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
“Innovative usage of unstructured information sources: From text- and data-mining to model-driven decision-support”

Prof. Dr. Martin Hofmann-Apitius
Head of the Department of Bioinformatics
Fraunhofer Institute for Algorithms and Scientific Computing

36th Annual IATUL Conference 2015
July 6 - 9, Hannover, Germany
Where I come from: Fraunhofer Society

- Founded 1949
- Europe’s largest applied research organisation
- 60 Research Institutes (7 Institutes in the US)
- > 23,000 Employees
- Annual Budget > 2 Billion Euro
- Financial model: 2/4 industry collaborations
 1/4 public funding
 1/4 institutional funding

*Joseph von Fraunhofer (1787 – 1826)
Scientist, Inventor and Entrepreneur
The Fraunhofer Institute Center Schloss Birlinghoven

- Largest research centre for informatics and applied mathematics in Germany
- Around 700 employees, thereof 500 scientists, approx. 200 students and trainees
- University links:
 - Bonn
 - Aachen
Expertise at the Department of Bioinformatics at SCAI

Fraunhofer SCAI Department of Bioinformatics currently comprises:

- 10 scientists
- 3 scientific software developers
- 7 PhD students
- ~ 5 Master students
- ~ 10 student workers

- predominantly computer scientists & biologists
- some PhD students via University of Bonn (Bonn-Aachen International Center for Information Technology)
SCAI Department of Bioinformatics: R&D in a nutshell

Fraunhofer SCAI Department of Bioinformatics R&D activities:

1. Information extraction in the life sciences:
 - Recognition of named entities and relationships in text
 - Large-scale, automated Information Extraction

2. Integrative biology; disease modelling
 - Focus on neurodegenerative diseases

3. eScience, Grid- & Cloud- Computing / HPC (Cluster)
 - Focus on scaling of information extraction workflows

Making Scientific Content available for Computing
Imagine …

- **Cancer Patient, final stage, metastatic pancreas carcinoma**
 - Surgery, chemotherapy without success
 - Distant metastasis in bone marrow, lung and liver
 - Remaining life span: 2 – 4 weeks

- **Last chance: sequencing the cancer genome (< 10k€)**
 - Getting insight into mutations underlying cancer dysregulation
 - Understanding of mechanisms triggering uncontrolled growth
 - Identification of (experimental) compounds that inhibit tumour growth

- **This is not fiction – this is reality**
The challenge …

- Cancer genome sequencing delivers vast amount of information
 - Tens to hundreds of mutations
 - Functional relevance of a significant number of mutations unclear
 - Contribution of mutation to tumour growth and metastasis?

- How do we assess the biological impact of genetic variation information?
 - Putting genetic variation information into a functional context
 - Reasoning over genetic variation information and inference of consequences
 - From inference to personalised recommendation …. within 2 weeks of time

- Let us see where we stand …
Semantic Search and Knowledge Discovery in Scientific Literature

Identification and normalisation of the relevant Life Science terminology is key for information retrieval, information extraction and inferring of knowledge
Dictionary based approaches with normalisation and embedding in hierarchies

Genes/Proteins, Disease, Drugs, Cells...

Regular expression (partly to normalise)
Chrom. Locations, rs numbers...

Combined entities
Combined normalisation
SNP, Histomodification

Machine learning based approaches (CRF based)
SNP, IUPAC, epigenetic modifications
Different input output formats

ProMiner
Recognition and Normalization of Named Entities in Scientific Text

1. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms.

 Authors: Balasubramanian Poonkuzhal, Jatinder Lamba, Stephen Strom, Alex Sparreboom, Kenneth Hummel, Paul Watkins, Erin Schuetz. **Date:** 2008-04. **Journal:** Drug metabolism and disposition: the biological fate of chemicals. **DOI:** 10.1124/dmd.107.020757

 The hypothesis was tested that sequence diversity in breast cancer resistance protein (BCRP)’s cis-regulatory region is a significant determinant of BCRP expression. The BCRP promoter and intron 1 were sequenced in lymphoblast DNA from the polymorphism discovery resource (PDR) and the single nucleotide polymorphisms (SNPs) were analyzed for association with BCRP expression.

