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Actuation characteristics of electromechanical (EM) actuators have traditionally been studied for a few

specific regular electrode geometries and support (anchor) configurations. The ability to predict

actuation characteristics of electrodes of arbitrary geometries and complex support configurations

relevant for broad range of applications in switching, displays, and varactors, however, remains an open

problem. In this article, we provide four universal scaling relationships for EM actuation characteristics

that depend only on the mechanical support configuration and the corresponding electrode geometries,

but are independent of the specific geometrical dimensions and material properties of these actuators.

These scaling relationships offer an intrinsic classification for actuation behavior of a broad range of EM

actuators with vastly different electrode/support geometries. Consequently, the problem of analysis/

design of complex EM actuators is reduced to the problem of determining only five scaling parameters,

which can be obtained from no more than three independent characterization experiments or numerical

simulations. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798365]

I. INTRODUCTION

Electro-Mechanical (EM) actuators have diverse

applications in varying fields both as an analog (tunable)

and a digital (switch) element.1 Analog applications

involve continuous position control of a movable electrode,

e.g., micro-mirrors for projectors,2 external cavity tunable

lasers,3 reflective diffraction grating,4 deformable mirrors

for adaptive optics,5 RF-MEMS varactors,6 etc. On the

other hand, digital operation requires only a binary position

control of the movable electrode, e.g., RF-MEMS capaci-

tive/ohmic switches,7,8 NEMS relays,9 interferrometric

Mirasol displays,10 etc. Fig. 1(a) depicts the schematic of a

generic actuator where a movable electrode M1 is sus-

pended in air above a fixed bottom electrode M2. The posi-

tion and shape of M1 is controlled by an external voltage

source that creates an electric field and exerts a downward

electrostatic force on M1. The governing equation for the

deflection z of M1 with Young’s modulus E, Poisson’s ratio

�, thickness H, and subjected to an externally applied

potential V is given by

EH3

12ð1� �2Þr
4
r z ¼ � 1

2

dCðr; zÞ
dz

V2; (1)

where r is a vector in the plane of M1 and Cðr; zÞ is the ca-

pacitance per unit area between M1 and M2 at position r.

With the increase in the applied voltage V, M1 bends down

to balance the increase in electrostatic force by an equal

and opposite elastic restoring force. Beyond the pull-in
voltage ðVPIÞ, the electrostatic force exceeds the restoring

force, and M1 snaps down to come in contact with a thin

dielectric deposited over M2. When the voltage drops below

the pull-out voltage ðVPOÞ, the electrostatic force fails to

overcome the elastic restoring force and M1 springs back in

the air. This operation is hysteretic with two inherent insta-

bilities, namely, pull-in (PI) and pull-out (PO), demon-

strated using a simulated Capacitance (C)–Voltage (V)

characteristic in Fig. 1(b). There are two modes of opera-

tion of the actuator—(i) when M1 is in air (below pull-in
state) and (ii) when M1 is in contact with the dielectric on

the bottom electrode (post pull-in state). The actuator is

operated in the below pull-in state for analog applications

and switched between below pull-in and post pull-in states

for digital applications. The dynamics of an actuator is fun-

damentally governed by the geometry and support configu-

rations of the electrodes (see Fig. 1(c) for various

examples). Note that residual stress and mid-plane stretch-

ing11,12 have been neglected in Eq. (1).

Since Taylor’s pioneering experiments with charged

soap-bubbles (to explore the physics behind thunderstorm

formation13) and the invention of the first microactuator a

few years later (resonant gate transistor14), electrode

geometries and support configurations in actuators have

evolved significantly. Electrode geometry has changed

from being planar (graphene electrodes15), to cylindrical

(suspended carbon nanotubes (CNT)16 and silicon nano-

wires17), and to an array of cylinders (nanowire arrays18).

Similarly, the support configuration has changed from fixed-

fixed and fixed-free (cantilever), to circular (clamped on all

sides), and to serpentine coils.19 Likewise, the design of com-

mercially available switches20 have evolved to either having

patterned dielectrics on the bottom electrode (M2) and/or

holes in the top electrode (M1) to improve reliability and/or

performance of the actuator.21

With such a broad variance in the electrode geometries

and support configurations, analysis of actuation characteris-

tics is often done on a case-by-case basis. There is vast liter-

ature on planar11,22 and cylindrical electrode16,23 geometries,

and analytical solutions for idealized regular support config-

urations (e.g., fixed-fixed,24 cantilever,25 and circular26) are
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known. There is, however, no general framework to analyze

