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ABSTRACT 
 

Flow boiling in mini and micro-channels offers high heat removal rates and is widely employed in many developing 
technologies such as electronics cooling. However, the minuteness of such channels imposes precision demands on 
their fabrication, leading to increased manufacturing costs. In this paper, a new miniature heat exchanger design 
named Thermal Control Unit (TCU) which employs wire inserts disposed within the mini-channels is presented. 
Through theoretical and experimental studies, the new design has been shown to achieve high heat transfer 
capabilities comparable to that of micro-channels, while alleviating precision demands through the reduction of the 
hydraulic diameters by partial blockage of the flow area using the wire inserts.  Furthermore, the components of the 
TCU are easily fabricated by conventional machining which makes it appealing for industrial applications. The TCU 
when use in conjunction with the multi-evaporator system presented in Part II of this paper series (Ooi et al., 2008) 
is anticipated to provide an effective and cost-efficient thermal solution for the electronics cooling industry.  
 

1. INTRODUCTION 
 
Typically, all high-performance electronic devices are subjected to a 100% functional test prior to being shipped by 
the manufacturer (Pfahnl et al., 1999; Sweetland and Leinhard, 2003). For example, high power microprocessor 
devices are in general subjected to a classification test to determine the effective operating speed of the device. 
During this classification test, it is important to keep a temperature of a die in the microprocessor device at a single 
prescribed temperature while the power of the device is varied from 0% to 100% of the power rating in a 
predetermined test sequence (Sweetland and Leinhard, 2003). In order to ramp and maintain the die at the prescribed 
temperature for testing purposes, equipments known as thermal control unit (TCU) have been designed.  
 
A TCU is basically used to provide heating and cooling to maintain the set temperature of a device under test (DUT) 
such as microprocessor devices. The heating process is simply achieved by installing a heater within the TCU. As 
for the cooling process, it is accomplished by passing a cooling medium through the TCU, which can either exist in 
a single phase flow of either gas or liquid, or a two-phase liquid-vapour flow.   
 
In the microprocessor testing, chilled water TCU technology is commonly used which employs the use of single 
phase flow to remove heat by forced convection. Recently, it has been found that the power densities in 
microprocessor devices have approached high levels of about 50 W/cm2 to about 100 W/cm2 (Kromann, 1996; 
Malinoski et al., 1998; Tadayon, 2000). As the power densities of the microprocessor device are expected to get 
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more intense, it is possible that the single phase cooling technology would reach its limits in terms of testing 
microprocessors at lower temperatures as well as removing the larger amount of heat being generated. 
 
In order to overcome such restrictions, the use of two-phase liquid-vapour flow which capitalizes on the high 
adsorption ability of latent heat of vaporization has been considered. Apart from utilizing two-phase heat transfer, 
mini-channels which are known to provide high heat transfer capability is employed in the new TCU design. The 
innovation in the design lies with the insertion of wires within the mini-channels to improve the heat transfer rate 
that is comparable to that of micro-channels. The theoretical and experimental studies of the new TCU design will 
be discussed shortly in this paper.  
 

2. DESIGN OF THE THERMAL COOLING UNIT 
 
The key focus in the TCU design is on the cooling aspects where the specifications are presented in Table 1. It can 
be seen that the value of the maximum cooling capacity is often governed by the requirement to ramp down the 
temperature of DUT within a specified time period. For example, although the cooling requirement during steady 
state based on the maximum heat load is about 18 W/cm2, the maximum cooling capacity requirement is increased 
to 110 W/cm2 when the maximum temperature drop is taken into account (assuming a DUT mass of 20g made of 
copper). Therefore, in order to achieve such high heat removal rates, it is anticipated that two-phase flow must be 
used.  

