Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2(+) Breast Cancer

Yuling Wang
Birck Nanotechnology Center, Bindley Bioscience Center, Purdue University

Jiji Chen
Birck Nanotechnology Center, Bindley Bioscience Center, Purdue University

Joseph Irudayaraj
Birck Nanotechnology Center, Bindley Bioscience Center, Purdue University, josephi@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub
Part of the Nanoscience and Nanotechnology Commons

http://dx.doi.org/10.1021/nn2032177

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Nanomedicine has made significant advances because of the infusion of sophisticated nanostructures in diagnostics and therapeutics. Understanding the dynamics of nanomaterials in cells, especially the nucleus, critical for nuclear targeting and therapy remains largely an underexplored field. Different types of nanomaterials such as gold, silver, silica, magnetic nanoparticles, polymer and liposome nanoparticles, and quantum dots (QDs) have been developed to target live cells for drug or gene delivery for theranostics. Most of the past studies have demonstrated the potential of these nanomaterials in cancer treatment but primarily in cancer cell targeting or uptake studies and drug delivery. A thorough understanding of the intracellular fate in relation to the nucleus and the efficacy of nuclear drug delivery has not been explored. Nanoparticles of very small size have been postulated to enter the nucleus through the nuclear pore complex, which is about 6–10 nm in diameter and acts as the gateway for nucleo-cytoplasmic exchange. Uptake of nanoparticles beyond this size can be triggered with the aid of a nuclear localization signal (NLS). Gold nanoparticles functionalized with an arginine-glycine-aspartic (RGD) peptide and NLS peptide have been used for cancer cell nuclear targeting. Most of the past studies focus on receptor targeting while few on nuclear targeting because of the challenges in the nuclear delivery of nanoparticles. The nucleus of eukaryotic cells contains a majority of the genetic materials in which DNA replication and transcription occur. Hence strategies for intracellular quantification of nuclear materials will enhance our understanding of nuclear delivery and targeting therapeutics.

Fluorescent nanoparticles, such as QDs, have been widely used for intracellular imaging due to their intense fluorescence. However, the toxicity of QDs limits its use in nanomedicine. Gold nanoclusters (AuNCs) of ~2 nm in size are attractive because of their strong fluorescence emission which permits quantification of nucleus targeting materials at single particle sensitivity. To examine these particles, a single wavelength source is sufficient for simultaneous excitation of nanoclusters of varying emission, similar to QDs. Fluorescent AuNCs are also biocompatible and photostable.

Recent advances in fluorescent metal nanoclusters have spurred tremendous interest in nanomedicine due to the ease of fabrication, excellent biocompatibility, and, more importantly, excellent wavelength-dependent tunability. Herein, we report our findings on fluorescent BSA-protected gold nanoclusters (AuNCs), ~2 nm in size conjugated with Herceptin (AuNCs-Her), for specific targeting and nuclear localization in ErbB2 over-expressing breast cancer cells and tumor tissue as a novel fluorescent agent for simultaneous imaging and cancer therapy. More interestingly, we found that AuNCs-Her could escape the endolysosomal pathway and enter the nucleus of cancer cells to enhance the therapeutic efficacy of Herceptin.

We elucidate the diffusion characteristics (diffusion time and number of diffusers) and concentration of the fluorescing clusters in the nucleus of live cells. Our findings also suggest that the nuclear localization effect of AuNCs-Her enhances the anticancer therapeutic efficacy of Herceptin as evidenced by the induction of DNA damage. This study not only discusses a new nanomaterial platform for nuclear delivery of drugs but also provides important insights on nuclear targeting for enhanced therapy.

KEYWORDS: gold nanoclusters - nuclear nanomedicine - single particle characterization - DNA damage - HER2 targeting

* Address correspondence to josephi@purdue.edu.

Received for review August 21, 2011 and accepted November 6, 2011.

