EVALUATION OF DELAYS AND ACCIDENTS AT INTERSECTIONS TO WARRANT CONSTRUCTION OF MEDIAN LANE

SEPTEMBER, 1967
NO. 22

by
R.B. SHAW
and
H.L. MICHAEL

Joint Highway Research Project
PURDUE UNIVERSITY
LAFAYETTE INDIANA
Technical Paper

EVALUATION OF DELAYS AND ACCIDENTS AT INTERSECTIONS TO WARRANT CONSTRUCTION OF A MEDIAN LANE

To: G. A. Leonards, Director
Joint Highway Research Project

From: H. L. Michael, Associate Director
Joint Highway Research Project

September 27, 1967
File No.: 8-4-31
Project No.: C-36-1788

The attached Technical Paper has been authored by Messrs. R. B. Shaw, formerly a Graduate Assistant on our staff, and H. L. Michael. The paper is a summary of the research report previously presented to the Board entitled "Evaluation of Delays and Accidents at Intersections to Warrant Construction of a Median Lane". The attached paper has that same title.

The paper has been offered to the Highway Research Board for presentation at the 1968 Annual Meeting. It is presented to the Board for approval of publication by the HRB if accepted by that body for publication.

Respectfully submitted,

Harold L. Michael
Associate Director

HIM:jgs

Attachment

Copy: F. L. Ashbaucher R. H. Harrell C. F. Scholer
W. L. Dolich J. A. Havers M. E. Scott
W. H. Goetz V. E. Harvey W. T. Spencer
W. L. Grecco J. F. McLaughlin H. R. J. Walsh
G. K. Hallock F. B. Mendenhall K. B. Woods
M. E. Harr R. D. Miles E. J. Yoder
J. C. Oppenlander
The effect of diet on the longevity of aphid populations

To whom it may concern,

As part of our research on the longevity of aphid populations, we observed a significant increase in lifespan when aphids were fed a diet rich in certain nutrients. The results are summarized in the attached report.

Yours truly,

[Signature]

[Date]
The objective of this study was to evaluate the conditions on which the construction, maintenance, and interest costs for a median lane would be warranted at suburban and rural approaches to an intersection. To achieve this objective, delay times and accident rates to through vehicles caused by left-turning vehicles were analyzed in depth at three right-angle intersections which already possessed median lanes, and at eight right-angle intersections which did not have median lanes.

Seconds of delay per hour to through vehicles caused by left-turning vehicles were determined for the major approaches to the eleven intersections during daylight-weekday hours; 6 AM to 6 PM, Monday through Friday. The accidents caused by left-turning vehicles were collected for an almost five-year period and analyzed to determine accident rates for each major intersection approach. This study found a substantial reduction in the number of accidents attributed to left-turning vehicles and negligible delay times to through vehicles at the intersection approaches which possessed median lanes. The accident rates and delay times were analyzed by a multiple linear regression analysis.

Although this study is based only on daylight-weekday hours, the findings are of considerable value in planning the construction of median lanes. The reduction in accident and delays estimated for a period of years resulting from the construction of a median lane is used to determine if the construction, maintenance, and interest costs of the median lane at an intersection approach are justified.
EVALUATION OF DELAYS AND ACCIDENTS AT INTERSECTIONS TO WARRANT CONSTRUCTION OF A MEDIAN LANE

INTRODUCTION

The tremendous increase in motor vehicle usage during recent years throughout the United States has greatly affected highway operation. This increase in motor vehicle usage has created an added demand on all components of the highway system and has resulted in increased operating costs to the motoring public. Intersections are an important component of this system and the increased travel volumes have created congestion at many approaches in the urban, suburban, and rural areas. This study investigated one possible technique for congestion relief at suburban and rural intersection approaches.

The increased congestion at approaches to intersections is a cause for many of the critical problems in highway traffic operations and control (3). Where the intersection is at grade, streams of turning and crossing vehicles must join and cross each other. The points within the intersectional area used in common by these intersecting streams are focal points of accidents and delay. Delays result when vehicles in different streams wish to pass through these focal points at or nearly at the same time. Accidents often result when drivers make mistakes in judgment of the time and place that such intersecting movements will occur.

The time and place of conflicts at approaches to intersections may be altered by traffic controls or design. Channelization of intersections at grade has been defined (6) as the separation or regulation of

* The number in parenthesis refer to numbers in the bibliography.
conflicting traffic movements into definite paths of travel by the use of pavement markings, raised islands or other suitable means to facilitate the safe and orderly movement of both vehicles and pedestrians. Channelization is, therefore, used to control the place of conflict between intersecting traffic streams and to influence the time element by separating the conflict points and controlling the speeds at which these conflicts occur.

The median lane is one form of channelization used to separate the conflict points between left-turning vehicles and through vehicles. It provides a temporary, protected storage location for vehicles waiting to make a left-turn movement. This paper, a report on the results of a research project concerned with warrants for such median lanes, was performed by the Joint Highway Research Project of Purdue University, Lafayette, Indiana.

The objective of the research was to evaluate the conditions for which the construction, maintenance, and interest costs of a median lane would be warranted at suburban and rural approaches to an intersection. To achieve this objective, delay times and accident rates to through vehicles caused by left-turning vehicles were analyzed in depth at three right-angle intersections which already possessed median lanes and at eight right-angle intersections which did not have median lanes. By evaluating the benefits from the reductions in delay times and accident rates realized from the presence of a median lane, a method was developed which can be used to determine when construction of a median lane is economically justified.
THE STUDY LOCATIONS

The eleven intersections referred to in this study are located within a sixty mile radius of Lafayette-West Lafayette, Indiana (Figure 1). These intersections are located on highways near the cities of Lafayette-West Lafayette, Kokomo, and Indianapolis. The approximate 1965 populations of these urban areas were 65,000, 50,000, and 500,000, respectively. Each of these eleven intersections possessed the following characteristics:

1. Signal or stop controlled,
2. Four approaches,
3. Right-angle,
4. Parking restricted, and
5. Located in suburban or rural areas.

