Interfacings

Lois M. Gotwals
Interfacing is used between two layers of fabric to give stability, shaping, strength and body. It should support the fashion fabric and maintain a soft or crisp look, but never add bulk to garments. Interfacing helps a garment maintain its shape wearing after wearing.

Patterns may or may not recommend the use of interfacing. With some designs it is essential, but with others the decision to use interfacing is left up to the individual. Generally, garments will look more structured and keep a professional look longer if interfacing is used. Consider using interfacing to:

- Stabilize and support front openings, collarless necklines, trouser flies, plackets, cuffs, waistbands, belts, patch-pockets and yokes.
- Support lapels, collars, peplums, pocket flaps and other detail areas.
- Soften a fold and give a smooth finish to tailored sleeve and jacket hems.
- Reinforce areas under buttons, buttonholes and other fasteners.
- Stabilize fabrics which stretch or sag easily.
- Cushion seam allowances.
- Increase the wear life of garments and reduce the need for frequent pressing.
- Prevent strain and lessen wear across the back of tailored coats and jackets.

Some fabrics are made especially for use as interfacing, but many outer fabrics can be used. The right choice will depend on the design effect you wish to achieve, the weight of the outer fabric, the care the finished garment requires, and the interfacing application you prefer. A home sewer may use two or more types of interfacing in a garment—a firm interfacing to support a collar and a lighter one to maintain the shape of a pocket flap.

SELECTION

When selecting interfacing consider:

- The finished effect of the interfacing. If a sewn-in interfacing is being considered, the effect of the interfacing can be tested by sandwiching a layer of interfacing fabric between two layers of outer fabric. Observe the fabric sandwich to see if it gives the desired effect for a front opening or faced neckline. Fold the sandwich several directions to simulate a lapel and a collar. Observe the effect as well as the way the unit folds along the simulated roll line (Figure 1).

If the interfacing fabric will be fused into the garment, fuse a swatch of it onto the wrong side of a piece of outer fabric. Cut the interfacing so that it covers approximately half of the outer fabric swatch. Handle and observe the interfaced swatch as instructed in the preceding paragraph to determine the suitability of the interfacing. Also note if the interfacing creates a texture, ridge or color change that is noticeable on the right side of the outer fabric (Figure 2).
The weight of the outer fabric in relation to the interfacing. If the interfacing is too stiff, it will impose itself on the outer fabric and give the garment a "board-like" appearance. If it is too limp, it will not give the needed support. Generally, the interfacing should be about the same weight or lighter in weight than the outer fabric, and give body without adding bulk.

The care required for the interfacing and the outer fabric. Since these fabrics will be sewn or fused together, they must require the same laundering or dry-cleaning method and must dry in approximately the same amount of time. Several interfacing fabrics are available for garments which will not require ironing.

The potential shrinkage of interfacing fabrics for washable garments. Most washable interfacing will not shrink more than one percent. Sewn-in interfacings can be pre-shrunk before cutting by laundering with the same methods you plan to use later after the garment is sewn. Manufacturers do not recommend pre-shrinking fusible interfacings.

Color of the interfacing fabric, especially if it shows through or changes the color of the outer fabric. Select an interfacing fabric that is light in color for light-colored fabrics or dark for dark-colored fabrics.

Using an extra piece of the outer fabric as interfacing. Outer fabric may be used if it is not too bulky, has a flat surface, and if the color or print does not show through to the right side of the garment. This is often an economical choice for light-to-medium weight cotton and synthetic blends because the interfacing will wear and launder the same as the outer fabric. It may be the best choice when a reasonably good "match" in interfacing fabric is not available.

The cost and amount of interfacing needed. Time and frustration can be saved if you build a supply of interfacing fabrics which are available as needed for sewing. Instead of purchasing just the amount of interfacing recommended on the pattern, purchase three to five yards. Soon you will have several types of interfacings available, and you will be more apt to use a second or third type in a garment if needed. For example, you may use a firm interfacing in the front of a jacket and softer interfacing in the hems, or a crisp interfacing in the cuffs of a dress and a softer type around the neckline.