EM actuators having arbitrary electrode geometries and sup-

port configurations. Lack of such a theoretical framework

impedes the optimal design of electrode geometry towards

achieving desired performance or comparing the response of

closely related actuators. Even though the pull-in behavior of

the actuators has already been analyzed in depth,27 the

understanding of pull-out actuation and the post pull-in con-

figurations remain far more elementary. And yet, it is the

pull-out actuation that defines (stiction-related) failure times

of RF-MEMS capacitive switches caused by dielectric

charging.28–31

In this paper, we provide scaling relationships for four

aspects of the actuation behavior: (a) pull-in voltage (VPI),

(b) Cbp-V response in below pull-in (BP) state, (c) pull-out
voltage (VPO), and (d) Cpp-V response in post pull-in (PP)

state. The scaling relationships are shown to be universal

across a wide range of geometries, support configurations,

and patterned bottom electrodes. These scaling relationships

can not only be used to interpret actuation characteristics of

a given device, but also be used to optimize actuator geome-

tries for obtaining desired performance.

II. SCALING RELATIONSHIPS

To unify actuation characteristics, we introduce the concept

of a geometry-class (GC). All actuators belonging to the same

GC share the same electrode geometries, support configurations,

and patterning. We analyze four generic support configurations

in this work: fixed-fixed (e.g., capacitive RF-MEMS switches20),

cantilevers (e.g., ohmic switches32), cross shaped (e.g., air-flow

sensors33), and circular (e.g., pressure sensors34). We also include

two additional cases where (i) M1 is cylindrical (e.g., CNT based

NEMS16) and (ii) M2 is patterned as a fractal. The GCs analyzed

in this work are summarized in Fig. 1(c).

We consider a two-dimensional actuator system, where

M1 is described by a single length dimension (L). We assume

a general expression for capacitance per unit area given

by CðzÞ ¼ �0bLn�2

ðzþTdÞn�1, where n is a parameter (named electro-
static dimension) that defines the electrostatics of the system,

and is fundamentally related to the geometry of M1 and pat-

terning on M2. Equation (1), therefore, reduces to

D
d4z

dx4
¼ � 1

2

dCðzÞ
dz

V2 ¼ n� 1

2

�0bLn�2

ðzþ TdÞn
V2; (2)

FIG. 1. (a) Schematic of a generic EM actuator with electrode M1 having arbitrary geometry and support configurations and a (fractal) patterned bottom elec-

trode M2. (b) Typical hysteretic C-V characteristics with the four defining characteristics marked—(1) Below pull-in state (0 � V < VPI), (2) Pull-in voltage
(V ¼ VPI), (3) Post pull-in state (V > VPO), and (4) Pull-out voltage (V ¼ VPO). (c) Geometry and support configurations of different geometry-classes being

simulated to study scaling laws. The blue (horizontal) regions represent M1 and the red (vertical) regions indicate a fixed support configuration. The gray (hori-

zontal) regions represent M2: Voltage is applied between M1 and M2. The various geometry-classes are classified according to the electrostatic dimension of

the system (n) and the support configuration. Note that the carbon nanotube (CNT) can be subjected to either a fixed-fixed or a cantilever support configuration.

(d) Typical shapes of M1 at V ¼ 0, at pull-in instability point (V ¼ V�PI), post pull-in state (V > VPO), and at pull-out instability point (V ¼ VþPO) for fixed-fixed

support configuration.
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where D � EH3

12ð1��2Þ is the flexural rigidity of M1, �0 is the

permittivity of free space, Td is the effective dielectric thick-

ness normalized by the dielectric constant �r, L is the length-

scale of M1, and b is a constant that depends exclusively on

the geometrical configuration of the electrodes: e.g., classical

planar electrodes are defined by b ¼ 1 and n ¼ 2. It is known

that the capacitance of fractal electrodes can likewise be

described by the exponent n (ffi DF, the fractal dimension),

and a constant b that depends exclusively on DF (see Ref. 35

and Sec. 2 of Ref. 36).

We scale z and x by the scaling lengths z0 and l, respec-

tively, such that ~z ¼ zþTd

z0
and ~x ¼ x

l. Here, z0 ¼ Ta þ Td is

the effective air-gap (Ta being the physical air-gap) and l is

the length of the part of M1 suspended in air, see Fig. 1(d).

Note that while l ¼ L for device operation in the BP state,

l � L after the top electrode has been pulled-in (PP state).