A large percentage of the traffic using these intersections was through traffic destined for Chicago, Indianapolis, Fort Wayne, or South Bend. The 1965 major street weekday ADT's for the intersections ranged from 7,100 to 27,500. A summary of the characteristics for the study intersections is shown in Table 1 and 2.
FIGURE 1 - MAP OF INDIANA WITH RELATIVE LOCATIONS OF STUDY INTERSECTIONS.
TABLE 1

SUMMARY CHARACTERISTICS OF STUDY INTERSECTIONS WITHOUT MEDIAN LANES

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Location</th>
<th>Type of Area</th>
<th>Type of Signalization</th>
<th>Weekday Approach * ADT Plus Weekday Opposing ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. 52 By-Pass & Union Street</td>
<td>Lafayette</td>
<td>Suburban</td>
<td>Fixed Time</td>
<td>17,500</td>
</tr>
<tr>
<td>U. S. 52 By-Pass & S. R. 26</td>
<td>Lafayette</td>
<td>Suburban</td>
<td>Fixed Time</td>
<td>18,000</td>
</tr>
<tr>
<td>U. S. 52 By-Pass & Salisbury Street</td>
<td>Lafayette</td>
<td>Suburban</td>
<td>Semi-Traffic Actuated</td>
<td>15,800</td>
</tr>
<tr>
<td>U. S. 52 & U. S. 231 (S. R. 53)</td>
<td>Lafayette</td>
<td>Rural</td>
<td>Stop Sign Controlled (Flasher)</td>
<td>7,100</td>
</tr>
<tr>
<td>S. R. 100 & 56th Street</td>
<td>Indianapolis</td>
<td>Rural</td>
<td>Fully Traffic Actuated</td>
<td>10,500</td>
</tr>
<tr>
<td>S. R. 100 & Fall Creek Road</td>
<td>Indianapolis</td>
<td>Rural</td>
<td>Stop Sign Controlled (Flasher)</td>
<td>7,600</td>
</tr>
<tr>
<td>S. R. 100 & U. S. 31</td>
<td>Indianapolis</td>
<td>Suburban</td>
<td>Fully-Traffic Actuated</td>
<td>12,900</td>
</tr>
<tr>
<td>U. S. 35 (S. R. 22) & U. S. 31 By-Pass</td>
<td>Kokomo</td>
<td>Suburban</td>
<td>Fully-Traffic Actuated</td>
<td>9,500</td>
</tr>
</tbody>
</table>

* Weekday ADT's based on 1965 volume data.
<table>
<thead>
<tr>
<th>Intersection</th>
<th>Location Type of Area</th>
<th>Type of Signalization</th>
<th>Weekday Approach ADT (Plus Weekday Opposing ADT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. 31 & U. S. 35 (S. R. 22)</td>
<td>Yokono Suburban</td>
<td>Fully-Traffic Actuated</td>
<td>22,000</td>
</tr>
<tr>
<td>U. S. 31 & S. R. 26</td>
<td>Yokono Minor</td>
<td>Fully-Traffic Actuated</td>
<td>15,100</td>
</tr>
<tr>
<td>S. R. 100 & 30th Street</td>
<td>Indianapolis Suburban</td>
<td>Fully-Traffic Actuated</td>
<td>27,500</td>
</tr>
</tbody>
</table>

Weekday ADT's based on 1965 volume data.
PROCEDURE

Delay Data

The delay time incurred to a through vehicle caused by a left-turning vehicle was determined at the eleven study intersections during daylight-weekday hours; 6 AM to 6 PM, Monday through Friday.

The method developed to collect the delay time data was designed to be simple, inexpensive, and easily adaptable for use by one or more observers. A typical field setup of the equipment used to study the delay time is shown in Figure 2. The equipment used in the collection of delay data consisted of traffic volume counters, 20-pen recorder, 12 volt battery, push-button box, junction box, pneumatic tubes, and electrical conducting wire.

The placement of the traffic counters A and B varied in the suburban and rural areas. Traffic counter A was located prior to the point at which an approaching through vehicle was influenced by the presence of the intersection. Traffic counter B was located beyond the intersection at a point where the through vehicle has resumed its initial approach speed. As the approach speed increased, therefore, the distance between counters A and B increased. This distance between counters A and B was designated as the "zone of influence" and varied from about 800 to 1300 feet.
EQUIPMENT TO STUD R SECTION.

ZONE OF INFLUENCE

LEGEND
- APPROACH DIRECTION
- TRAFFIC COUNTER A
- TRAFFIC COUNTER B
- TRAFFIC COUNTER C
- OBSERVER & 20-PEN RECORDER

FIGURE 2 - TYPICAL FIELD SETUP OF EQUIPMENT TO STUDY DELAY TIME AT AN INTERSECTION.
Approach speed was the determining factor to indicate whether the intersection approach was considered to be located in a suburban or a rural area. Intersection approaches were classified as suburban when the approach speed was greater than 30 miles per hour but less than 45 miles per hour. Rural intersections were those locations where the approach speed was greater than 45 miles per hour. Much greater development of the adjacent land, of course, existed at the suburban intersections.

Traffic counters A and B were equipped with relay devices which actuated the 20 pen recorder whenever a vehicle axle crossed the pneumatic tubes connected to these two counters. Each axle actuation caused a "pip" on the recorder chart. An opposing traffic volume counter was located opposite counter B. Each observer had a push-button box which actuated six different pens of the 20-pen recorder as follows:

<table>
<thead>
<tr>
<th>Pen Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cancel</td>
</tr>
<tr>
<td>2</td>
<td>Stopped time</td>
</tr>
<tr>
<td>3</td>
<td>Left-turn vehicular delay</td>
</tr>
<tr>
<td>4</td>
<td>Identification of study vehicle</td>
</tr>
<tr>
<td>5</td>
<td>Tube A</td>
</tr>
<tr>
<td>6</td>
<td>Tube B</td>
</tr>
</tbody>
</table>

Once the equipment was set up at the intersection, an observer selected the first approaching vehicle as a study vehicle. Each study vehicle was identified by pressing the identification button as the vehicle crossed tube A. If the study vehicle turned left or right prior to crossing
tube B, the cancel button was pressed; if the vehicle was delayed by a
left-turning vehicle at the intersection, the button signifying a left-
turning vehicular delay was pressed; if the vehicle was stopped due to
a traffic signal, the stopped time button was pressed both when the vehicle
stopped and again when the vehicle started in motion; and finally, when
the vehicle crossed tube B, the identification button was again pressed.
When a study vehicle had been cancelled or had passed through the zone
of influence, the next succeeding vehicle to approach the intersection
was selected as a study vehicle. This procedure was repeated for a period
of three hours on each approach to be studied at an intersection.