The method of application — sewn or fused — you desire to use. Interfacing fabrics that are sewn into the garment can be used on all types of fabrics — including voile, seersucker, crepe and napped fabrics. The fabric, if woven or stretchable, generally responds like the fashion fabric; however, firm, non-woven interfacings may buckle in enclosed areas, such as a collar. If the fabric contains wool fibers, it can be shaped and molded by pressing — a desirable factor when tailoring wool coats and suits. Sewn-in interfacings are generally stay-stitched in place, and they may need machine or hand-pad stitching for additional firmness.

 Fusible interfacings are quicker to use than sewn-in interfacings because no stay-stitching or pad stitching is needed. Shape is built into the garment as the fusing occurs or with additional layers of fusible interfacing fabrics. The interfaced unit is firmer after fusing, thus the weight and effect of the interfacing cannot be judged until it is fused into the outer fabric. Be sure to test the interfacing on a sample of the outer fabric. Fusible interfacings are difficult to use on highly napped fabrics which do not allow the fusing compound to penetrate the structure of the fabric (if the fusing compound is fused only to the nap, the interfacing is apt to loosen during cleaning and wear). Fusible interfacings cannot be used on special surface fabrics which flatten when pressed or on very sheer fabrics which allow fusing compound to penetrate completely through the fabric. Fusible interfacings add firmness to an area and make top-stitching easier than sewn-in interfacings.

Although many kinds of interfacing fabrics are available, your selection may be limited by your shopping area. Generally, more than one interfacing fabric can be used successfully for a particular sewing task. Even a limited selection will usually provide an option to fill your needs.

STRETCH VS. NO STRETCH

Today, interfacings vary in the direction of stretch and stability. This factor is more important than how the interfacing is made because the type you choose will determine the layout of the pattern and the look of the finished garment. Figure 3 is Stretch Legend for following:

No-stretch:
Nonwoven interfacing which does not give in any direction, is used mainly for belts, hats, purses, home furnishings and craft items (Figure 4).

Diagonal stretch:
Typical of woven and woven insertion interfacings, the greatest stretch is on the true bias or diagonal, and the stability is in the lengthwise and crosswise directions (Figure 5).

Crosswise and diagonal stretch:
Typical of knit and some nonwoven interfacings which have the fibers oriented in the lengthwise direction, the greatest stretch is in the crosswise direction. The lengthwise direction is stable, and the diagonal has some stretch (Figure 6).

Multi-directional stretch:
Typical of nonwoven interfacings which are labeled "all bias," cramped fibers which provide the
stretch, are randomly placed throughout the fabric. Since the amount of stretch is equal in every direction, patterns can be laid on the interfacing in any direction (Figure 7).

PATTERN LAYOUT

The placement of the pattern when cutting interfacing is almost as critical as choosing an interfacing of the proper weight for the outer fabric, unless you are using a multi-directional stretch or no stretch interfacing. Patterns for these two types of interfacing can be laid in any direction; therefore, it is economical to place the pattern so that the least amount of interfacing fabric is used.

Patterns are printed for diagonal stretch interfacings (Figure 5), so place the grainline arrows along a lengthwise (no-stretch direction) yarn. Bias cut pieces, such as blazer and coat collars will have the grainline arrows printed diagonally on the pattern so that the stretch will be around the neckline as desired.

When using the crosswise and diagonal stretch interfacing (Figure 6), the pattern layout is the same as for diagonal stretch-type if stability (no-stretch, to prevent stretch and distortion) is desired. Thus the patterns for interfacing garment fronts, cuffs and waistbands are laid with the grainline arrows in the lengthwise or no-stretch direction. If the printed grainline arrow indicates that the pattern should be placed on the bias, and a full round look is desired, lay the pattern on the interfacing so that the grainline arrow follows the fabric diagonal. The greatest stretch now extends around the body. So, blazer and coat collars are laid on the interfacing fabric so that the direction of greatest stretch goes around the neckline and the center back of the interfacing follows the most stable direction.

