Constraining the couplings of massive pseudoscalars using gravity and optical experiments

E. G. Adelberger E. Fischbach
D. E. Krause R. D. Newman

This paper is posted at Purdue e-Pubs.
http://docs.lib.purdue.edu/physics_articles/510
Constraining the couplings of massive pseudoscalars using gravity and optical experiments

E. G. Adelberger,1 E. Fischbach,2,* D. E. Krause,3,2 and R. D. Newman4

1Department of Physics, University of Washington, Seattle, Washington 98195, USA
2Physics Department, Purdue University, West Lafayette, Indiana 47907-1396, USA
3Physics Department, Wabash College, Crawfordsville, Indiana 47933-0352, USA
4Department of Physics, University of California, Irvine, California 92697, USA

(Received 24 June 2003; published 30 September 2003)

The simultaneous exchange of two pseudoscalars between fermions leads to a spin-independent force between macroscopic objects. Previous work has demonstrated that one can combine this interaction with tests of the weak equivalence principle, gravitational inverse square law, and studies of laser beam propagation in magnetic fields, to set significant new constraints on the Yukawa couplings of massless pseudoscalars to nucleons. Here we extend these results to massive pseudoscalars, and derive new constraints which relate the strengths of these couplings to the pseudoscalar mass.

DOI: 10.1103/PhysRevD.68.062002

PACS number(s): 04.80.Cc, 14.80.—j

I. INTRODUCTION

In a recent series of papers [1–3], it was shown that gravity experiments testing the validity of the weak equivalence principle (WEP) [3,4], or the inverse square law (ISL) [5], can be used to constrain the Yukawa couplings g_p^2 and g_n^2 of light pseudoscalars to nucleons. Such constraints come about because the simultaneous exchange of two light pseudoscalars leads to a long-range spin-independent potential which, if present in nature, would give rise to apparent deviations from the predictions of Newtonian gravity. From a practical point of view a "light" pseudoscalar is one whose mass m is sufficiently small that its Compton wavelength $\lambda < \frac{1}{m}$ is larger than the characteristic size of the experimental apparatus.

Motivated by Refs. [1] and [2], Massó [6] noted that the limits on g_p^2 and g_n^2 could be improved by combining the analysis from Refs. [1,2] with a limit on g_p^2 obtained from an experiment [7] studying laser beam propagation in a magnetic field. The principle behind this experiment is that if a pseudoscalar field ϕ existed, then the coupling of ϕ to two photons would induce effects such as an optical rotation in the laser beam. Assuming that the mass of the light pseudoscalar satisfies $m < 10^{-3} \text{eV} \ (\lambda > 0.02 \text{cm})$, the absence of such effects leads to a bound on g_p^2 given by

$$\frac{g_p^2}{4\pi} < 1.7 \times 10^{-9},$$

which is more stringent than limits obtained from current WEP and ISL experiments [3]. Massó then combined Eq. (1) with the constraints on g_p^2 and g_n^2 obtained from the test of the WEP given in Ref. [1] to obtain the bound on the pseudoscalar coupling to neutrons,

$$\frac{g_n^2}{4\pi} < 6.8 \times 10^{-8}. \tag{2}$$

However, unlike the proton constraint given by Eq. (1), Eq. (2) is only valid for massless pseudoscalar exchange since the analysis of Ref. [1] (and subsequent work [2,3]) assumed $m = 0$. The object of the present paper is to show how the results of Refs. [1–3] can be extended to the case of massive pseudoscalars. We will then combine these limits with Eq. (1) to generalize the results from Ref. [6] to obtain new limits on the coupling of massive pseudoscalars to neutrons.