Additional notations were made on the recorder chart to indica-
tate the classification of each study vehicle, and the number of stopped
left-turning vehicles present in a queue. This number of stopped left-
turning vehicles was later used to study adequate storage length for a
possible median lane.

A study was conducted in order to verify that the delay times
incurred to through vehicles during the three-hour study period were not
unique to that intersection approach for the particular time and day
selected. The three suburban intersections in the Lafayette-West Lafayette
area were selected for this purpose. Delay times for specific time
periods and days of the week were measured on three successive weeks at
the three intersections. It was found that the delay times for any partic-
ular time and day at a specified intersection approach were not signifi-
cantly different at the 5% level of significance. As a result, it was
concluded that adequate samples of delay time at an intersection approach
could be obtained during any three consecutive hours for weekday-daylight hours.
The 20-pen recorder was operated at a rate of six inches per minute during the time each approach was studied. The elapsed time in seconds for a study vehicle to pass through the zone of influence was scaled from the recorder charts and recorded in one of the four following categories:

1. No delay,
2. Signal delay,
 a. Total time
 b. Stopped time
 c. Total time minus stopped time
3. Left-turn vehicular delay, and
4. Left-turn vehicular delay and signal delay
 a. Total time
 b. Stopped time
 c. Total time minus stopped time.

This recorded data was used to determine averages of the hourly totals for each of the four categories, and percentages of the vehicles delayed by a left-turning vehicle and of the vehicles delayed by a left-turning vehicle and a signal. Time differences were then determined for categories 1 and 3, and 2 and 4. The seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour in the approach direction were calculated as follows:

\[Y_D = (V)(P_L) + (V)(P_{LS})(T_{LS}) \]

where \(Y_D \) is the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour in the approach direction.
\(V \) is the approach volume per hour of through traffic,

\(P_L \) is the percent of through vehicles delayed by a left-turning vehicle,

\(T_L \) is the difference in seconds for the average hourly times of categories 1 and 3,

\(P_{LS} \) is the percent of through vehicles delayed by a left-turning vehicle and a signal, and

\(T_{LS} \) is the difference in seconds for the average hourly times of categories 2 and 4.

It was concluded very early from the field data that the delay time experienced by a through vehicle was negligible at the three locations which possessed median lanes on the approaches to the intersection. Further analysis, therefore, was limited to the delay time experienced by a through vehicle at the approaches to the eight intersections which did not have median lanes.

Accident Data

An almost five-year study period was chosen in order that an adequate sample of accidents could be obtained. Accidents were collected for the daylight-weekday hours at the eleven study intersections for the period January 1, 1961 through August 31, 1965, and pertinent accident rates were calculated as shown in Tables 3 and 4.

Data on accidents for the three intersections with median lanes clearly indicated the almost total absence of accidents caused by left-turning vehicles. As a result, it was concluded that a median lane will substantially reduce accidents involving left-turning vehicles.
<table>
<thead>
<tr>
<th>Intersection</th>
<th>Cause and Type of Accident**</th>
<th>Left-Turn</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. 52 By-Pass & Union Street</td>
<td></td>
<td>0.151</td>
<td>0.075</td>
</tr>
<tr>
<td>U. S. 52 By-Pass & S. R. 26</td>
<td></td>
<td>0.183</td>
<td>0.073</td>
</tr>
<tr>
<td>U. S. 52 By-Pass & Salisbury Street</td>
<td></td>
<td>0.167</td>
<td>0.167</td>
</tr>
<tr>
<td>U. S. 52 & U. S. 231 (S. R. 53)</td>
<td></td>
<td>0.186</td>
<td>0.166</td>
</tr>
<tr>
<td>S. R. 100 & 56th Street</td>
<td></td>
<td>0.126</td>
<td>0.126</td>
</tr>
<tr>
<td>S. R. 100 & Fall Creek Road</td>
<td></td>
<td>0.262</td>
<td>0.699</td>
</tr>
<tr>
<td>S. R. 100 & U. S. 31</td>
<td></td>
<td>0.514</td>
<td>0.051</td>
</tr>
<tr>
<td>U. S. 35 (S. R. 22) & U. S. 31 By-Pass</td>
<td></td>
<td>1.196</td>
<td>0.299</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.276</td>
<td>0.405</td>
</tr>
</tbody>
</table>

* Accident rates are expressed as the number of accidents per million vehicles for the period January 1, 1961 through August 31, 1965.

** Accidents are classified according to cause: left-turn vehicle or other; and according to type: rear-end or right-of-way.
<table>
<thead>
<tr>
<th>Intersection</th>
<th>Type of Accident**</th>
<th>Rear-End</th>
<th>Right-of-Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. 31 & U. S. 35 (S. R. 22)</td>
<td>0.301</td>
<td>0.422</td>
<td></td>
</tr>
<tr>
<td>U. S. 31 & S. R. 26</td>
<td>0.220</td>
<td>0.396</td>
<td></td>
</tr>
<tr>
<td>S. R. 100 & 30th Street</td>
<td>0.177</td>
<td>0.133</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.240</td>
<td>0.354</td>
<td></td>
</tr>
</tbody>
</table>

* Accident rates are expressed as the number of accidents per million vehicles for the period January 1, 1961 through August 31, 1965.

** No accidents were caused by left-turn vehicles.
The accident analysis was limited to those accidents caused by left-turning vehicles which could have been prevented with the installation of a median lane. The types of accidents considered preventable for this study were the following:

1. Accidents involving a left-turning vehicle with opposing traffic,
2. Sideswipe overtaking accidents involving a left-turning vehicle,
3. Rear-end accidents that probably resulted from a left-turn movement.