Tailored or shirt-type collars can be cut either direction; but if stability is desired, place the center back on the lengthwise or no-stretch direction. This causes the collar to break smoothly and evenly at the foldline and gives the appearance of a stand. For extra stability in both blazer and shirt-type collars, the stand (the portion of the collar which should stand up) area can contain a second piece of interfacing. Cut this second piece to fit the area between the roll line and the neckline seam, and place the pattern so the no-stretch direction goes around the neckline. Two-piece, man-tailored collar patterns (styled with a collar and a separate neck band) should be laid so that the no-stretch direction goes around the neckline on both pattern pieces. Also, if fusing the interfacing to the wrong side of the outer fabric is acceptable, fuse the interfacing to the upper collar and to the outer neck band.
GUIDES FOR USING SEWN-IN INTERFACING
Cut sewn-in interfacing for enclosed areas — collars, cuffs, pockets and flaps — the size of the garment piece being interfaced; and cut the interfacing for front openings and necklines the size of the appropriate facing piece. Sewn-in interfacing are usually pinned or machine stay-stitched to the garment piece before the garment is stitched together. After the interfacing is machine stay-stitched in place or the seams are sewn, the interfacing should be trimmed from the seam allowance. Trim the interfacing close to the stitching line to reduce bulk. Consult the pattern guide and other Extension publications on basic construction for specific information on interfacing each garment area.

GUIDES FOR USING FUSIBLE INTERFACING
Cut fusible interfacing for enclosed areas the size of the garment piece and for front openings and necklines the size of the appropriate facing piece. Trim 1/2 inch off the interfacing from all seam allowances and most of the interfacing between dart stitching line (Figure 8). Leave enough interfacing so that it will be caught in the stitching, stabilizing the seam line. Trim off all corners to reduce bulk before fusing (Figure 9).

Fusible interfacing are not all fused the same way; therefore, read the directions. Some must be fused with steam and a damp press cloth while others must be fused with a dry press cloth and dry iron. Also, the length of fusing time varies. Interfacings which are not fused properly are apt to loosen during wear and cleaning of the garment.

If there are no directions given with the interfacing, these general directions may be followed:
1. Set the iron on steam or wool setting.
2. Press the garment fabric (without the interfacing) to warm and smooth the fabric.
3. Position the interfacing with the fusible side next to the wrong side of the fashion fabric.
4. Pre-shrink the interfacing by holding the steam iron 1 to 2 inches above the interfacing and steaming for approximately 5 seconds. Do not let the iron touch the interfacing.
5. Steam baste the fusible interfacing in place by lightly pressing with the tip of the steam iron at a few points, beginning in the center of the interfacing. This keeps the interfacing in place during the fusing process.
6. Place a damp press cloth or paper towel over the area to be fused.
7. Fuse for 10 seconds (15 seconds for medium to heavy weight interfacing) using firm pressure on the iron. Bear down on the iron with both hands. Do not slide the iron, and be sure to fuse every portion of the interfacing, overlapping the areas covered with the iron.
8. Allow the fused section to lie untouched until cooled.

If you need to remove fused interfacing from the fabric, steam the area by holding the steam iron 1 to 2 inches above the fused area for approximately 5 seconds. Peel off the interfacing. If some of the fusing compound remains on the fabric, remove it by steam pressing scrap fabric over the area and peeling the scrap off while it is still warm. Repeat the steaming process until all of the fusing compound is removed, using a different fabric scrap for each pressing.

Do not confuse fusible webs with fusible interfacings. A fusible web is correctly used to fuse two fabrics together. If used as an interfacing, it does not give enough support or body to the outer fabric. Fusible web can be used to fuse a sewn-in interfacing to the outer fabric. Be sure to test this technique with a sample of the fabric and interfacing since it may give more stiffness than is desired.

Reference