II. CONSTRAINTS FROM GRAVITY EXPERIMENTS

A. Phenomenology

We begin by assuming that the pseudoscalar couples to fermions via the Lagrangian density

$$L(x) = ig \bar{\psi}(x) \gamma_5 \psi(x) \phi(x), \tag{3}$$

where $\phi(x)$ is the field operator for a pseudoscalar of mass m, and $\psi(x)$ denotes either a proton (p), electron (e), or neutron (n) of mass M_p, M_e, or M_n, respectively. (We assume that $\hbar = c = 1$.) With this coupling, the exchange of a single pseudoscalar between two fermions leads to the familiar spin-dependent potential [8],

$$V^{(2)}(\mathbf{r}; \hat{\sigma}_1, \hat{\sigma}_2) = \frac{g^2}{16\pi M_2} \left((\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) \left[\frac{m^2}{r} + \frac{3m}{r^2} + \frac{3}{r^3} \right] - \frac{1}{r} \left[\frac{m}{r^2} + \frac{1}{r^3} \right] e^{-mr} \right). \tag{4}$$

Here $r = |\mathbf{r}| = |\mathbf{r}_1 - \mathbf{r}_2|$ is the distance between fermions 1 and 2, M is the fermion mass (M_p, M_e, or M_n), $(1/2)\hat{\sigma}_{1,2}$ are the fermion spins, and we have dropped a term proportional to $\delta^3(\mathbf{r})$. A number of careful experiments incorporating polarized test masses have used $V^{(2)}$ to set stringent limits on the couplings of light pseudoscalars to electrons, $g^2/4\pi \lesssim 10^{-16}$ [9]. However, constraints on the couplings to nucleons from the same experiments are many orders of magnitude weaker [1] and require model-dependent calculations.

*Corresponding author.

In recent years, gravity experiments testing the WEP and gravitational ISL have obtained remarkable sensitivity using unpolarized matter. The leading-order pseudoscalar interaction between unpolarized bodies arises in $O(g^4)$ from the simultaneous exchange of two pseudoscalars between two fermions (Fig. 1). The resulting spin-independent potential is [10,11]

\[
V^{(4)}_{ab}(r) = -\frac{g_a^2 g_b^2}{32\pi^3 M_a M_b} \left(\frac{m}{r^2} \right)^3 K_1(2mr),
\]

where a and b may each denote p, e, or n, and $K_1(x)$ is the modified Bessel function [12]. (Here we assume $r \gg 1/M_{a,b}$.) In the limit $m \to 0$, Eq. (5) reduces to [13],

\[
V^{(4)}_{ab}(r) = -\frac{g_a^2 g_b^2}{64\pi^3 M_a M_b} \frac{1}{r^3},
\]

where we have used $K_1(x) \approx 1/x$ when $x \ll 1$ [12]. Let us now generalize Eq. (5) to the case of two macroscopic objects 1 and 2 of masses M_1 and M_2 containing Z_i (N_i) [$i = 1,2$] protons (neutrons) respectively. If we include only nucleon-nucleon interactions [14], the potential energy W_{12} between the two objects arising from Eq. (5) can be written as

\[
W_{12} = -\frac{M_1 M_2}{32\pi^3 M^2 m_H^2 V_H} \left(\frac{g_p^2 Z_1^2 + g_n^2 N_1^2}{\mu_1} \right) \left(\frac{g_p^2 Z_2^2}{\mu_2} \right) + \frac{g_n^2 N_2}{\mu_2} \int d^3r_1 \int d^3r_2 K_1(2m|\vec{r}_1 - \vec{r}_2|) \frac{|\vec{r}_1 - \vec{r}_2|^2}{|\vec{r}_1 - \vec{r}_2|^2},
\]

where V_H is the volume of body i, $\mu_i = m_i/m_H$, $m_H = m_1H_1$ is the mass of atomic hydrogen [15], $M = (M_p + M_n)/2$, and g_p (g_n) is the proton (neutron) pseudoscalar coupling constant. The values of Z/μ and N/μ for the first 92 elements can be obtained from Table 2.1 of Ref. [15]. If object 2 is small relative to object 1 (as is often the case in tests of the WEP), Eq. (7) reduces to

\[
W_{12} = -\frac{M_1 M_2}{32\pi^3 M^2 m_H^2 V_H} \left(\frac{g_p^2 Z_1^2 + g_n^2 N_1^2}{\mu_1} \right) \left(\frac{g_p^2 Z_2^2}{\mu_2} \right) + \frac{g_n^2 N_2}{\mu_2} \int d^3r_1 K_1(2m|\vec{r}_1 - \vec{r}_2|) \frac{|\vec{r}_1 - \vec{r}_2|^2}{|\vec{r}_1 - \vec{r}_2|^2}. \tag{8}
\]