The accident data was collected from the Accidents Records Division of the Indiana State Police and local police records. Indiana state law requires that all accidents involving a personal injury, death or property damage of $50 or more be reported to the police.

In most instances the collision diagram and description of the accident from the investigating officer report form provided the necessary information to distinguish a preventable accident from a non-preventable accident. It was concluded, however, that additional accidents probably were attributed to left-turning vehicles. A study was conducted, therefore, to determine additional rear-end collisions caused by left-turning vehicles which were not recorded as such on the investigating officer report forms. Accident rates for the other rear-end collisions were calculated for the eight intersections without median lanes and for the three intersections with median lanes (See Tables 3 and 4). The difference in the averages of these two accident rates was then used as a basis to randomly assign additional rear-end accidents which could be considered preventable with the installation of a median lane.
The accident data were analyzed on yearly basis at each intersection approach to determine an accident rate, number of accidents per million vehicles caused by left-turning vehicles, at each of the eight intersections without median lanes. No accidents involving a fatal injury were included in this analysis because of the rarity of such accidents and the difficulty of establishing an economic loss.

Volume

In delay and accident studies volume has correlated well with delay times and accident rates. This volume can be represented as an hourly volume or as the annual average weekday traffic (ADT). In this study both the hourly volumes and the weekday ADT were used in the analysis.

The traffic volume counters, used as part of the equipment to measure delay time, were employed simultaneously to obtain the approach and opposing volumes per hour for a given direction of travel. An observer was used to record the number of left-turning and right-turning vehicles, as well as, the classification of vehicles entering the intersection approach during the hours of study. It was, therefore, possible to analyze volumes, turning movements, and commercial vehicles for the same period of time the delay data were collected.

The approach and opposing hourly volumes at the time the accident occurred and the weekday ADT's were correlated with the accident rate. Because volume counts were not available for the entire study period, these hourly volumes were estimated as indicated in the following paragraph.
The traffic volumes obtained at the time the delay data were collected were supplemented by volume data from the Division of Planning, Indiana State Highway Commission. Factors were determined from the volume data collected, from records of the Highway Commission, and from charts depicting the yearly, monthly, daily, and hourly variations in traffic volume during average conditions in Indiana (12). Therefore, by knowing the location, year, month, day, and hour of an accident, the hourly volumes at the time an accident occurred were estimated by applying the appropriate factors to the volume counts taken at each intersection approach.

Capacity

The practical capacity of each intersection was calculated by the method described in the 1965 *Highway Capacity Manual* (7).

Six of the signalized intersections had paved shoulders on the right side which allowed through vehicles to maneuver around a left-turning vehicle. These paved shoulders also acted as turning lanes but were not designated for this specific purpose. In order to determine the effectiveness of the paved shoulders in increasing the practical capacities of these six intersections, reference was made to a study (9) which indicated that each paved shoulder carried approximately one-third the capacity of a properly constructed and signed turning lane.

The practical capacity was calculated for an extra turning lane if more than one lane existed for a direction of travel. This lane was assumed to be a left-turn only lane if the predominant turning movement at that approach was left, and assumed to be a right-turn only lane if the predominant turning movement at that approach was right. If the
additional lane was only a paved shoulder not constructed, signed, or used exclusively as turning lane, only one-third of the turning lane capacity was added to the through lane capacity.

The two stop-controlled intersections were also protected with flashers. Although no precise method was available to evaluate the practical capacity of these two unsignalized intersections, it was assumed that the crossroad traffic interference caused a wave-like behavior to the through traffic which approached the behavior of traffic under signal control (1). As the crossroad traffic interference did not result in flow, the practical capacities of these intersections were computed as if the intersections had been operated under traffic control signals with a green time cycle length ratio of one.

ANALYSIS OF DATA

Multiple Linear Regression

Many variables possibly affecting the delay and accident data were analyzed by multiple linear regression. This method provided expressions for predicting the seconds of delay per hour caused by left-turning vehicles to the volume of through vehicles per hour, and the number of accidents per million vehicles caused by left-turning vehicles at approaches to intersections in both the rural and suburban areas. The computer program used in this study for the multiple linear regression analysis was the BMD-2R, "Stepwise Regression" (10).
Tests were conducted on the resulting delay time and accident rate prediction equations to determine whether each independent variable in each equation was significant. The purpose of these tests was to develop simplified equations which would usually and adequately predict delay times and accident rates for both suburban and rural intersections by using a fewer number of independent variables. An option in the BEMD-2R program provided for a summary table listing the order each independent variable entered the multiple linear regression equation and the corresponding increase in the multiple coefficient of determination (R^2) associated with each new variable. The F-test (3) was used to determine the first independent variable which did not add significantly to the increase in the multiple R^2, given the other independent variable or variables already in the regression equation. For example, tests were conducted at a 5% level of significance to determine whether a significant increase resulted from the addition of a second independent variable given the first independent variable, or from the addition of a third independent variable given the first independent variable, or from the addition of a third independent variable given the first two independent variables already in the regression equation. The results of these tests are the basis for the formulation of simplified predictions equations for delay time and accident rates.