We derive the following scaling laws (detailed derivation

given in Appendix A), which unifies actuation and C-V
behavior of actuators across all GCs independent of material

properties and physical dimensions-

Pull-in voltage : VPI ¼ aPI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0z2

0

ðn� 1ÞCOFF

s
¼ aPIV0; (3)

Cbp � V characteristic :
Cbp

COFF
¼ ~f

V

VPI

� �
; (4)

Pull-out voltage : VPO ¼ aPO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0z2

0

ðn� 1ÞCON

z0

Td

� �c
s

¼ aPOV1; (5)

Cpp-V characteristic :
CON � CPO

CON � Cpp
¼ V

VPO

� �j

: (6)

Here, K0 � EH3

6ð1��2ÞL3 is related to the effective stiffness of

the top electrode (M1), COFF � �0bLn�1

zn�1
0

is the off-state capaci-

tance per unit width, Cbp is the capacitance in the BP state,

CON � �0bLn�1

Tn�1
d

is the maximum attainable on-state capaci-

tance, CPO is the capacitance at the PO instability point,

and Cpp is the capacitance in the PP state. The scaling varia-

bles aPI (pull-in coefficient), aPO (pull-out coefficient), c
(geometry-exponent), j (scaling-exponent), and the function
~f depend exclusively on the GC of the actuator.

Equations (3)–(6) define the core set of universal scaling

relationships for electro-mechanical actuation for all GCs,

characterized by only five scaling parameters—aPI, aPO, c,

j, and the function ~f . We observe that, in practice, c � 1 and

j � 0:5 for all GCs, so that only the remaining three scaling

parameters (i.e., aPI, aPO, and the function ~f ) need to be

determined in order to predict the actuator response to a

good approximation. Additionally, the scaling function ~f can

be decomposed into a scaling parameter d and an analyti-

cally known function ~fA , as discussed in Appendix B.

Although the normalized Eq. (3) is well known and the scal-

ing solution for pull-in characteristics (Eqs. (3) and (4)) have

been verified in isolated contexts for regularized geometry,

the behavior of the pull-in and pull-out actuation voltages

and capacitances response for a full range of arbitrary

electrode geometries (characterized by n and b) and support

configurations have never been explored. The generalization

and unification of EM actuation characteristics using the

scaling results are the key contribution of this work.

III. VERIFICATION OF SCALING LAWS

We verify the scaling relationships for VPI, Cbp, VPO,

and Cpp given by Eqs. (3)–(6), respectively, for the various

GCs shown schematically in Fig. 1(c). For numerical valida-

tion, the deflected shapes of M1 are calculated using

Kirchoff-Love (KL) plate equation37 and the downward elec-

trostatic force is determined by solving Poisson equation

using Method of Moments (MOM) (see supplementary

material36 Sec. 1 for details). Note that the solution obtained

using MOM ensures that the electrostatic force includes full

3D fringing field effects. For a comprehensive and statistically

robust verification of the scaling relationships, we simulate

C-V characteristics of 100 randomly configured actuators for

each GC, with varying L, H, Ta, Td, �r, E, and �. The actua-

tion voltages VPI and VPO as well as Cbp-V and Cpp-V
responses are determined from the numerically simulated C-V
characteristics. As we see in Fig. 2(a), the actuation voltages

vary within a wide range of 0.5 V–50 V (due to the variance in

geometrical configurations and material properties). These

numerically calculated values are then used with the scaling

relationships discussed in Sec. II to determine the scaling pa-

rameters associated with specific GCs.

A. Scaling for regular electrodes

In Fig. 2(a), we plot logðVPIÞ against logðV0Þ for all the

100 devices simulated for each of the four support configura-

tions with regular bottom electrodes (n ¼ 2; 1st column in

Fig. 1(c)) and the CNT beam in fixed-fixed support configu-

ration (3rd column in Fig. 1(c)), to verify VPI scaling rela-

tionship described in Eq. (3). We observe that the simulated

data-points lie on a straight line with a slope of 1, consistent

with Eq. (3). The intercepts of the straight line is equal to

logðaPIÞ. Remarkably, aPI depends only on the GC and not

on specific physical dimensions and material properties.

Physically, we expect aPI to increase with more restrictive

support configurations (i.e., cantilever, fixed-fixed, cross-

shaped, circular in increasing order)—this hypothesis is gen-

erally supported by the results in Fig. 2(a). Similarly,

Fig. 2(b) shows that
Cbp

COFF
in the BP state has the same func-

tional dependence (defined by the scaling function ~f ) on V
VPI

,

irrespective of the actuator dimensions and material proper-

ties for each of the five cases considered. This result was

anticipated by Eq. (4).