The force on object 2 is then

\[
\vec{F}_2 = -\vec{\nabla}_2 W_{12} = -\vec{\nabla}_2 \bar{r} \left(M_1 M_2 \right) \left(\frac{g_p^2 Z_1^2 + g_n^2 N_1^2}{\mu_1} \right) \left(\frac{g_p^2 Z_2^2}{\mu_2} \right) \times \left(\frac{g_p^2 Z_2^2}{\mu_2} + g_n^2 N_2^2 \right), \tag{9}
\]

where

\[
\bar{r} = \frac{3}{32\pi^3 M^2 V_H} \int d^3r_1 \left[K_1(2|\vec{r}_1 - \vec{r}_2|/\lambda) + \frac{2}{3} \frac{|\vec{r}_1 - \vec{r}_2|^2}{\lambda} K_0(2|\vec{r}_1 - \vec{r}_2|/\lambda) \right] \frac{|\vec{r}_1 - \vec{r}_2|^2}{|\vec{r}_1 - \vec{r}_2|^2}. \tag{10}
\]

and $\lambda = 1/m$ is the range of the one-pseudoscalar exchange interaction. If, on the other hand, object 2 cannot be considered small, then Eq. (9) generalizes to

\[
\bar{r} = \frac{3}{32\pi^3 M^2 V_H} \int d^3r_1 \int d^3r_2 \left[K_1(2|\vec{r}_1 - \vec{r}_2|/\lambda) + \frac{2}{3} \frac{|\vec{r}_1 - \vec{r}_2|^2}{\lambda} K_0(2|\vec{r}_1 - \vec{r}_2|/\lambda) \right] \frac{|\vec{r}_1 - \vec{r}_2|^2}{|\vec{r}_1 - \vec{r}_2|^2}. \tag{11}
\]

In a typical WEP experiment, object 1 is an extended source toward which the relative accelerations of two small samples 2 and 2' (with masses M_2 and $M_{2'}$) are measured. It then follows from Eq. (9) that the acceleration difference $\Delta a_{2-2'} = \vec{a}_2 - \vec{a}_2'$, arising from the two-pseudoscalar exchange potential is

\[
\Delta a_{2-2'} = \bar{r} \left(\frac{M_1}{m_H} \right) \left(\frac{g_p^2 Z_1^2 + g_n^2 N_1^2}{\mu_1} \right) \left(\frac{g_p^2 Z_2^2}{\mu_2} \right) + \frac{g_n^2 N_2}{\mu_2} \Delta \left(\frac{Z}{\mu} \right)_{2-2'}, \tag{12}
\]

where $\Delta(Z/\mu)_{2-2'} = Z_2/\mu_2 - Z_2'/\mu_2$, and $\Delta(N/\mu)_{2-2'} = N_2/\mu_2 - N_2'/\mu_2$. The limits on $\Delta a_{2-2'}$ obtained in a typical WEP experiment can be combined with an evaluation of $\bar{r}(\vec{r}_2, \lambda)(M_1/m_H^2)$ to constrain the couplings $g_p^2(\lambda)$ and $g_n^2(\lambda)$ using

FIG. 1. Contributions to the spin-independent long-range interaction of fermions a and b arising from two-pseudoscalar-exchange. The solid lines are fermions and the dashed lines denote the pseudoscalars.
In Table I we have tabulated $\Delta a_{2-2'} / A(\lambda)$, and limits on pseudoscalar couplings, from the WEP experiment by Smith et al. [3] for the special cases $g_p^2 = g_n^2$, $g_p^2 > g_n^2$, and $g_p^2 > g_n^2$ obtained from Eqs. (19), (21), and (23). The final column labeled $g_p^2/4\pi$ (Massó) represents the limit on the coupling to neutrons obtained when combining the Smith results with Massó’s constraint on protons given by Eq. (25).