DELAY TIME

The variables listed in Table 5 represent the independent variables which were considered in the initial analysis for predicting the variability
<table>
<thead>
<tr>
<th>Number</th>
<th>Variable Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Type of Area - Suburban or Rural</td>
</tr>
<tr>
<td>4</td>
<td>Flasher (Stop) Controlled</td>
</tr>
<tr>
<td>5</td>
<td>Fixed Time Controlled Signalization</td>
</tr>
<tr>
<td>6</td>
<td>Semi-Traffic Actuated Controlled Signalization</td>
</tr>
<tr>
<td>7</td>
<td>Fully-Traffic Actuated Controlled Signalization</td>
</tr>
<tr>
<td>8</td>
<td>Green Time to Cycle Length Ratio of Through Approach</td>
</tr>
<tr>
<td>9</td>
<td>Green Time to Cycle Length Ratio of Left-Turn Phase</td>
</tr>
<tr>
<td>10</td>
<td>Grade of Approach, Percent</td>
</tr>
<tr>
<td>11</td>
<td>Number of Approach Lanes</td>
</tr>
<tr>
<td>12</td>
<td>Width of Approach Roadway at the Intersection, Feet</td>
</tr>
<tr>
<td>13</td>
<td>Average Speed Through the Intersection for a Non-Delayed Through Vehicle, Feet Per Second</td>
</tr>
<tr>
<td>14</td>
<td>Ratio of Width of Access Points to Zone of Influence Length</td>
</tr>
<tr>
<td>15</td>
<td>Approach Volume Per Hour, Vehicles Per Hour</td>
</tr>
<tr>
<td>16</td>
<td>Opposing Volume Per Hour, Vehicles Per Hour</td>
</tr>
<tr>
<td>17</td>
<td>Number of Left-Turning Vehicles in Approach Direction Per Hour</td>
</tr>
<tr>
<td>18</td>
<td>Number of Right-Turning Vehicles in Approach Direction Per Hour</td>
</tr>
<tr>
<td>19</td>
<td>Number of Commercial Vehicles in Approach Direction Per Hour</td>
</tr>
<tr>
<td>20</td>
<td>Number of Approaching Through Vehicles Per Hour Delayed by a Left-Turning Vehicle Only.</td>
</tr>
<tr>
<td>21</td>
<td>Number of Approaching Through Vehicles Per Hour Delayed by a Left-Turning Vehicle and a Signal</td>
</tr>
<tr>
<td>Number</td>
<td>Variable Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>22</td>
<td>Ratio of Approach Volume Per Hour to Capacity of Approach Direction</td>
</tr>
<tr>
<td>23</td>
<td>Ratio of Opposing Volume Per Hour to Capacity of Opposing Direction</td>
</tr>
<tr>
<td>24</td>
<td>Average Number of Stopped Left-Turning Vehicles in an Approach Queue Per Hour</td>
</tr>
<tr>
<td>25</td>
<td>Total Volume Per Hour in Approach and Opposing Directions, Vehicles Per Hour</td>
</tr>
</tbody>
</table>
in delay times for both suburban and rural areas. The results from this initial regression analysis were examined for significance and duplication and certain variables deleted. The final delay time prediction equations were based on the remaining independent variables.

Suburban Area

The prediction equation explaining the greater amount of variability in suburban delay time \((y_{DS}) \) is shown in the following equation:

\[
y_{DS} = 483.788 - 726.881 X_8 - 33.292 X_{10} - 333.278 X_{11} - 4.157 X_{13} + 4.347 X_{17} - 3.635 X_{19} - 1027.246 X_{22} + 1.984 X_{26}
\]

The multiple correlation coefficient equals 0.828. The variables in this equation explain approximately 69 percent \((R^2)\) of the variation in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a suburban intersection approach.

The variable that was the most significant in the multiple linear regression equation for suburban delay time is the total volume per hour in the approach and opposing direction \((X_{26})\). Other important variables are the green time to cycle length ratio for the through approach \((X_8)\), the percent grade of the approach \((X_{10})\), the number of approach lanes \((X_{11})\), the average speed through the intersection for a non-delayed through vehicle \((X_{13})\), the number of left-turning vehicles per hour in the approach direction \((X_{19})\), and the ratio of the approach volume per hour to the capacity of the intersection approach \((X_{22})\).
The simplified prediction equation for suburban delay time is as follows:

\[Y_{DS} = -620.838 + 3.505X_{17} + 0.886X_{26} \]

The multiple correlation coefficient equals 0.791. The variables in this simplified equation explain approximately 63 percent \((R^2)\) of the variation in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a suburban intersection approach.

The most significant variable in this simplified prediction equation is the total volume per hour in the approach and opposing directions \((X_{26})\). The other independent variable is the number of left-turning vehicles per hour in the approach direction \((X_{17})\).

Rural Area

The prediction equation explaining the greatest amount of variability in rural delay time \((Y_{DR})\) is shown in the following equation:

\[Y_{DR} = -44.468 + 50.673X_{10} - 13.514X_{12} + 1.003X_{15} \]

\[+ 5.017X_{17} - 2.735X_{19} + 547.598X_{22} + 0.731X_{26} \]

The multiple correlation coefficient equals 0.986. The variables in this equation explain approximately 97 percent \((R^2)\) of the variation in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a rural intersection approach.

The most significant variable in the multiple linear regression equation for rural delay time is the total volume per hour in the approach and opposing directions \((X_{26})\). Other important variables are the
percent grade of the approach \((X_{10})\), the width of the approach roadway at the intersection \((X_{12})\), the approach volume per hour \((X_{15})\), the number of left-turning vehicles per hour in the approach direction \((X_{17})\), the number of commercial vehicles per hour in the approach direction \((X_{19})\), and the ratio of the approach volume per hour to the capacity of the intersection approach \((X_{22})\).

The simplified prediction equation for rural delay time is as follows:

\[
Y_{\text{LR}} = -242.880 - 9.119 X_{19} + 1.669 X_{26}
\]

The multiple correlation coefficient equals 0.958. The variable is this simplified equation explain approximately 92 percent \((R^2)\) of the variation in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a rural intersection approach.

The most significant variable in this simplified prediction equation is the total volume per hour in the approach and opposing directions \((X_{26})\). The other independent variable is the number of commercial vehicles per hour in the approach direction \((X_{19})\).

During the collection of delay data, notations were made on the recorder chart indicating the number of stopped left-turning vehicles in each queue. It was possible, therefore, to determine an average number of stopped left-turning vehicles in a queue per hour. This average number could then be used to determine the adequate storage length for a proposed median lane.

The required length of the proposed median lane will vary at each intersection approach. The following factors, however, should be considered when determining the length of the proposed storage lane:

1. Approach volume,
2. Percent left-turning vehicles,
3. Average approach speed, and
4. Average number of stopped left-turn vehicles in a queue per hour.

ACCIDENT RATE

The variables listed in Table 6 represent the independent variables which were considered in the initial analysis for predicting the variability in accident rates for both suburban and rural areas. The results from this initial regression analysis were examined for significance and duplication and certain variables deleted. The final accident rate prediction equations were based on the remaining independent variables.