Published online November 07, 2011
10.1021/nn2032177

© 2011 American Chemical Society
and can serve as excellent bioimaging contrast agents for nuclear nanomedicine, which has only been sparsely addressed.18–20

Trastuzumab (Herceptin), a humanized monoclonal antibody targeting the extracellular domain of ErbB-2 receptor, is over-expressed in 25–30\% of breast cancers and distant metastases.21 However, the response rate to Herceptin has only been 7–35\% in clinical patients.22 A limiting factor in treatment efficacy enhancement is the lack of an effective drug delivery vehicle to assist in the translocation of the drug from the cytoplasm to the nucleus.23,24 The therapeutic mechanism of Herceptin as reported reveals that cell proliferation decreases due to an increase in the frequency of DNA double strand breaks in the nucleus.25 However, more recently, studies point to the fact that nuclear localization sequence (NLS)-conjugated trastuzumab (Herceptin) could kill breast cancer cells that are resistant to trastuzumab by inducing DNA damage, affirming the importance of developing nuclear delivery strategies for effective therapy.26

Herein, we hypothesize that Herceptin-conjugated AuNCs, that is, AuNCs-Herceptin (AuNCs-Her), could facilitate effective passage of Herceptin through the nuclear pore and into the nucleus to significantly enhance the anticancer effect of the drug. Therefore, fluorescent correlation spectroscopy (FCS) and fluorescence lifetime imaging (FLIM) were used in this study to track the dynamics of nanoparticles at single particle sensitivity. FCS is a noninvasive single particle fluorescence technique based on autocorrelation of temporal behavior of fluorescence fluctuation. FCS analysis provides information on the diffusion time, absolute concentration of the diffusers, and binding kinetics and opens a new direction for tracking the biochemical pathway in intact cells and organs.27 FLIM could separate the species based on differences in the exponential decay rate of fluorescence (lifetime), which is independent of the local concentration of fluorescence molecules and the excitation intensity.28 In this study, we combine FCS with FLIM to report on the diffusion of AuNCs-Her and its entry into the nucleus in live cell conditions. An effective mode of cancer therapy could constitute the specific delivery of high levels of therapeutic agents to hypersensitive subcellular sites such as the nucleus of tumor cells without affecting healthy cells and tissues.29 Photothermal therapy with cell surface targeting is an effective method for cancer therapy.30 However, this method is limited by penetration depth of the laser (e.g., <400 μm for a two-photon excitation31). In addition, only a few cells can be illuminated at a time in a given focal volume.

RESULTS AND DISCUSSION

Characterization of AuNCs and Bioconjugated AuNCs-Her.

Biocompatible fluorescent AuNCs, ∼2 nm in size (Figure 1a), were prepared according to the method proposed by Xie et al.16 Its absorption and emission spectra (Figure 1b) show that its characteristic surface plasmon peak disappears and a strong bright near-infrared peak emerges at 640 nm. The strong fluorescence of AuNCs was due to the d-band excitation as reported.32 Figure 1c shows the scheme for the
conjugation of Herceptin to AuNCs. During synthesis, bovine serum albumin (BSA) that formed on the outer layer of AuNCs was carboxylated by glutaraldehyde and glycine, to which amino groups bearing Herceptin were functionalized through the EDC linkage. TEM image further demonstrates that the as-prepared AuNCs-Her (Figure S1 in Supporting Information) clusters are distributed uniformly and no aggregates could be noted. The size of the AuNCs-Her was calculated to be ~ 3.5 nm after the conjugation of Herceptin, an increase of ~ 2.0 nm from the initial size of AuNCs. The chemical conjugation was further confirmed by monitoring the change in the diffusion time of naked clusters (0.46 ms) and clusters conjugated with Herceptin (0.73 ms) by fluorescence correlation spectroscopy (FCS). The increase in diffusion time observed could be attributed to an increase in the molecular weight of the gold clusters with and without Herceptin.