<table>
<thead>
<tr>
<th>λ (cm)</th>
<th>$\Delta a_{2-2'} / A(\lambda)$</th>
<th>$g_p^2/4\pi$</th>
<th>$g_n^2/4\pi$</th>
<th>$g_n^2/4\pi$</th>
<th>$g_p^2/4\pi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.16×10^{-10}</td>
<td>0.28×10^{-5}</td>
<td>5.65×10^{-6}</td>
<td>4.52×10^{-6}</td>
<td>4.52×10^{-6}</td>
</tr>
<tr>
<td>3</td>
<td>7.02×10^{-12}</td>
<td>6.89×10^{-6}</td>
<td>1.39×10^{-6}</td>
<td>1.11×10^{-6}</td>
<td>1.11×10^{-6}</td>
</tr>
<tr>
<td>4</td>
<td>1.61×10^{-12}</td>
<td>3.30×10^{-6}</td>
<td>6.66×10^{-7}</td>
<td>5.33×10^{-7}</td>
<td>5.33×10^{-7}</td>
</tr>
<tr>
<td>5</td>
<td>6.47×10^{-13}</td>
<td>2.09×10^{-6}</td>
<td>4.22×10^{-7}</td>
<td>3.38×10^{-7}</td>
<td>3.38×10^{-7}</td>
</tr>
<tr>
<td>6</td>
<td>3.46×10^{-13}</td>
<td>1.53×10^{-6}</td>
<td>3.09×10^{-7}</td>
<td>2.47×10^{-7}</td>
<td>2.47×10^{-7}</td>
</tr>
<tr>
<td>7</td>
<td>2.19×10^{-13}</td>
<td>1.22×10^{-6}</td>
<td>2.46×10^{-7}</td>
<td>1.97×10^{-7}</td>
<td>1.97×10^{-7}</td>
</tr>
<tr>
<td>10</td>
<td>9.35×10^{-14}</td>
<td>7.95×10^{-7}</td>
<td>1.61×10^{-7}</td>
<td>1.28×10^{-7}</td>
<td>1.29×10^{-7}</td>
</tr>
<tr>
<td>15</td>
<td>4.71×10^{-14}</td>
<td>5.64×10^{-7}</td>
<td>1.14×10^{-7}</td>
<td>9.12×10^{-8}</td>
<td>9.15×10^{-8}</td>
</tr>
<tr>
<td>20</td>
<td>3.33×10^{-14}</td>
<td>4.74×10^{-7}</td>
<td>9.58×10^{-8}</td>
<td>7.66×10^{-8}</td>
<td>7.70×10^{-8}</td>
</tr>
<tr>
<td>50</td>
<td>1.83×10^{-14}</td>
<td>3.52×10^{-7}</td>
<td>7.10×10^{-8}</td>
<td>5.68×10^{-8}</td>
<td>5.72×10^{-8}</td>
</tr>
<tr>
<td>100</td>
<td>1.56×10^{-14}</td>
<td>3.25×10^{-7}</td>
<td>6.56×10^{-8}</td>
<td>5.25×10^{-8}</td>
<td>5.28×10^{-8}</td>
</tr>
<tr>
<td>200</td>
<td>1.48×10^{-14}</td>
<td>3.16×10^{-7}</td>
<td>6.39×10^{-8}</td>
<td>5.11×10^{-8}</td>
<td>5.15×10^{-8}</td>
</tr>
<tr>
<td>500</td>
<td>1.45×10^{-14}</td>
<td>3.13×10^{-7}</td>
<td>6.32×10^{-8}</td>
<td>5.06×10^{-8}</td>
<td>5.09×10^{-8}</td>
</tr>
<tr>
<td>1000</td>
<td>1.44×10^{-14}</td>
<td>3.12×10^{-7}</td>
<td>6.30×10^{-8}</td>
<td>5.04×10^{-8}</td>
<td>5.08×10^{-8}</td>
</tr>
<tr>
<td>2000</td>
<td>1.44×10^{-14}</td>
<td>3.12×10^{-7}</td>
<td>6.30×10^{-8}</td>
<td>5.04×10^{-8}</td>
<td>5.08×10^{-8}</td>
</tr>
</tbody>
</table>