The process of verification of scaling relationships for

VPO and PP C-V characteristics (and consequently the deter-

mination of the scaling variables aPO, c, and j) in Eqs. (5)

and (6) follows a similar procedure as described in the previ-

ous paragraph. To determine c (Eq. (5)), an intermediate step

is involved, where the value of c associated with a particular

GC is defined by the slope of a straight line fit of the plot of

logðAÞ against logðBÞ (where A � V2
PO
ðn�1ÞCON

K0z2
0

and B � z0�r

Td
;

see Fig. 2(c)). Our results show that c � 1 across the different
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GCs for a planar bottom electrode, but is somewhat lower for

CNT ðc � 0:743). Using this value of c, we plot logðVPOÞ
against logðV1Þ for all the simulated actuators from the differ-

ent GCs (Fig. 2(d)). Similar to Fig. 2(a) for VPI scaling, we find

that PO behavior also scales in accordance with a GC depend-

ent coefficient aPO, therefore verifying the VPO scaling law

(Eq. (5)). Note that aPO is also dependent on the restrictiveness

of the support configurations. Finally, we verify scaling of the

PP C-V characteristics described by Eq. (6) in Fig. 2(e), where

the line indicates a linear dependence on ð V
VPO
Þj, with j � 0:5:

Note that there is a spread in the observed value of j because

of an implicit approximation used to derive Eq. (6); however,

the value of j � 0:5 can still be justified (see Appendix C).

The table in Fig. 2(f) summarizes the values of aPI, aPO;
c, and j obtained for the five GCs thus considered. Note that

for the CNT beam, even though the functional dependence

of CðzÞ is somewhat different from the one used in Eq. (2),16

the scaling laws hold reasonably well for this case as well.

This indicates the universality of the scaling relations in Eqs.

(3)–(6). Unlike PI actuation and BP operation, PO actuation

and PP operation are associated with three GC dependent

scaling parameters—aPO, c; and j. Even if one approximates

c � 1 and j � 0:5, so as to work with single scaling parame-

ter aPO, we find that the theory estimates VPO to within 30%

across all GCs. The estimates improve significantly if the

scaling parameters are determined independently from

experiments, as will be discussed later.

B. Scaling for fractal electrodes

So far we have discussed and verified scaling laws for top

electrodes having arbitrary geometries and support configura-

tions, with the bottom electrode being assumed as planar. The

bottom electrode and the dielectric are frequently patterned to

reduce charge injection in the dielectric and to improve reli-

ability.20 Here, we show that as long as the patterned electro-

des can be approximated as a fractal (e.g., fractal electrodes for

electrochemical applications,38 and fractal antennas39), the

scaling relationships (verified for regular planar electrodes)

hold. The capacitance CðzÞ for fractal electrodes follows a sim-

ilar relationship as planar electrodes (Eq. (2)), but with an elec-

trostatic dimension n (ffi DF, the fractal dimension of the

bottom electrode) and a fractal geometry dependent factor b.

This CðnÞ-DF relationship was verified using MOM for fractal

Cantor beams (see Sec. 2 of Ref. 36 for further details).

The verification of scaling laws for fractal electrodes

(1:2 � DF � 2) with various types of supports (2nd column

in Fig. 1(c)) are summarized in Fig. 3. The methodology fol-

lows the approach used for regular electrodes as discussed

earlier. Once again, the C-V characteristics of 100 randomly

configured devices from each of the four GCs (with a spe-

cific n and DF) are obtained by numerically solving Eq. (1)

in three dimensions using MOM. The results confirm the va-

lidity of the scaling relationships anticipated by Eqs. (3)–(6)

(see Figs. 3(a)–3(d) for the specific case of a fixed-fixed

FIG. 2. Verification of the scaling laws in Eqs. (3)–(6), with simulation

results from 100 randomly configured actuators. (a) Plot of logðVPIÞ vs.

logðV0Þ to verify Eq. (3), and extraction of aPI . (b) Plot of Cbp=COFF vs.

V=VPI , verifying Eq. (4) and determination of ~f . (c) Extraction of c. (d) Plot

of logðVPOÞ vs. logðV1Þ to verify Eq. (5) and extraction of aPO.

(e) Verification of Cpp scaling law in Eq. (6) and extraction of j. (f) A table

summarizing the values obtained for aPI , aPO, c, and j for the five GCs con-

sidered for this figure, with correlation coefficients (R) of the fits.