 UMIN — A novel secreted factor represents a highly specific marker for distal chondrocytes

 * Institute of Human Genetics, University Hospital Erlangen, Schleidenstrasse 10, 91054 Erlangen, Germany
 ** Department of Experimental Medicine, Helmholtz-Institute for Infection Research, University of Erlangen, Germany

 Abstract

 Growth and development of most parts of the vertebrate skeleton takes place by endochondral ossification, a process during which chondrocytes undergo distinct stages of differentiation resulting in a succesive replacement of the cartilage skeleton by bone. In the context of the EST project we isolated a novel transcript from a human fetal growth plate cartilage (DNA library). The transcript which we called **Umin** (unglycosilated apoptosis inhibitor) encodes a short peptide of 134 amino acids. The protein sequence is evolutionary conserved throughout echinoderms and contains a pdl repeat, a coiled-coil domain, and a nuclease-like domain. Using **ELISA** in situ hybridization and immunohistochemistry with a polyclonal anti-Umin antibody we found high expression of **Umin** in highly hyaluronic acid rich chondrocytes in developing long bones of wild-type mice. This expression could also be observed in **Min**-, **Ctnam**-, **Prx1**-, and **Hippo** mice, and in mice that express **Umin** under the control of the Bcrp promoter indicating that expression of Umin is a regulated independent of Bcrp signaling. During insulin-induced elongation of **ATDC5** cells we found a high increase in expression of **Umin** at day 21 with a maximum of day 24 and a decrease correlating with a simultaneous increase in the expression of **Bcrp**. Thus, a protein with known sequence homology to adhesion molecule death effectors. The protein also shows marked expression in hematopoietic cells.
1. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms.

The hypothesis was tested that sequence diversity in breast cancer resistance protein (BCRP)’s cis-regulatory region is a significant determinant of BCRP expression. The BCRP promoter and intron 1 were resequenced in lymphoblast DNA from the polymorphism discovery resource (PDR) 44 subset. BCRP single nucleotide polymorphisms (SNPs) were genotyped in donor human livers, intestines, and lymphoblasts quantitatively phenotyped for BCRP mRNA expression. Carriers of the -15822C>T SNP had lower BCRP expression in multiple tissues. The intron 1 SNP -16702C>T was associated with high expression in livers; -1143G>A was associated with low expression in intestines; -12383T>C was associated with higher expression in the PDR44 and White livers. The -15994G>C promoter SNP was significantly associated with higher BCRP expression in multiple tissues. Patients with the -15994C>G genotype had substantially higher clearance of p.o. imatinib. We next determined whether BCRP expression was related to polymorphic alternative splicing or alternative promoter use. Liver polymorphically expressed an alternatively spliced mRNA [splice variant (SV) 1] skipping exon 2. Although SV1+ livers did not uniformly carry the exon 2 G34A allele, 90% of G34A livers expressed SV1 (versus 4% of 34G G34G livers). BCRP mRNA was significantly lower among Hispanic livers with the G34A variant genotype and may be due, in part, to polymorphic exon 2 splicing. Analysis of allele expression imbalance (AEI) showed that PDR44 samples with AEI had higher BCRP mRNA expression; however, no linked cis-polymorphisms were identified. BCRP used multiple promoters, and livers differentially using alternative exon 1b had lower BCRP. In conclusion, BCRP expression in lymphoblasts, liver, and intestine is associated with novel promoter and intron 1 SNPs.
SCAIView functionalities

- **Document View** - Displays all the documents retrieved based on the search query. Entity classes can be selected that you want to highlight. By default, Documents are displayed according the date (newest on the top).

- **Entity View** - Displays named entities under the column entities and are linked to corresponding abstracts.

- **Export** - PMID and Entity tables can be exported to text files or excel sheets.
Motivation

Processing and structuring text “Production Workflow”

- Pre-Processing
- NLP & NER

Text Retrieval System

- Semantic Search
- Document Retrieval

Intelligent Analytical Tools

- KNIME
- Machine Learning

Goal
UIMA workflow and UI applications

- **UIMA (Unstructured Information Management Architecture)** is a software architecture for deploying and developing unstructured information management application.
- Originally developed by IBM, now open source.
- **Unstructured information application** may be defined as a software system designed to analyses large volume of unstructured information in order to discover, organise, and deliver knowledge to the end user.
- Thus this architecture provides analytical platform by converting unstructured text to structured information.
UIMA based analysis at SCAI

- BEL like Statement Extraction
- Co-occurrence and Tri-occurrence based relationship extraction
- Machine Learning based relationship extraction
- Topic Modelling
- Term Frequency based Analysis
- …
Capturing Knowledge on Causes and Effects: OpenBEL

Subject: The abundance of molecules designated by the name “corticosteroid” in the CHEBI namespace.

Predicate: decreases

Object: The biological process designated by the name “Tissue Damage” in the NCI namespace.