Table 1: TCU Design Specifications 
Maximum Heat Load 250 W 
Temperature Range 15 °C to 100 °C 
Ramp Rate 12 °C/s  
DUT Surface Dimensions 37.5 x 37.5 mm2 
Overall TCU Dimensions 85 x 70 x 50  mm3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (a) Front View of TCU Design; (b) Side View of TCU Design 
 
Figure 1 presents the basic design of the TCU which consists of few components, namely, a) a conductor block 
made of copper having multiple through mini-channels, b) a wire insert in each mini-channel, and c) inlet and outlet 
flow ducts. In each mini-channel, the wire insert creates a partial blockage of the flow which reduces the flow area, 
hence achieving a reduced hydraulic diameter which dimensions are comparable to that of a micro-channel. It is 

Inlet Flow Duct Outlet Flow Duct 
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illustrated in Figure 2. By doing so, heat transfer coefficients are dramatically increased which enhances the heat 
transfer performance. An important point to note is that the design bears the characteristic of the micro-channels in 
terms of heat transfer ability but yet allows low cost fabrication to be carried out using conventional machining. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Wire Inserted into Each Mini-channel 
 
The operation mode of the TCU is as follows. When the TCU comes into contact with the DUT, a cooling medium 
in liquid form (eg. liquid refrigerant) is received by the inlet flow duct and channeled through the mini-channels 
containing the inserts. Flow boiling takes place in the flow channels when heat is transferred from the DUT to the 
cooling medium. The vaporized fluid then exits the flow channels through the outlet flow duct. In the process of heat 
removal, the temperature of the TCU may be ramped down or maintained at a prescribed temperature of the DUT. 
 
As for the TCU to provide heating for the DUT, a thin-film heater is used and is positioned in the TCU as shown in 
Figure 1(b). 
 

3. TWO-PHASE HEAT TRANSFER IN MINI AND MICROCHANNELS 
 

3.1 Sub-Cool Liquid Model 
This section presents the mathematical model used during the design phase of the TCU. Considering a flow section 
along a channel in the TCU, by classification of the flow phases, it may be divided into three regions, namely, liquid, 
liquid-vapour and gas phases. The pressure drop along the sub-cool liquid region is obtained using the following 
equation: 
            

(1) 
 

 
where f is given by the Colebrook Friction Factor given in equation (2). 
 

     

      
(2) 

 
 
3.2 Homogeneous Two-Phase Flow Model 
The following section describes the homogenous two-phase flow model. Defining the dryness fraction as the ratio of 
the mass fraction of gas to total mass: 

                         

     
(3) 

 
 

the specific volume of the mixture is given by the following expression: 
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From the conservation of momentum, the total pressure drop along the channel may be expressed as (Wong and Ooi, 
1995 and 1996): 

    

     
    (6) 

 
 

The homogenous two-phase friction factor can be determined using the Colebrook friction factor given in equation 
(2) together with the Reynolds number, which the latter is defined as: 
 

              

       
(7) 

 
 
The two-phase viscosity is obtained using the Dukler et al.(1964) relationship: 
 
         (8) 

 
  
where     
  
    
From equation (6) it can be observed that the pressure drop along the channel is due to gravity, friction and 
momentum.  However, in a horizontally placed channel, there is no pressure drop due to gravity and hence the 
following expression can be used (Wong and Ooi, 1995; Wong and Ooi, 1996): 
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where the changes in the dryness fraction, taking the heat transfer into consideration is given by: 
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The differential equations (9) and (10) are integrated numerically using the 4th order Runge-Kutta numerical 
integration technique. As the refrigerant flows, the pressure reduces and the velocity increases. The rise in the 
velocity is accelerated by both the liquid pressure drop due to flow and also due to evaporation of the liquid 
refrigerant. The latter effect accelerates the flow velocity significantly as the heat transfer process occurs, and this 
further improves the heat transfer in the channel as the Reynolds number increases. If the channel is long enough, at 
a certain point when the refrigerant reaches the local sonic velocity, the flow chokes. This condition occurs when the 
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denominator of equation (9) approaches 0, i.e. when (dP/dz)T  . When this happens, further drops in the pressure 
downstream will not accelerate the flow further. 
 