where $\Delta a_{2-2'} = |\Delta a_{2-2'}|$, $A(\lambda) = \tilde{A}(r_2, \lambda)(M_1 / m_H)$, and $A(\lambda) = |\tilde{A}(\lambda)|$. This generalizes the results of Ref. [1] which assumed $\lambda = \infty$.

B. Limits from tests of the WEP and ISL

Presently, the best limits on pseudoscalars based on a test of the WEP come from the experiment by Smith et al. [3] which uses a 3 ton 238U source ($Z_1 / \mu_1 = 0.3881050$, $N_1 / \mu_1 = 0.6159057$), and test masses consisting of Cu ($Z_2 / \mu_2 = 0.4599360$, $N_2 / \mu_2 = 0.5490145$) and a Pb alloy ($Z_3 / \mu_3 = 0.4006829$, $N_3 / \mu_3 = 0.6073130$) to obtain $|\Delta a_{2-2'}| \lesssim 2.9 \times 10^{-13}$ cm/s2. [Here μ is the mass measured in units of m_H, while in Ref. [3] μ is measured in atomic mass units (u). Therefore, values of Z_i / μ_i and N_i / μ_i given in Ref. [3] have been multiplied by $(m_H / \mu) = 1.00782519$.] Inserting the values of Z_i / μ_i and N_i / μ_i for the samples used, Eq. (13) becomes

$$\left(\frac{g_p^2 Z_1 + g_n^2 N_1}{\mu_1} \right) + \frac{g_p^2 N_1}{\mu_2} + \frac{g_n^2 Z_2}{\mu_2} + \frac{g_n^2 N_2}{\mu_2} \leq \frac{\Delta a_{2-2'} / A(\lambda)}{\Delta a_{2-2'} / A(\lambda)}$$

In Table I we have tabulated $\Delta a_{2-2'} / A(\lambda)$ for a range of values of λ which were obtained by integrating over the mass distribution of the source in the apparatus. When these results are combined with Eq. (14), limits on $g_p^2(\lambda)$ and $g_n^2(\lambda)$ are obtained, and have been plotted for $\lambda = 2$ cm and $\lambda = 2000$ cm in Figs. 2 and 3, respectively. We find that the size of the apparatus is sufficiently small that the limits obtained for $\lambda > 1000$ cm approximate the $\lambda \rightarrow \infty$ constraints found previously in Ref. [3].

As noted in Ref. [1], when Eq. (14) is plotted for the materials used by Smith et al. [3] and Gundlach et al. [4], the resulting limit curves are parts of two hyperbolas sharing a common asymptote, so such limits are referred to as “hyperbolic.” This precludes setting absolute limits on g_p^2 or g_n^2 from this experiment alone, since the term in square brackets