Term Expression: `a(CHEBI:corticosteroid) - | bp(NCI:"Tissue Damage")`
Phosphorylation of glycogen synthase kinase 3beta at Threonine, 668 increases the degradation of Amyloid precursor protein.

\[p(\text{HGNC:GSK3B}, \ p\text{mod}\ (P,T,668)) \rightarrow \text{deg}\ (p\ (\text{HGNC:APP})) \]
BEL forms Graphs

- Subject-predicate-object “triples”
- Object of one triple can be subject of another
- Putting them together makes arbitrarily large knowledge graphs
- Reasoning over causal relationships becomes a graph traversal
The World’s largest Computable Model for Alzheimer’s Disease

Project Goals of the Work of Gurnoor Singh

- Implement a solution integrating document retrieval via SCAIView and analytical tools which extracts information/knowledge based on a UIMA workflow

- A generic solution which works well on any analysis workflow (‘wrapper’)

- A well distributed, flexible, and efficient solution for multitasking

- Show application by, performing an exemplary analysis which measures the difference of information gain between abstract representation and full text representation of Biomedical journals
Exemplary Application

- **Biological Research Question**: “Is there a difference in Information Gain between abstract and full text of a document?”
- Information Gain can be measured as number of unique BEL like statements.
- Install daemon for analysing BEL Like Statement.

- Corpus: Collection of PMID as defined by user query in SCAIView
BELIEF Workflow

1. Various NLP tools
2. SD etc.
3. ProMiner
4. RE processes
5. Relation extraction tools
6. Linear Classifier, TEES etc.
7. BEL Writer
8. BEL

Various NLP tools

Unstructured Information Management Architecture
An Apache Project

© Fraunhofer SCAI
3. **Simvastatin** inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages

Simvastatin: Simvastatin - A derivative of lovastatin and potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (hydroxymethylglutaryl COA reductase), which is the rate-limiting enzyme in cholesterol biosynthesis

9) may play an important role in emphysematous change in chronic obstructive pulmonary disease (COPD), one of the cardinal worldwide. We previously reported that Simvastatin, an inhibitor of HMG-CoA reductase, attenuates emphysematous lungs of rats exposed to cigarette smoke. However, it remained uncertain how cigarette smoke induced MMP-9 and how the induced MMP-9 expression in alveolar macrophages (AMs) is the major source of MMP-9 in the lungs of COPD patients.

Signaling for MMP-9 induction and the inhibitory mechanism of simvastatin on MMP-9 induction in AMs exposed to isolated rat AMs, CSE induced MMP-9 expression and phosphorylation of ERK and Akt. A chemical inhibitor of MEK1/2 or ERK or Akt, respectively, and also inhibited CSE-mediated MMP-9 induction. **Simvastatin** reduced CSE-mediated MMP-9 induction and inhibition was reversed by farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP). Similar to farnesyl transferase or GGPP transferase suppressed CSE-mediated MMP-9 induction. **Simvastatin** attenuated CSE-mediated activation of RAS and phosphorylation of ERK, Akt, p65, IκBα, and nuclear AP-1 or NFκB activity. Taken together, these results suggest that **simvastatin** may inhibit CSE-mediated MMP-9 induction, primarily by blocking prenylation of RAS in the signaling pathways, in which Raf-MEK-ERK, PI3K/Akt, AP-1, and IκBα-NFκB activity are involved.

http://www.scaiview.com

© Fraunhofer SCAI
What text mining can deliver – NER & Normalisation

3. Simvastatin inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages

Recall and Precision rates are between 70% and 90% for biomedical NER

Recall: How many of the existing names does the system detect
Precision: How many of the detected names are correct
BELIEF Workflow

Various NLP tools → SD etc. → ProMiner → NER with multiple dictionaries → RE preprocessed → Relation extraction tools → Linear Classifier, TEES etc. → BEL Writer → BEL