Suburban Area

The prediction equation explaining the greatest amount of variability in the suburban accident rate (Y_{AS}) is shown in the following equation:

$$Y_{AS} = 1.2411 - 1.0332 X_7 + 0.0029 X_{10} + 1.3094 X_{12}$$
$$- 0.8496 X_{13} + 0.0824 X_{14} - 1.6262 X_{16} + 0.0443 X_{17}$$

The multiple correlation coefficient equals 0.781. The variable in this equation explain approximately 61 percent (R^2) of the variation in the number of accidents per million vehicles caused by left-turning vehicles on a suburban intersection approach.

The variable that was the most significant in the multiple linear regression equation for suburban accident rate is the weekday approach ADT plus the weekday opposing ADT (X_{13}). Other important variables are the number of approach lanes (X_7), the approach volume per hour at the time the accident occurred (X_{10}), the weekday approach ADT (X_{12}), the total intersection weekday ADT (X_{14}), the ratio of the opposing volume per hour to the capacity of the opposing intersection approach (X_{16}), and the average speed through the intersection for a non-delayed through vehicle (X_{17}).
<table>
<thead>
<tr>
<th>Number</th>
<th>Variable Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Type of Area, Suburban or Rural</td>
</tr>
<tr>
<td>3</td>
<td>Flasher (Stop) Controlled</td>
</tr>
<tr>
<td>4</td>
<td>Fixed Time Controlled Signalization</td>
</tr>
<tr>
<td>5</td>
<td>Semi-Traffic Actuated Controlled Signalization</td>
</tr>
<tr>
<td>6</td>
<td>Fully-Traffic Actuated Controlled Signalization</td>
</tr>
<tr>
<td>7</td>
<td>Number of Approach Lanes</td>
</tr>
<tr>
<td>8</td>
<td>Width of Approach Roadway at the Intersection, Feet</td>
</tr>
<tr>
<td>9</td>
<td>Width of Opposing Roadway at the Intersection, Feet</td>
</tr>
<tr>
<td>10</td>
<td>Approach Volume Per Hour at Time the Accident Occurred, Vehicles Per Hour</td>
</tr>
<tr>
<td>11</td>
<td>Opposing Volume Per Hour at Time the Accident Occurred, Vehicles Per Hour</td>
</tr>
<tr>
<td>12</td>
<td>Weekday Approach. ADT, Vehicles Per Day</td>
</tr>
<tr>
<td>13</td>
<td>Weekday Approach ADT Plus Weekday Opposing ADT, Vehicles Per Day</td>
</tr>
<tr>
<td>14</td>
<td>Total Intersection Weekday ADT, Vehicles Per Day</td>
</tr>
<tr>
<td>15</td>
<td>Ratio of Approach Volume Per Hour to Capacity of Approach Direction</td>
</tr>
<tr>
<td>16</td>
<td>Ratio of Opposing Volume Per Hour to Capacity of Opposing Direction</td>
</tr>
<tr>
<td>17</td>
<td>Average Speed Through the Intersection for a Non-Delayed Through Vehicle, Feet Per Second</td>
</tr>
</tbody>
</table>
The simplified prediction equation for the suburban accident rate is as follows:

\[Y_{AS} = 3.6203 - 1.1407 \times_7 + 1.2446 \times_{12} - 0.7723 \times_{13} + 0.0371 \times_{14} \]

The multiple correlation coefficient equals 0.743. The variables in this simplified equation explain approximately 55 percent \(R^2 \) of the variation in the number of accidents per million vehicles caused by left-turning vehicles on a suburban intersection approach.

The most significant variable in this simplified prediction equation is the weekday approach ADT plus the weekday opposing ADT \((X_{13}) \). Other independent variables are the number of approach lanes \((X_{7}) \), the weekday approach ADT \((X_{12}) \), and the total intersection ADT \((X_{14}) \).

Rural Area

The prediction equation explaining the greatest amount of variability in the rural accident rate \((Y_{AR}) \) is shown in the following equation:

\[Y_{AR} = 0.6411 - 0.2343 \times_7 - 0.0110 \times_8 + 0.0045 \times_{10} - 0.0077 \times_{11} + 0.8690 \times_{13} - 0.6018 \times_{14} - 2.9019 \times_{15} + 6.0704 \times_{16} \]

The multiple correlation coefficient equals 0.825. The variables in this equation explain approximately 68 percent \(R^2 \) of the variation in the number of accidents per million vehicles caused by left-turning vehicles on a rural intersection approach.

The most significant variable in the multiple linear regression equation for rural accident rate is the total intersection weekday ADT.
The other independent variable is the approach volume per hour at the time the accident occurred (X_{10}). This simplified equation, however, does not adequately predict the accident rate at a rural intersection approach as indicated by the low multiple correlation coefficient. As a result the full prediction equation should be used.

APPLICATION OF PREDICTION EQUATIONS

General

The development of prediction equations for estimating the delay time and accident rate at rural and suburban intersections which is due to the absence of a median lane permits the evaluation of benefits to be expected from construction of such a lane. The application of these equations to such evaluation is a simple process which is outlined in the two examples which follow.

The application is limited to two extreme conditions under which median lanes might be proposed. It is assumed that a median lane is warranted when the costs of construction for such a lane are equal to or less than the economic benefits derived from such construction. Benefits are reduced delays to through vehicles and number of accidents attributed to left-turning vehicles. Use is made of the simplified prediction equations developed in this study to determine such reduction in delay and in accident rates.

The first example considers the case where adequate right-of-way exists on both approaches of a two-lane highway to a signalized intersection in a suburban area. The existing pavement on one or both sides of the highway must be widened for a specified distance on both approaches.
so that median lanes may be constructed and new through lanes designated.

The second example considers the case where a median strip at least 16 feet in width is located between the major approaches to a signalized intersection of a four-lane divided highway in a suburban area. The left-turn lanes will be constructed within the existing median and no changes to the existing lanes are required.