Cancer Cell and Tumor Tissue Targeting. SK-BR3 cells, a human breast cancer cell over-expressing HER2 on the cell membrane, were chosen as the target, and AuNCs-Her and AuNCs were incubated with the cells for 4 h. Figure 2 shows the confocal fluorescence images of the clusters in cells. The left side of panel D (Figure 2) shows emission from Lysosensor (400–450 nm), whereas the right side shows emission from AuNCs (650–720 nm). Due to the specific interaction of Herceptin with ErbB-2 receptor, high uptake efficiency of the AuNCs-Her probes (Figure 2A, left) was noted as evident from the discrete bright spots, which was assumed to undergo an ErbB2 receptor-mediated endocytosis. Past reports have shown that nanoparticle endocytosis depends on the cell type, clathrin dependence, and the size or the shape of the nanoparticles. Here, we found that the uptake of AuNCs without the antibody was rare compared to AuNCs-Her (Figure 2A, right) in ErbB-2 over-expressing SK-BR3 cells even after 4 h of incubation. To further confirm targeting specificity, AuNCs-Her probes were incubated with ErbB-2 under-expressing MDA-MB-468 cells as control. Control experiments show only an insignificant uptake, possibly due to nonspecific interaction (Figure S2, left). The targeting specificity of AuNCs-Her was further illustrated by comparing ErbB-2 receptor over-expressing breast cancer tumor tissues (infiltrating duct carcinoma) (Figure 2B, left) with normal tissues (Figure 2B, right). Almost no signal was observed from the normal tissues, while tumor tissues exhibited strong fluorescence due to targeting, further demonstrating that AuNCs-Her has strong specific binding with ErbB-2 receptors.

Endosome Escape for AuNCs-Her to the Nucleus. Interestingly, a strong bright spot was noted in Figure 2A (left), which was attributed to the accumulation of AuNCs specifically in the nucleus of cells. To further demonstrate the localization of the probes, Lamina A antibody was used as a nuclear envelop marker to specifically stain the inner nuclear membrane. Fluorescence lifetime imaging (FLIM) was used to separate the envelope and the inner regions based on their difference in lifetime as fitted by exponential decay fitting functions. Clear difference in the fluorescence lifetime of AuNCs (1.5 ns) and Lamina A antibody labeled with Alexa350 (1.9 ns) was noted (Figure 2C), indicating the presence of AuNCs in the nucleus. AuNCs were found to be distributed throughout the cytoplasm as well as in the chromosomal regions of the nucleus (Figure 2C, left). Compared to cells incubated with bare AuNCs, only the envelop marker could be visualized (Figure 2C, right). Our previous studies using gold nanorods (AuNRs) show that most of the Herceptin-conjugated AuNRs are entrapped in the endolysosomal system with minimal escape from the endosomes posing a major barrier for effective drug delivery and release. Thus, nanomaterials capable of endosomal escape might have the ability to localize in the nucleus and could...
serve as effective drug delivery and therapeutic agents. Experiments demonstrate that AuNCs are able to escape the endosome and enter the nucleus to impart therapy with high efficacy. Lysosensor was used to stain the endosomes and lysosomes of live SK-BR3 cells to monitor uptake of AuNCs-Her after 4 h of incubation. Confocal images show that a majority of AuNCs-Her did not accumulate within the endosome (Figure 2D), signifying their endosomal escaping ability. Super-resolution images obtained by structured illumination microscopy with 100 nm lateral resolution (ELYRA S.1, Carl Zeiss Inc.) showed part of AuNCs-Her localizing in the nucleus as indicated by discrete bright spots within the nuclear envelop and other AuNCs-Her localizing in the cytoplasm (Figure S3). As demonstrated through our endosome labeling experiments, AuNCs showed the capability of escaping from the endosomosomal system. This provides an opportunity for some of the AuNCs to freely diffuse through the nuclear pore simply due to its ultrasmall size. This process is unlikely to be mediated by specific transport protein since the AuNCs are not conjugated with nuclear localization sequence bearing peptides.