TXT → BEL
Current dictionaries included

<table>
<thead>
<tr>
<th>Entity class</th>
<th>Resources</th>
<th>BEL namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Genes/Proteins</td>
<td>EntrezGene/Uniprot</td>
<td>HGNC</td>
</tr>
<tr>
<td>Mouse Genes/Proteins</td>
<td>EntrezGene/Uniprot</td>
<td>MGI</td>
</tr>
<tr>
<td>Rat Genes/Proteins</td>
<td>EntrezGene/Uniprot</td>
<td>RGD</td>
</tr>
<tr>
<td>Protein family names</td>
<td>OpenBEL</td>
<td>PFH</td>
</tr>
<tr>
<td>Protein complex names</td>
<td>OpenBEL</td>
<td>NCH</td>
</tr>
<tr>
<td>Protein complex names</td>
<td>Gene Ontology</td>
<td>GOCCTERM</td>
</tr>
<tr>
<td>Chemical names</td>
<td>OpenBEL</td>
<td>SCHEM</td>
</tr>
<tr>
<td>Chemical names</td>
<td>ChEBI</td>
<td>CHEBI</td>
</tr>
<tr>
<td>Chemical names</td>
<td>ChEMBL</td>
<td>SCHEM</td>
</tr>
<tr>
<td>Disease names</td>
<td>MeSH</td>
<td>MESHD</td>
</tr>
<tr>
<td>Anatomy names</td>
<td>MeSH</td>
<td>MESHA</td>
</tr>
</tbody>
</table>
Use case: relation between small molecules (mainly protein inhibitors) and their targets

<table>
<thead>
<tr>
<th>Dictionary</th>
<th>Recall rate initial version</th>
<th>Recall rate application adapted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes/Protein: (HGNC)</td>
<td>80 %</td>
<td>93 %</td>
</tr>
<tr>
<td>Chemical compounds: ChEBI</td>
<td>15 %</td>
<td>66 %</td>
</tr>
<tr>
<td>Chemical compounds: SCHEM</td>
<td>30 %</td>
<td>75 %</td>
</tr>
<tr>
<td>Chemical compounds: ChEBI + SCHEM + ChEMBL</td>
<td>not determined</td>
<td>91 %</td>
</tr>
<tr>
<td>Selventa-human-complex</td>
<td>40 %</td>
<td>46 %</td>
</tr>
<tr>
<td>GO-Complex</td>
<td>not determined</td>
<td>64 %</td>
</tr>
<tr>
<td>Selventa-human-complex + Complex</td>
<td>not determined</td>
<td>82 %</td>
</tr>
<tr>
<td>GO-Function</td>
<td>22 %</td>
<td>not determined</td>
</tr>
<tr>
<td>Selventa-human-families</td>
<td>8 %</td>
<td>77 %</td>
</tr>
</tbody>
</table>
Recognition and normalization of terminology

- Normalisation is needed!
- Use external and internal (OpenBEL) resources for named entity recognition (Mapping!)
- Combine various resources
- Adapt terminology to use cases (OpenBel namespaces provide no synonyms)
- Offer curators the annotation of different concepts

For relation extraction high recall is a precondition!!!
Relation Extraction

Two kinds of relationship extraction tools are available which are tested and compared on common benchmark sets:

- The BioNLP shared tasks deliver a very detailed annotation for relationship extraction similar to the information needed for BEL.
Relation Extraction

Two kinds of relationship extraction tools are available which are tested and compared on common benchmark sets:

- The BioNLP shared tasks deliver a very detailed annotation for relationship extraction similar to the information needed for BEL.

IL-7 also delayed the decrease in the levels of cMyc expression.
Relation Extraction

Two kinds of relationship extraction tools are available which are tested and compared on common benchmark sets:

- The BioNLP shared tasks deliver a very detailed annotation for relationship extraction similar to the information needed for BEL

- Simpler binary classification:

 IL 7 also delayed the decrease in the levels of cMyc

 \[
 \text{IL7 – cMyc Relation: Yes}
 \]

Classifies if a relation between 2 entities is existing but gives no information about the direction or type
Technology – Performance

- NLP (Sentence Detection ~6% error) 94
- NLP (Tokenization ~8% error) 86
- NER (Different Classes ~15% error) 73
- RelationExtraction (Multi-step ~25% error) 54

Propagated error!
What text mining can deliver: Relation Extraction – Example from BioNLP shared Task

Recall ~30% and Precision ~50% for regulation events – binary classification has higher recall and precision rates

That seems not very promising but many relations might be redundant!

http://bishop.scai.fraunhofer.de/scaiview/
BELIEF Workflow

Various NLP tools

NER with multiple dictionaries

Relation extraction tools

Linear Classifier, TEES etc.

BEL Writer

TXT

SD etc.