The basic specifications and construction costs for median lanes were obtained from the Indiana State Highway Commission, Division of Traffic. Several contracts of intersection channelization projects were examined in order to obtain representative 1965 costs used in each example.

Actual cost of delay was determined for the southbound approach to the intersection of U. S. 52 By-Pass and S. R. 26 in Lafayette, Ind. The cost of delay for the average vehicle type was calculated to be $2.25 per hour of delay. This cost estimate includes time and fuel costs for deceleration, acceleration, and idling, and a time cost for comfort and convenience. The unit costs and rates used in the determination of the hourly estimate for delay costs are shown in Table 7.

Average costs for an accident caused by a left-turning vehicle were determined from the accident report forms collected for the period January 1, 1961 through August 31, 1965. The average cost of each injury in 1965 was set at $1900 (11). The average accident costs, which included both property damage and injury costs, were calculated to be $710 in suburban areas and $1352 in rural areas.

A six percent interest rate was used to obtain the annual costs for
construction and maintenance of the median lane based on 1965 costs.

The prediction equations used to estimate the seconds of delay per hour and the number of accidents per million vehicles to through vehicles caused by left-turning vehicles are based on weekday-daylight hours. These predicted delay times and accident rates, therefore, include only twelve hours per day for 260 days of the year. For a second calculation, it was assumed that the delay times and accident rates for the weekend-daylight hours are the same or greater than the delay times and accident rates for the weekday-daylight hours. With this assumption, computations are based on the twelve hours per day for 365 days of the year. In the following two examples, annual cost estimates for delay times and accident rates are presented based on both 260 days and 365 days per year.

It is also assumed that all delays to through vehicles from the left-turn movement and all accidents involving left-turn vehicles will be eliminated by the construction of a median lane. Although this is not completely accurate, it is substantially correct. Furthermore, the prediction equations, by not considering the night hours, 6 PM to 6 AM, give conservative values for both delay and accidents.

Cost estimates for the installation of a median lane are based on construction costs at an existing intersection approach with no additional improvements at that intersection approach. Lower costs would result when additional improvements to an existing intersection are to be made in conjunction with the median lane or when a median lane is to be installed on the intersection approach of a completely new highway.
TABLE 7

1965 Unit Costs and Rates Used to Calculate the Hourly Delay Cost

<table>
<thead>
<tr>
<th>Description</th>
<th>Passenger Vehicles</th>
<th>Commercial Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fuel</td>
<td>0.32 $/gal.</td>
<td>0.28 $/gal.</td>
</tr>
<tr>
<td>2. Idling</td>
<td>0.007 gal./min.</td>
<td>0.011 gal./min.</td>
</tr>
<tr>
<td>3. Time</td>
<td>1.55 $/hr.</td>
<td>2.80 $/hr.</td>
</tr>
<tr>
<td>4. Comfort and Convenience</td>
<td>0.02 $/veh. mile</td>
<td>0.01 $/veh. mile</td>
</tr>
</tbody>
</table>

These unit costs and rates are average values based on references 3, 8, and 9.
The following two examples may not be the best possible solutions to the chosen intersection approaches, and are only illustrative examples for the application of the simplified prediction equations developed in this study.

Example - 1

This example attempts to justify the construction of median lanes on both approaches to the intersection of U. S. 52 By-Pass and S. R. 26 in Lafayette, Indiana. The U. S. 52 By-Pass is a two-lane highway in a suburban area with adequate right-of-way for median lane construction existing on both approaches to the intersection. The conditions before and after construction of the median lanes are shown in Figure 3.

The annual construction, maintenance, and interest costs were determined based on 1965 unit construction costs. No attempt was made to improve the type of signalization nor to include any cost estimate for such improvement.

The number of daylight hours of delay per year attributed to left-turning vehicles was determined based on the simplified prediction equation developed for suburban areas. The equation is stated below with 1965 values for the variables:

\[Y_{DS} = -620.838 + 3.505 X_{17} + 0.886 X_{26} \]

<table>
<thead>
<tr>
<th></th>
<th>Northbound</th>
<th>Southbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_{17})</td>
<td>80</td>
<td>32</td>
</tr>
<tr>
<td>(X_{26})</td>
<td>1107</td>
<td>1107</td>
</tr>
</tbody>
</table>

An annual increase in traffic of three percent was assumed to evaluate variables \(X_{17}\) and \(X_{26}\) for the succeeding five and ten year periods.

The number of accidents per year caused by left-turning vehicles during the daylight hours was determined based on the simplified prediction equation developed for suburban areas. This equation is stated
below with 1965 values for the variables:

\[Y_{15} = 3.6203 - 1.1407 \, X_7 + 1.2446 \, X_{12} - 0.7723 \, X_{13} + 0.0371 \, X_{14} \]

<table>
<thead>
<tr>
<th></th>
<th>Northbound</th>
<th>Southbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_7)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(X_{12})</td>
<td>8.60</td>
<td>9.20</td>
</tr>
<tr>
<td>(X_{13})</td>
<td>18.0</td>
<td>18.0</td>
</tr>
<tr>
<td>(X_{14})</td>
<td>26.3</td>
<td>26.3</td>
</tr>
</tbody>
</table>

An annual increase in traffic of three percent was also assumed to evaluate variables \(X_{12}, X_{13}, \) and \(X_{14} \) for the succeeding five and ten year periods.

A summary of the annual cost estimates determined for median lane construction and the resulting reduction in delay time and number of accidents is presented in Table 8. The results indicate that the construction, maintenance, and interest costs for median lanes on both approaches to the intersection of U. S. 52 By-Pass and S. R. 26 can be justified over a five-year period using 365 days per year.

Example - 2

This example attempts to justify the construction of a median lane on the northbound approach to the intersection of U. S. 31 By-Pass and Lincoln Road in Kokomo, Indiana. The U. S. 31 By-Pass is a four-lane divided highway in a suburban area with an existing median 40 feet in width. The southbound approach to the intersection already possesses a left-turn lane. The conditions before and after construction of the median lane are shown in Figure 4.