3.3 Mini and Micro-channel heat transfer  
In equation (10), the two-phase heat transfer coefficient  is computed based on a method recommended by 
Kandlikar and Balasubramanian (2004). Based on the mean free path of molecules in the single phase flow, surface 
tension effects, and flow patterns in the two-phase flow, Kandlikar and Grande (2003) recommends that for the 
purpose of the heat transfer applications, the following classifications can be made: 
 

Conventional channels :  Dh  3mm 
Mini-channels:    200 μm  Dh < 3mm 
Micro-channels:    10 μm  Dh < 200 μm 
Transition micro-channels:  1 μm   Dh < 10 μm 
Transition nano-channels:   0.1 μm  Dh < 1 μm 
Molecular nano-channels:   Dh < 0.1 μm 

 
where Dh is the hydraulic diameter of the flow channel. Kandlikar also modified the heat transfer correlations for 
large diameter tubes that he formulated previously to cater for heat transfer in mini and micro-channels (Kandlikar, 
1990a and 1990b). The correlations for mini and micro-channel (Kandlikar and Balasubramanian, 2004) are shown 
below: 
 
For laminar and transition flow regions in mini-channels for 1600<ReLO< 3000, the following can be used: 
 

                      
                     (11) 

 
      
For ReLO <1600, this laminar flow heat transfer coeficient for single phase is obtained from  LO . For transition 

region, the linear interpolation between the turbulent and laminar single phase correlation is recommended. In 
equation (11), FFL is the fluid surface parameter value which depends on the nucleation site density, fluid properties 
etc. In flow boiling correlations recommended by Kandlikar (2004), he recommends that FFL =1 for stainless steel 
tubes for all fluids. The value of LO is given by Pethukhov and Popov (1963) and Gnielinski (1976), respectively: 
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where f is the friction factor given by: 

 

                             
    (14) 

 
For flows at very low Reynolds number in micro-channels, equation (12) is also recommended. The full details on 
the heat transfer coefficients for the full range of the tube size are given in Kandlikar and Balasubramanian (2004).  
 

4. Experimental Setup & Procedures 
 
Firstly, the TCU is coupled to a vapour compression system to utilize the two-phase heat transfer, in which 
refrigerant R404A is used as the cooling medium. Next, a heater block (here after refer to as simulator) consisting of 
cartridge heaters is used to simulate the DUT. The simulator is placed in contact with the TCU as shown in Figure 3, 
where the cartridge heaters are connected to a control system for regulating the heat supplied to the TCU. The aim is 
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to remove heat effectively from the simulator such that its temperature can be ramped down or maintained at a set-
point. In addition, data acquisition equipment has been set up to acquire the necessary data, namely, TC1, Tset and 
Qin. TC1 refers to the temperature at the center of the simulator surface in contact with the TCU; Tset refers to the 
temperature set point; and Qin refers to the heat supplied to the TCU.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: TCU Experimental Setup with External Housing 
 
The experiment is being conducted in two portions. Firstly, under steady state conditions, Qin is being varied from 
600 W to 350W at intervals of 50W, with Tset being maintained at a steady temperature of 15 °C. Each heat load is 
maintained for 15 minutes. In the second portion, a Qin of 250W is set and a ramp down of TC1 is effectuated by 
increasing the refrigerant flow instantaneously within a short period of time. During the entire duration of the 
experiment, the room temperature is consistently maintained at 22 °C. As the walls of the simulator block are 
exposed to the surrounding, the heat loss resulted from natural convection is estimated to be about 10 W. It is 
therefore insignificant as compared to the amount of heat removed by the TCU. 
 

5. RESULTS AND DISCUSSIONS 
 
Figure 4(a) shows the variation of Qin, TC1 and Tset with time. The effectiveness of the TCU in removing the various 
heat loads is clearly shown as the contact surface of the simulator is well maintained at the Tset of 15 °C with small 
fluctuations of within ±1 °C. It is also noticed that during each step-down in Qin, the range of TC1 did not show 
signs of decrement. This indicates that the cooling capacity has been regulated effectively during the transition to 
maintain the constant Tset. The reason behind this efficient control is the novel vapour compression system discussed 
in Part II of this paper series (Ooi et al., 2008). 
 