![FIG. 2. Constraints on $g_p^2/4\pi$ and $g_n^2/4\pi$ for $\lambda = 2$ cm obtained from Eqs. (14) and (18) and Tables I and II. The solid line is the limit from the WEP Experiment of Smith et al. [3], and the dashed line is obtained from the ISL experiment of Spero et al. [5]. The regions above and to the right of each curve are excluded by the corresponding experiment at the 1σ limit.]
A plot of Eq. (18) in the $g_p^2-g_n^2$ plane shows that the ISL experiment of Spero et al. yields limits that are finite for all physical values of the ratio g_n^2/g_p^2, so we refer to these as “bounded” limits, in contrast to the “hyperbolic” limits yielded by the WEP experiment of Smith et al. In Table II we have tabulated $F_2/\tilde{\mathcal{H}}(\lambda)$ from this experiment as a function of λ, and have plotted the limits on g_p^2 and g_n^2 obtained from Eq. (18) for $\lambda=2$ cm and $\lambda=2000$ cm in Figs. 2 and 3, respectively. We find that the scale of the apparatus is such that the constraints for $\lambda>100$ cm approximate the $\lambda\to\infty$ limits obtained in Ref. [2].

As shown in Ref. [2], when “hyperbolic” constraints obtained from Gundlach et al. [4] were combined with the “bounded” constraints from the ISL experiment of Spero et al. [5], the allowed region in the g_p^2-g_n^2 plane was substantially reduced. This is a consequence of the fact that the Smith [3] or Gundlach [4] limits for the special cases $g_p^2\approx g_n^2$ and $g_p^2\gg g_n^2$ were much better than those obtained from the Spero experiment for sufficiently large λ (see Fig. 3). On the other hand, the Spero experiment leads to a significant limit when $g_p^2\approx g_n^2$ which could not be obtained from the Smith or Gundlach experiments alone. In this way, the “hyperbolic” WEP experiment and the “bounded” ISL experiment complement each other.

It is useful to consider bounds on g_p^2 and g_n^2 for several important special cases. If the light pseudoscalar couples universally to baryon number, then $g_p^2=g_{\pi}^2=g_{\pi,n}^2$. In this case, the limits from Smith et al. [3], Eq. (14), and Spero et al. [5], Eq. (18), give

\begin{equation}
\frac{g_{\pi,n}^2}{4\pi} \leq 2.6 \sqrt{\frac{\Delta a_{\pi-2',\pi}}{A(\lambda)}} \quad \text{(Smith [3]),}
\end{equation}

\begin{equation}
\frac{g_{\pi,n}^2}{4\pi} \leq 0.0789 \sqrt{\frac{F_2}{\tilde{\mathcal{H}}(\lambda)}} \quad \text{(Spero [5]).}
\end{equation}

Numerical results are presented in Tables I and II. Similarly, for $g_p^2\gg g_n^2$ we find

\begin{equation}
\frac{g_p^2}{4\pi} \leq 0.525 \sqrt{\frac{\Delta a_{\pi-2',\pi}}{A(\lambda)}} \quad \text{(g_p^2\gg g_n^2, Smith [3]),}
\end{equation}

\begin{equation}
\frac{g_p^2}{4\pi} \leq 0.171 \sqrt{\frac{F_2}{\tilde{\mathcal{H}}(\lambda)}} \quad \text{(g_p^2\gg g_n^2, Spero [5]),}
\end{equation}

while for $g_n^2\gg g_p^2$ we obtain

\begin{equation}
\frac{g_n^2}{4\pi} \leq 0.420 \sqrt{\frac{\Delta a_{\pi-2',\pi}}{A(\lambda)}} \quad \text{(g_p^2\gg g_{\pi,n}^2, Smith [3]),}
\end{equation}

\begin{equation}
\frac{g_n^2}{4\pi} \leq 0.146 \sqrt{\frac{F_2}{\tilde{\mathcal{H}}(\lambda)}} \quad \text{(g_p^2\gg g_{\pi,n}^2, Spero [5]).}
\end{equation}