The annual construction, maintenance, and interest costs were again determined based on 1965 unit construction costs. No attempt was made to improve the type of signalization nor to include any cost estimate for such improvement.
TABLE 8
SUMMARY COST ESTIMATES FOR EXAMPLE - 1
(U. S. 52 Ry-Pass & S. R. 26)

<table>
<thead>
<tr>
<th></th>
<th>Annual Cost in Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1965-1969</td>
</tr>
<tr>
<td>Costs</td>
<td>260</td>
</tr>
<tr>
<td>Days/Yr</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Days/Yr</td>
</tr>
</tbody>
</table>

I. Median Lanes

A. Preparation 1,462
B. Construction 20,822
C. Finishing 100
D. Signs and Maintaining Traffic 3,000
 Total Cost 25,981
E. Maintenance and Misc. (15.04%) 1,898
 Total Cost 29,882
F. Annual Cost @ 6.0%
 Interest Rate (C+M+I) 6.978 6.076 1.061 1.061

II. Cost Reduction Estimates

A. Delay Time (C_DS) 2,450 3,439 2,836 3,904
B. Accidents (C_AS) 2.284 3.206 1.894 2.659
 Total Reduction Cost (C_DS + C_AS) 4.734 6.645 4,732 6,643
 Difference [(C_DS + C_AS) - (C + M + I)] -1.343 567** 671 +2,582

* A negative difference indicates that the annual cost to install median lanes cannot be justified by the annual savings in delay and accidents to through vehicles.

** A positive difference indicates that the annual cost to install median lanes can be justified by the annual savings in delay and accidents to through vehicles.
FIGURE 4 - CONDITIONS BEFORE AND AFTER CONSTRUCTION OF A MEDIAN LANE AT U.S. 31 BY-PASS & LINCOLN ROAD.
The number of daylight hours of delay per year attributed to left-turning vehicles was determined based on the prediction equation developed for suburban areas. The simplified equation is stated below - with 1965 values used for the variables:

\[Y_{DS} = -620.838 + 3.505 X_{17} + 0.886 X_{26} \]

Northbound
\[X_{17} \]
\[X_{26} \]

850

An annual increase in traffic of three percent was assumed to evaluate variables \(X_{17} \) and \(X_{26} \) for the succeeding five and ten year periods.

The number of accidents per year caused by left-turning vehicles during the daylight hours was determined based on the simplified prediction equation developed for suburban areas. This equation is stated below with 1965 values used for the variables:

\[Y_{AS} = 3.6203 - 1.1405 X_{7} + 1.2446 X_{12} - 0.7723 X_{13} + 0.0371 X_{14} \]

Northbound
\[X_{7} \]
\[X_{12} \]
\[X_{13} \]
\[X_{14} \]

2
3.5
17.4
20.6

An annual increase in traffic of three percent was also assumed to evaluate variables \(X_{12} \), \(X_{13} \), and \(X_{14} \) for the succeeding five and ten year periods.

A summary of the annual cost estimates determined for median lane construction and the resulting reduction in delay time and number of accidents is presented in Table 9. The results indicate that the co-
TABLE 9
SUMMARY COST ESTIMATES FOR EXAMPLE - 2
(U. S. 31 BY-PASS & LINCOLN ROAD)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Days/yr</td>
<td>260</td>
<td>365</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I. Median Lane</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Preparation</td>
<td>0.0</td>
</tr>
<tr>
<td>B. Construction</td>
<td>3,521</td>
</tr>
<tr>
<td>C. Finishing</td>
<td>0.0</td>
</tr>
<tr>
<td>D. Signs and Maintaining Traffic</td>
<td>1,000</td>
</tr>
<tr>
<td>Total Cost</td>
<td>4,751</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Cost Reduction Estimates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Delay Time (C_{DS})</td>
<td>6.75</td>
</tr>
<tr>
<td>B. Accidents (C_{AS})</td>
<td>3.11</td>
</tr>
<tr>
<td>Total Reduction Cost</td>
<td>$C_{DS} + C_{AS}$</td>
</tr>
<tr>
<td>Difference</td>
<td>$[(C_{DS} + C_{AS}) - (C + M + I)]$</td>
</tr>
</tbody>
</table>

* A positive difference indicates that the annual cost to install a median lane can be justified by the annual savings in delay and accidents to through vehicles.
struction, maintenance, and interest costs for the median lane on the northbound approach to the intersection of J. S. 31 Lynee and Lincoln Road could be justified over both the five-year and the ten-year periods using either 260 weekdays or 365 days per year.

RESULTS AND FINDINGS

The results and findings of this study, which evaluated the conditions on which the construction of median lanes at intersections approaches in suburban and rural areas would be warranted, are summarized in the following paragraphs.

1. The presence of a median lane substantially reduces the number of accidents and eliminates delay time to through vehicles resulting from left-turning vehicles.

2. A warrant for the construction of a median lane which relates the annual cost for construction and maintenance of a median lane to the total estimated benefits derived from reductions in delay and in accidents for suburban and rural areas is as follows:

\[
C_{DR} + C_{AS} = C + M + I
\]

\[
C_{MR} + C_{AR} = C + M + I
\]

where

- \(C_{DS} \) and \(C_{DR} \) are the annual cost reduction estimates for delay time in the suburban rural areas, respectively,
- \(C_{AS} \) and \(C_{AR} \) are the annual cost reduction estimates for accidents in the suburban and rural areas, respectively, and
- \(C + M + I \) is the annual construction, maintenance, and interest costs for the median lane.
3. Equations were developed to predict delay times and accident rates for the weekday daylight hours for through traffic at suburban and rural intersections that resulted from left turning vehicles and the absence of median lanes.

4. Using a life of only five years, it was shown that median lanes were warranted at two example intersections, namely (Example 1) at the intersection of U. S. 52 By-pass and S. R. 26 in Lafayette and (Example 2) at the intersection of U. S. 31 By-pass and Lincoln Road in Kokomo. The benefits were found to be such that when compared with the cost of a median lane, almost every intersection on a divided highway with a median of sixteen feet or more and many intersections on other four and two lane highways possess the warrants for construction of median lanes.

10. "Stepwise Regression," DMD 25, Statistical Laboratory, Library Program, Purdue University.