Dynamic Tracking of AuNCs-Her in the Nucleus of the Cells. Transport of proteins into the nucleus is an essential and important process in eukaryotic cells influencing gene regulation. Having demonstrated that AuNCs-Her could enter the nucleus, we attempt to determine the dynamics of these nanoscale probes in the nucleus of live cells using FCS. Herceptin-labeled with Alexa647 was first incubated with SK-BR3 cells for 4 h (control), and its localization in cells was tracked by confocal microscopy (the labeling of Alexa647 on Herceptin and AuNCs was confirmed by monitoring the diffusion time using FCS and fluorescence spectra, as shown in Figure S4). It was found that Herceptin primarily localized on the cell membranes and in specific intracellular compartments as expected. In addition, free Herceptin had very limited ability to pass through the nuclear pore complex. However, single point FCS measurements confirmed the presence of AuNCs-Her in the nucleus of live SK-BR3 cells (Figure 3A) by monitoring the diffusion time and concentration from the autocorrelation plot. The autocorrelation curves of AuNCs-Her diffusion in the nucleus could be well fitted with a single component since a two-component free diffusion model did not improve the quality of fit of the autocorrelation functions of AuNCs diffusing in the nucleus (Figure 3A). The inset in Figure 3A shows the FLIM of live SK-BR3 cells after 4 h of incubation with AuNCs-Her. The yellow color represents the staining of the cell membrane. It is well-known that ErbB2 is predominantly expressed on the cell surface. Due to the specific interaction between Herceptin and ErbB2, it is clear that particles are internalized while some could possibly reside on the cell membrane even after 4 h of incubation. Maxima entropy method FCS (MEMFCS) was used to assess the diffusion of different species. MEMFCS is particularly suitable for the analysis of systems with heterogeneous diffusion time and does not need a priori to be assigned for fitting the diffusion time. The diffusion time of AuNCs-Her in the cytoplasm was found to be ~0.8 ms (data not shown). Interestingly, we found that the diffusion of AuNCs-Her in the nucleus has two distinct peaks: one at ~0 ms and the other ~10 ms (Figure 3B). The faster diffusers could be attributed to the diffusion of AuNCs-Her in the nucleus with minor obstacles. The slower diffusers are possibly due to the interaction of the nanoclusters with nuclear proteins or chromatin structures or the complexity of traversing the nuclear matrix. The exact mechanism of the interaction between AuNCs and nuclear protein and its trajectory could be the subject for future explorations. The formation of larger aggregates in the nucleus is unlikely since no significant intermittent spikes could be found in the fluorescence fluctuation data. In addition to the diffusion dynamics, the absolute concentration of AuNCs-Her in the nucleus of live cells was also estimated by FCS. From the amplitude of the autocorrelation function, the concentration of AuNCs-Her in the nucleus was estimated to be 5–10 nM. This concentration was found to be sufficient to induce DNA damage and apoptosis.

DNA Damage and Apoptosis of AuNCs-Her to the Cells. Here we show that AuNCs-Her could escape the endosome/lysosome pathway and penetrate the nuclear pore...
complex to enhance the therapeutic efficacy. Experiments indicate that AuNCs-Her has the potential to induce enhanced DNA damage and apoptosis in SK-BR3 cells because of its nuclear targeting ability. Hoechst 33258 binds preferentially to the A-T base pairs from the side of the minor groove of the DNA and can be used to visualize the apoptotic body formation and nuclear changes which are characteristic of apoptosis. Our results show that both Herceptin and AuNCs-Her could induce apoptosis while apoptosis could not be observed in cells treated with bare AuNCs (Figure 4A). Early DNA damage was signified by the phosphorylation of γ-H2A.X using appropriate anti-γ-H2A.X targeting antibodies. To further confirm our findings, cells were probed using the phosphorylated form of H2A.X (γ-H2A.X) antibody which signals the initial response to double-stranded break (DSB). FLIM indicated that almost all of the cells cultured with AuNCs-Her had specific fluorescence staining, representing DNA damage (Figure 4D). In contrast, only a small amount of cells treated with Herceptin alone shows DNA damage under the same condition to indicate that the antitumor effect of AuNCs-Her is much higher than the treatment with Herceptin alone (Figure 4E). Quantification of apoptosis positive cells as a percentage of the total number of cells revealed that only 35% of the cells treated with Herceptin underwent apoptosis due to DNA damage compared to 95% of the AuNCs-Her (Figure 4F) treated cells (p < 0.05, n = 500). Cell death experiments (MTT assay) shown in Figure S5 further confirm that the antitumor activity of Herceptin could be enhanced by AuNCs due to nuclear targeting of AuNCs.