ProMiner

RE preproces

BEL
BioNLP Shared Task to openBEL conversion

We implemented a rule set translating BioNLP SharedTask to BEL

Abundances p(),..., pmod()
Modifications pmmod()
Catabolism deg()
Location tloc()
Binding/Complex complex()

Positive Regulation ->
Negative Regulation -|
Regulation/Association - -

BEL networks derived from qualitative translations of BioNLP Shared Task annotations.
The Association for Computational Linguistics (ACL) Sofia 2013
IL-7 also delayed the decrease in the levels of cMyc expression.
Relation extraction example result

Automatic extension to full statements in workflow:

Fixme -|\(r(\text{HGNC:MYC})\)

\(p(\text{HGNC:IL7})\) -| Fixme -|\(r(\text{HGNC:MYC})\)

-|\(r(\text{HGNC:MYC})\) no cause

IL7 also delayed the decrease in the levels of cMyc expression.
Relation extraction example result

Automatic extension to full statements in workflow:

Fixme \(\neg r(HGNC:MYC) \)

\(p(HGNC:IL7) \rightarrow Fixme \rightarrow r(HGNC:MYC) \)

```
Fixme \( \neg r(HGNC:MYC) \)
p(HGNC:IL7) \rightarrow Fixme \rightarrow r(HGNC:MYC)
```

Binary classification:

\(p(HGNC:IL7) \rightarrow r(HGNC:MYC) \)

Expression

```
Expression
```

Negative Regulation

```
Negative Regulation
```

IL-7 also delayed the decrease in the levels of cMyc expression

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>cMyc</td>
<td></td>
</tr>
</tbody>
</table>

- \(r(HGNC:MYC) \) no cause

- \(p(HGNC:IL7) \rightarrow r(HGNC:MYC) \)

- \(p(HGNC:IL7) \rightarrow \neg r(HGNC:MYC) \)
What text mining currently does not deliver: Interpretations

- Generated Statement:
 - \(p(FIXME) \rightarrow p(HGNC:STAT4) \rightarrow p(FIXME) \rightarrow p(HGNC:IL10) \)

- Manual Statement:
 - \(p(HGNC:STAT4) \rightarrow p(HGNC:IL10) \)
Semi automatic BEL Knowledge Extraction Pipeline

Application
BeliefDashboard

Projects management and multiple document upload

- Create, delete and list functionality
BELIEF Dashboard Curation Interface

Detected concepts:
- Highlighted text entity in mouse over
- Provide a fast overview of all entities in the evidence

BEL statement

Context annotation

Edit/Delete/Export
BEL Editor – Update document information

Document information

PMID: 11350788

Title: Nicotine infusion alters leptin and uncoupling protein 1 mRNA expression in adipose tissues of rats.

Journal: American journal of physiology. Endocrinology and metabolism; Vol. 280; Iss. 6

Authors: K Arai, K Kim, K Kaneko, M Iketani, A Otagiri, N Yamauchi, T Shibasaki

Published: Jun 2001
Back to Gurnoor Singh: Experimental Setup

- Query disease under study: Alzheimer's Disease (AD)
- A total 10 jobs selecting top 25, 50, 100, 500, and 1000 text documents from both the SCAIView systems were exported to BEL processing daemon.
- BEL documents retrieved via SCAIview were analyzed using KAM navigator and Cytoscape
- Biological networks were further narrowed down to Protein-Protein Interactions networks
Information Graphs

![Graph showing the relationship between Information Graph and the number of text documents for Abstract and Full-Text.]
Graph Topology

500- Abstract
- Documents: 500
- Nodes: 215
- Edges: 509

500- Full Text
- Documents: 500
- Nodes: 1490
- Edges: 5741

Manually Curated
- Documents: 500
- Nodes: 553
- Edges: 3525
Plotting APP (yellow) and its First Neighbors

- **500- Abstract**: Nodes: 58
- **500- Full Text**: Nodes: 230
- **Manually Curated**: Nodes: 121
Venn Diagrams

All triples

APP triples

500 Abstracts 500 Full-texts

Manually curated

0 110 1040

0 105 244

304

500 Abstracts 500 Full-texts

Manually curated

0 39 138

0 19 34

68
Text Mining & Decision Support

- Our cancer patient may die, because:
 - Nobody can read all the papers that contain relevant information in only two weeks
 - The publishing industry does not permit machines to do the job

- How will we reason over genetic variation information in a functional context?
 - See Naz et al., Briefings in Bioinformatics, in press

- Time for a “GRAND CHALLENGE”
 - Let us work together to organise a Grand Challenge that demonstrates how our cancer patient could be saved if automated text mining would be supported by the publishing industry
Take home message …..

Innovative Text Mining and Decision Support

- We can use unstructured text like any database

- We can extract useful and interesting facts, such as triples that represent causal relationships in biomedicine

- We can use these semi-automated information extraction processes to generate a knowledge base in languages such as BEL

- In the future, such knowledge bases will enable decision support in life saving, time-critical scenarios