Numerical results obtained from Eqs. (20)–(23) are presented in Tables I and II. It is important to note that, irrespective of the value of $g_{\pi,n}^2$ (g_p^2), the limit on g_p^2 ($g_{\pi,n}^2$) from

\begin{equation}
0.469g_p^2 + 0.540g_{\pi,n}^2)(0.460g_p^2 + 0.549g_{\pi,n}^2) \leq \frac{F_2}{\tilde{\mathcal{H}}(\lambda)}.
\end{equation}
TABLE II. Geometric factor $F_2/\mathcal{H}(\lambda)$, and limits on pseudoscalar couplings from the ISL experiment by Spero et al. [5] for the special cases $g_{n}^2=g_{p}^2$, $g_{p}^2\gg g_{n}^2$, and $g_{n}^2\gg g_{p}^2$ obtained from Eqs. (20), (22), and (24). Note that, irrespective of the value of g_{n}^2 (g_{p}^2), the limit on $g_{p}^2/4\pi$ ($g_{n}^2/4\pi$) is obtained from the Spero results by setting $g_{n}^2=0$ ($g_{p}^2=0$).

<table>
<thead>
<tr>
<th>λ (cm)</th>
<th>$F_2/\mathcal{H}(\lambda)$</th>
<th>$g_{p,n}^2/4\pi$ ($g_{p,n}^2=g_{p,n}^2$)</th>
<th>$g_{p,n}^2/4\pi$ ($g_{p,n}^2\gg g_{p,n}^2$)</th>
<th>$g_{p,n}^2/4\pi$ ($g_{p,n}^2\gg g_{p,n}^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.71×10^{-10}</td>
<td>1.30×10^{-6}</td>
<td>2.82×10^{-6}</td>
<td>2.40×10^{-6}</td>
</tr>
<tr>
<td>1</td>
<td>2.35×10^{-11}</td>
<td>3.82×10^{-7}</td>
<td>8.29×10^{-7}</td>
<td>7.08×10^{-7}</td>
</tr>
<tr>
<td>1.5</td>
<td>1.05×10^{-11}</td>
<td>2.56×10^{-7}</td>
<td>5.54×10^{-7}</td>
<td>4.75×10^{-7}</td>
</tr>
<tr>
<td>2</td>
<td>7.20×10^{-12}</td>
<td>2.12×10^{-7}</td>
<td>4.59×10^{-7}</td>
<td>3.92×10^{-7}</td>
</tr>
<tr>
<td>3</td>
<td>5.13×10^{-12}</td>
<td>1.79×10^{-7}</td>
<td>3.87×10^{-7}</td>
<td>3.31×10^{-7}</td>
</tr>
<tr>
<td>4</td>
<td>4.45×10^{-12}</td>
<td>1.66×10^{-7}</td>
<td>3.61×10^{-7}</td>
<td>3.08×10^{-7}</td>
</tr>
<tr>
<td>5</td>
<td>4.13×10^{-12}</td>
<td>1.60×10^{-7}</td>
<td>3.48×10^{-7}</td>
<td>2.97×10^{-7}</td>
</tr>
<tr>
<td>6</td>
<td>3.97×10^{-12}</td>
<td>1.57×10^{-7}</td>
<td>3.41×10^{-7}</td>
<td>2.91×10^{-7}</td>
</tr>
<tr>
<td>7</td>
<td>3.86×10^{-12}</td>
<td>1.55×10^{-7}</td>
<td>3.36×10^{-7}</td>
<td>2.87×10^{-7}</td>
</tr>
<tr>
<td>10</td>
<td>3.72×10^{-12}</td>
<td>1.52×10^{-7}</td>
<td>3.30×10^{-7}</td>
<td>2.82×10^{-7}</td>
</tr>
<tr>
<td>15</td>
<td>3.64×10^{-12}</td>
<td>1.51×10^{-7}</td>
<td>3.26×10^{-7}</td>
<td>2.79×10^{-7}</td>
</tr>
<tr>
<td>20</td>
<td>3.62×10^{-12}</td>
<td>1.50×10^{-7}</td>
<td>3.25×10^{-7}</td>
<td>2.78×10^{-7}</td>
</tr>
<tr>
<td>50</td>
<td>3.59×10^{-12}</td>
<td>1.49×10^{-7}</td>
<td>3.24×10^{-7}</td>
<td>2.77×10^{-7}</td>
</tr>
<tr>
<td>100</td>
<td>3.58×10^{-12}</td>
<td>1.49×10^{-7}</td>
<td>3.24×10^{-7}</td>
<td>2.76×10^{-7}</td>
</tr>
<tr>
<td>200</td>
<td>3.58×10^{-12}</td>
<td>1.49×10^{-7}</td>
<td>3.24×10^{-7}</td>
<td>2.76×10^{-7}</td>
</tr>
<tr>
<td>500</td>
<td>3.58×10^{-12}</td>
<td>1.49×10^{-7}</td>
<td>3.24×10^{-7}</td>
<td>2.76×10^{-7}</td>
</tr>
<tr>
<td>1000</td>
<td>3.58×10^{-12}</td>
<td>1.49×10^{-7}</td>
<td>3.24×10^{-7}</td>
<td>2.76×10^{-7}</td>
</tr>
<tr>
<td>2000</td>
<td>3.58×10^{-12}</td>
<td>1.49×10^{-7}</td>
<td>3.24×10^{-7}</td>
<td>2.76×10^{-7}</td>
</tr>
</tbody>
</table>