FIG. 3. Verification of scaling laws with simulation results from 100 ran-

domly configured actuators with a fixed-fixed support configuration with

fractal bottom electrode patterning. n is varied between 1.2 and 1.8. Plots of

(a) logðVPIÞ vs. logðV0Þ (b) Cbp=COFF vs. V=VPI , and (c) logðVPOÞ vs.

logðV1Þ to verify Eqs. (3)–(5), respectively. (d) Verification of Cpp scaling

law in Eq. (6).
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support configuration). Similar results are obtained for other

types of supports as well (see Sec. 3 of Ref. 36 for further

details). The value of the scaling exponent j is found to lie

between 0.4 and 0.6 for all actuator geometries, support con-

figurations, and electrostatic dimensions due to patterned

bottom electrode.

IV. CHARACTERIZATION OF SCALING PARAMETERS

The scaling relationships in Eqs. (3)–(6) help reduce the

problem of designing new EM actuators to determining the

corresponding scaling parameters from either a few (�2–3)

characterization experiments or FEM (Finite Element

Method) simulations. Given these scaling parameters, one

can determine geometric parameters that would produce tar-

geted values of VPI, VPO, Cbp, and Cpp.

Specifically, one can use a single C-V measurement or a

numerical FEM simulation of the target system (associated with

a given geometry-class) to determine VPI and Cbp-V characteris-

tics. Since V0 for the test device is known (based on physical

dimensions and material properties), aPI and ~f are obtained

using Eqs. (3) and (4), respectively. Similarly, one can deter-

mine the remaining three scaling parameters using Eqs. (5) and

(6). Independent measurements (or simulations) of Cpp-V of two

actuators (from the same GC) having different values of Ta, Td,

or �r are sufficient to calculate the value of c, and subsequently

scaling variables aPO and j.

Once the five scaling parameters (aPI, c, aPO, j, and

function ~f ) are known based on characterization or simula-

tion data from two actuators of the same GC, the scaling

relationships will specify the actuation voltages (VPI and

VPO), as well as the Cbp-V and Cpp-V responses of any actua-

tor from the same GC.

V. CONCLUSIONS

To summarize, we have developed four fundamental scaling

relationships for key performance metrics of electromechanical

actuators, which are independent of the geometry and support

configurations imposed on the top actuating electrode, and pat-

terning on the bottom electrode. These scaling laws dictate how

the actuation voltages (Eq. (3) for VPI and Eq. (4) for VPO) and

the C-V response during both below pull-in (Eq. (5)) and post
pull-in (Eq. (6)) operation scale with device dimensions and ma-

terial parameters. Apart from providing a theoretical justification

behind the existence of these scaling laws, we have verified them

numerically using the Kirchhoff-Love plate theory for deflected

electrode shapes, and the Method-of-Moments to solve for elec-

trostatic force. This unified framework of scaling relationships

offers new insights regarding the role of beam-mechanics and

electrostatic actuation in determining the performance of electro-

mechanical actuators and allows an intrinsic geometry independ-

ent classification of all electromechanical actuators.
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APPENDIX A: DERIVATION OF SCALING
RELATIONSHIPS

After scaling z and x by scaling lengths z0 and l, Eq. (2)

therefore transforms to

~zn d4~z

d~x4
¼ � l

L

� �4 V

V0

� �2

; (A1)

where V2
0 �

2Dznþ1
0

ðn�1Þ�0bLnþ2 is a constant that depends purely on

the geometry and material properties of actuator. For the spe-

cial case of n ¼ 2 (classical planar electrodes), Eq. (A1)

reduces to a well-known form that has been studied by many

groups.24,25

In the BP state, l ¼ L, hence Eq. (A1) suggests that ~z
depends exclusively on a single parameter V

V0
. This implies

that although the value of V0 for different actuators could

vary significantly depending on varying length scales, air-

gaps and material properties, the normalized beam-shape of

all actuators at the pull-in instability point must be identical.