Figure 4(b) shows the comparison between theoretical and experimental cooling capacities, in which the former is 
calculated based on measured volumetric flow rates. During the course of the experiment, as it is observed that the 
cooling medium exists in two-phase flow at the inlet of the TCU, the inlet dryness fraction is being varied in the 
possible range of 0.1 to 0.3 during theoretical calculations. From the figure, it is seen that experimental results and 
theoretical predictions are in reasonably good agreement, where actual cooling capacities fall within the range of the 
calculated results (shaded). 
 
Figure 5(a) demonstrates the high heat transfer capability of the TCU by showing the temperature ramp-down 
measured at TC1. A temperature ramp rate of 3.93 °C/s is obtained when the cooling capacity is increased 
instantaneously from 250 W to 600 W. Although this value is much smaller than the required ramp rate of 12 °C/s 
listed in Table 1, this is due to the large thermal mass of the simulator used in the test. Figure 5(b) explains this 
statement by showing the calculated temperature ramp rate using the lumped capacitance method. At a heat load of 
250 W, the 600W cooling capacity achieves a theoretical ramp-rate of 4.63 °C/s at the simulator, differing from the 
experimental value by 0.7 °C/s. The discrepancy is suspected to be due to errors in estimating the thermal mass of 
the simulator, as well as heat gain from the environment. Nevertheless, the important point is that the experimental 
ramp rates are in reasonably good agreement with the theoretical values. This indicates that when the actual device 
such as a lidded microprocessor having a mass of about 22.4 g is used, the desired ramp rate can be achieved. In fact, 
as shown in the same figure, the required cooling capacity to attain a ramp rate of 12 °C/s  is only 485 W. Therefore, 

Heater Block (Simulator) Cartridge Heater 

TCU 

Thermocouple (TC1) Heat Flux 



 
2380, Page 7 

 

International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2008 
 

a 600 W cooling capacity achieved in the TCU exceeds the given requirements. In general, the TCU has been 
validated to achieve effective heat transfer from the results shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: (a) Temperature Response to Different Heat Variations; (b) Theoretical and Experimental Cooling 
Capacities against Mass Flow Rate   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: (a) Effects of Ramping Down the Temperature of the Simulator; (b) Calculated Temperature Drop per 
Second against the Cooling Capacity   

 
6. CONCLUSION 

 
Through theoretical and experimental studies, the new TCU design has been validated to achieve high heat transfer 
performance comparable to that of micro-channels, while alleviating precision demands through the reduction of the 
hydraulic diameters by partial blockage of the flow area using the wire inserts. As such, the components of the TCU 
are easily fabricated by conventional machining which makes it cost effective for industrial application. The TCU 
when use in conjunction with multi-evaporator system presented in Part II of this paper (Ooi et al., 2008) is 
anticipated to provide an effective and cost-efficient thermal solution for the electronics cooling industry. Last but 
not least, it is anticipated that the TCU being investigated in the experiments carries the potential to facilitate even 
higher heat removal rates. 
 
 
 
 

Rate of Temperature Decrease

45.2 21.6
3.93 /

25 31
C s

−= = °
−

(45.2, 25) 

  (21.6, 31) 
(4.63, 600) 

12 °C/s 

485 W 250 W 

0 °C/s 

(a) (b) (hr:min:s:ms) 

(a) (b) (hr:min:s:ms) 



 
2380, Page 8 

 

International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2008 
 

NOMENCLATURE 
 

Symbols Subscripts Greek 

A Area, m2 F Friction  Specific Volume, kg/m3 

d Diameter, m G Gravity  Density, m3/kg 

G Mass Flux, kg/m2s M Momentum  Viscosity, Ns/m2 

h Specific Enthalpy, J/kg T Total  Internal Roughness, mm 

M Mass, kg g Gas   

P Pressure, bar f Liquid   

T Temperature, K m Mixture   

 Mass Flow Rate, kg/s p Pressure   

U Velocity, m/s w Wall   

 
Two-phase heat transfer 
coefficient W/m2·K  
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