CONCLUSION

Collectively, our results demonstrate that fluorescent metal nanoclusters (AuNCs) conjugated with a targeting ligand (e.g., Herceptin in our model) possess high targeting specificity and nuclear localization capability. These fluorescenting probes can be used for simultaneous imaging and enhanced cancer therapy because of its ability to induce nuclear damage. Importantly, we found that the endocytosed AuNCs-Her could escape the endolysosomal pathway and has the ability to penetrate the nucleus possibly due to its small size effect. By employing FCS, the diffusion characteristics and concentration of AuNCs-Her in the nucleus was also elucidated. Our experiments further indicated that the therapeutic effect of Herceptin could be significantly enhanced possibly due to the nuclear targeting ability of AuNCs-Her and its endolysosomal escape, opening a new route to nuclear nanomedicine.

MATERIALS AND METHODS

Chemical Reagents. Hydrogen tetrachloroaurate (III) trihydrate (HAuCl₄·3H₂O, 99%), BSA, glutaraldehyde, glycine, sodium borohydride, and N-(3-(dimethylamino)-propyl)-N’-ethylcarbo-diimide (EDC) were obtained from Sigma-Aldrich Chemical Co. and used without further purification. All of the water used was purified with Milli-Q plus system (Millipore Co.), and the resistivity was kept to over 18 MΩ·cm.

Synthesis of Gold Nanoclusters. Gold nanoclusters (AuNCs) were synthesized according to the method proposed by Xie et al. Briefly, 5 mL of 10 mM aqueous chloroauric acid solution (37 °C) was added to 5 mL of 50 mg/mL BSA solution (37 °C) under vigorous stirring. Two minutes later, 0.5 mL of 1 M NaOH was added and kept stirring for 5 min. The reaction mixture was centrifuged at 100,000 g for 30 min and the supernatant was collected after dialysis against deionized water for 2 days.

Figure 4. Fluorescence images show the apoptosis induced by AuNCs alone (A), AuNCs-Her (B), and Herceptin (C) by staining the nucleus with Hoechst 33258 (excited by UV light and the emission is 460 nm). Fluorescence lifetime imaging (FLIM) shows DNA damage of SK-BR3 cells induced by AuNCs-Her (D) and Herceptin alone (E) indicated by the bright yellow dots. Quantitative evaluation of DNA damage of cells as a percentage of the total number of cells for different treatments (F).
solution was introduced, and the mixture was incubated at 37 °C for 12 h. The color of the solution changed from light yellow to light brown and then to deep brown. Excess salt was removed through dialysis.

Characterization and Functionalization of AuNCs by Herceptin. As-prepared AuNCs were characterized by UV–vis absorption spectroscopy using a Jasco V570 UV/visible/NIR spectrophotometer (Jasco, Inc., Easton, MD) in the 200–900 nm wavelength range. Fluorescent emission spectra were obtained using the Cary fluorescent spectrometer.

The functionalization of AuNCs with Herceptin was carried out according to the method reported by Sun et al. Glutaraldehyde was first introduced along with the AuNCs to form the cross-linked organic layer around AuNCs. The extra aldehyde functional groups on the AuNCs' surface were removed by treatment with glyoxal or sodium borohydride. Since most of the surface amino groups on the BSA are removed in this process, AuNCs carried a net negative charge from the carboxylic acid groups. The activation of carboxylic acid groups on the surface amino groups on the BSA molecule was achieved by treatment with EDC. Excess EDC was removed by centrifugation using the cutoff tube, and the resulting O-acylisourea intermediates are reacted with amino groups from Herceptin to form amide bonds between the encapsulation layer and Herceptin.

Since excess chemicals will be removed by centrifugation using the cutoff tube, contribution from the chemicals to the cell death is assumed to be negligible.