the experiment by Spero et al. is obtained from the limiting case given by Eq. (22) [Eq. (24)].

III. COMBINING GRAVITY AND OPTICAL CONSTRAINTS

As demonstrated in the previous section, gravity experiments alone are sufficient to constrain pseudoscalar couplings to nucleons. On the other hand, Massó has noted that optical experiments can provide a more stringent constraint on Yukawa couplings of pseudoscalars to protons [6] than those obtained from the current generation of WEP and ISL experiments. However, the optical experiments cannot limit the coupling to neutrons since they are electrically neutral, so Eq. (1) must be combined with other limits to constrain couplings to neutrons.

Combining the general constraint from the WEP experiment by Smith et al. given by Eq. (14) with Eq. (1) gives

$$\frac{g_{n}^2}{4\pi} \leq 3.29 \times 10^{-10} + 0.420 \sqrt{\frac{\Delta a_{2-2'}}{A(\lambda)}} + 1.11 \times 10^{-17},$$

which agrees with Eq. (23) which assumes that $g_{n}^2 \gg g_{p}^2$.

As noted earlier, combining the general constraint from the ISL experiment by Spero et al. given by Eq. (18) with Eq. (1), does not improve the limits on g_{n}^2 obtained from the ISL experiment by Spero et al. alone. The largest value of g_{n}^2 which is consistent with both the ISL experiment and Massó’s limit is given by Eq. (24).

IV. CONCLUSION

To summarize, we have shown how to obtain constraints on the Yukawa couplings of massive pseudoscalars to nucleo-
ons from gravitational WEP and ISL experiments, thus generalizing earlier results obtained for the special case $m = 1/\lambda = 0$. When these results are combined with the earlier constraint by Massó [6], we obtain the most stringent laboratory limits on the coupling to neutrons. Although these laboratory constraints are less restrictive than those obtained from astrophysical arguments [16], they are more model independent and allow g_p^2 and g_n^2 to be determined separately. Finally, we have shown that that WEP, ISL, and optical experiments play complementary roles in setting such constraints, and so we strongly encourage efforts to improve these types of experiments.

ACKNOWLEDGMENTS

The work of E.G.A. was supported primarily by National Science Foundation Grant PHY-997097. The support for E.F. comes from the U.S. Department of Energy under Contract No. DE-AC 02-76ER01428. The work of R.D.N. was supported in part by National Science Foundation Grant PHY-0108937.

[14] It was shown in Ref. [2] that present limits on g_ν from spin-dependent experiments are so stringent that the contributions arising from $e-e$, $e-p$ and $e-n$ interactions are negligible compared to nucleon-nucleon interactions, and hence are neglected here.