Cell Culture. SK-BR3 cells and MDA-MB-468 were maintained in RPMI medium 1640 (Sigma-Aldrich) supplemented with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicillin/streptomycin (Sigma-Aldrich). Cultures were maintained at 37 °C and 5% CO2 atmosphere. For living-cell fluorescence microscopy studies, cells were seeded onto sterilized No. 1 coverslip (VWR International, Batavia, IL) and placed inside a 12-well plate. After the cells reached 80% confluence, they were incubated with International, Batavia, IL) and placed inside a 12-well plate. After the cells reached 80% confluence, they were incubated with 1% BSA for 30 min at room temperature. The slides were then immersed in tap water for 5 min. The slides were then dried in a rice cooker and allowed to boil for 15 min. The slides were placed inside the bottle and boiled for 15 min. The slides were then removed through dialysis.

Fluorescence Lifetime Imaging. Fluorescence lifetime images were acquired using the Microtime 200 system (PicoQuant GmbH, Germany) fitted with picosecond lasers. Further details of the instrumentation can be found elsewhere.37 The fluorescence lifetime was obtained by fitting the TCSPC histograms with the multipexponential model.

\[
\tau_i \approx \sum_{i=1}^{N_F} \alpha_i \exp \left(-\frac{1}{\tau_i} \right) \quad (1)
\]

where \(\tau \) denotes the lifetime with amplitudes \(\alpha \). The values of \(\tau \) and \(\alpha \) were obtained through nonlinear least-squares fitting using the SymphoTime software (PicoQuant).

FCS and MEMFCS. The autocorrelation curve of fluorophore diffusing in solution was fitted to a 3D diffusion model using one or two components with the SymphoTime software (PicoQuant GmbH Berlin, Germany) and Origin Lab using the equation

\[
G(\tau) = \sum_{i=1}^{Ni} \left(1 + \frac{\tau}{\tau_i} \right)^{-1} \left(1 + \frac{\tau}{\tau_0} \right)^{-1/2} \quad (2)
\]

where \(Ni \) and \(\tau_0 \) denote the number of fluorescent molecules in the detection volume and diffusion time of component \(i \), respectively. The parameter \(\kappa \) and the lateral diffusion coefficient \(D \) can be obtained from

\[
k = \frac{z_0}{w_0} \quad D = \frac{w_0^2}{4\kappa} \quad (3)
\]

Here, \(k \) is defined as the ratio of the axial beam size \(z \) and radius \(w_0 \) of the laser, and \(D \) denotes the diffusion time of the fluorophore.

MEMFCS (maximum entropy method analysis of fluorescence correlation spectroscopy data) (2) was employed to...
validate the autocorrelation function of AuNCs-Her-Alexa647 in the nucleus.

\[
G(r) = \int a_i \left(1 + \tau \frac{r}{R_0} \right)^{-1} \left(1 + \kappa^2 \frac{r}{R_0} \right)^{-1/2} \, dt_D \tag{4}
\]

S is defined as \[S = \sum p_i \ln(p_i), \] where \[p_i = \alpha_i / \sum \alpha_i \].

Acknowledgment. Partial funding from the Purdue Center for Cancer Research, the CTSI (Purdue-IUPUI), the NSF Grant No. 0945771, and the Billisland Fellowship for J.C. is acknowledged. Professors Mattei and Periaswamy (TIFR, Mumbai) are acknowledged for providing the MENECSF software. Herceptin was a generous gift from Genentech Inc. (San Francisco, CA). The authors thank the super resolution imaging group from Zeiss Inc. for their help in super-resolution imaging. Discussions with Dr. M. Rao from CCMB through the IUSSTF grant is appreciated.

Supporting Information Available: Figure S1 gives the TEM images of AuNCs-Her conjugate. Figure S2 shows the confocal fluorescence intensity of MDA-MB-468 cells and 5K-BR3 cells with AuNRs-Her incubation. Figure S3 shows the super-resolution structured illumination microscopy image of AuNCs-Her in the nucleus of 5K-BR3 cells. Figure S4 gives the autocorrelation functions of Herceptin labeled with Alexa647 and AuNCs conjugated with Herceptin-Alexa647 and absorption and fluorescent spectra of AuNCs-Her-647. Figure S5 compares the toxicity of AuNCs-Her conjugate, and AuNCs alone by MTT assay. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