As a confirmation of this assertion, we see in Figs. 4(a) and

4(b) that the (numerically calculated) beam shapes overlap

perfectly in the normalized dimensions ~x and ~z at the point

of pull-in instability. The pull-in voltage, VPI; therefore,

should be a constant multiple of V0, i.e.,

VPI ¼ aPIV0 ¼ aPI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0z2

0

ðn� 1ÞCOFF

s
; (A2)

FIG. 4. Basis for scaling relationships in the case of a fixed-fixed support

configuration. (a) Top electrode shapes for 10 randomly sized fixed-fixed

actuators at the point of pull-in instability (V ¼ V�PI). (b) The beam shapes in

(a) overlap perfectly in normalized dimensions ~x and ~z. (c) Beam shapes for

a single fixed-fixed actuator during the post pull-in state. (d) The beam

shapes in (c) overlap perfectly in normalized dimensions ~x and ~z. Inset:

Variation of the length of the non-contact part of the beam (l) with voltage

(VÞ plotted to verify Eq. (6).
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where K0 � 2D
L3 is related to the effective stiffness of the top

electrode and COFF � �0bLn�1

zn�1
0

is the off-state capacitance per

unit width. Equation (3) is the same as Eq. (A2) above. The

proportionality factor aPI is the pull-in coefficient that

depends entirely on the GC of the actuator, with actuator

specific length scales and material properties being incorpo-

rated inside other terms.

Next, since capacitance per unit width is given by

Cw ¼
Ð 1

0
�0bLn�1

zn�1
0

~zn�1 d~x, it implies that Cw

COFF
¼
Ð 1

0
1

~zn�1 d~x, and there-

fore is a function dependent exclusively on V
V0

as well. In

other words, the capacitance in the BP state (Cbp) is given by

Cbp

COFF
¼ f

V

V0

� �
¼ ~f

V

VPI

� �
: (A3)

The scaling function ~f ð V
VPI
Þ depends on the GC. Equation

(4) is the same as Eq. (A3) above. This function can be fur-

ther approximated using a GC dependent scaling parameter d
and an analytical function ~fA

40 derived for the case of a

spring-mass system (see Appendix B for details).

After pull-in, only a part of M1 is in contact with the

dielectric over M2. The remaining part of M1 hangs in

the air. Therefore, l � L: Remarkably, even after pull-in, the

functional dependences of the scaled beam shapes (~z) with

respect to ~x are the same and do not depend on the specific

voltage (see Figs. 4(c) and 4(d)). This result, in combination

with Eq. (A1), leads to41

l4V2 � L4V2
PO ¼ L4V2

0~z
n d4~z

d~x4
; (A4)

where VPO is defined to be the voltage when l ¼ L (M1 con-

tacts M2 only at a single point) in the PP state, implying that

ð~x; ~zÞ ¼ ð1
2
; Td

z0
Þ at the point of PO instability. Therefore from

Eq. (A4), V2
PO ¼ V2

0ðTd

z0
Þn d4~z

d~x4. Assuming that d4~z
d~x4 ¼ fðTd

z0
Þ

/ ðz0

Td
Þg, where fðTd

z0
Þ indicates a function dependent on Td

z0
and

g is an arbitrary GC dependent constant, the expression for

V2
PO simplifies to V2

PO ¼
2Dznþ1

0

ðn�1Þ�0bLnþ2 ðTd

z0
Þnðz0

Td
Þg. Subsequently,

we obtain

VPO ¼ aPO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0z2

0

ðn� 1ÞCON

z0

Td

� �c
s

¼ aPOV1: (A5)

Here, CON � �0bLn�1

Tn�1
d

is the maximum attainable on-state ca-

pacitance, aPO is the pull-out coefficient, and c � g
2
� 1 is the

geometry-exponent. Equation (5) is the same as Eq. (A5)

above. The scaling parameters aPO and c can be determined,

given VPO is known for a pair of actuators, obtained either

from experiments or from simulation results. Similar to aPI,

aPO depends entirely on the GC of the actuator, with length

scales and material properties being incorporated inside

other terms in Eq. (A5).

The total capacitance during PP state (Cpp) has two com-

ponents, from the parts of the M1 which are either (i) sus-

pended in air or (ii) in contact with the dielectric. Therefore,

as an approximation,

Cpp � CON
Ac

A
þ Aa

A
CPO ¼ CON

ðA� AaÞ
A

þ Aa

A
CPO; (A6)

where CPO is the capacitance at the point of pull-out instabil-

ity, A is the total area of M1, Ac is the area of M1 in contact

with the dielectric on M2, and Aa is the area of M1 suspended

in air. Note that Ac þ Aa ¼ A. In case of fixed-fixed and

fixed-free support configurations, we observe that A
Aa
¼ L

l .

Therefore, after simplifying Eq. (A6) and using Eq. (A4), we

can obtain

CON � CPO

CON � Cpp
¼ A

Aa
¼ L

l
¼ V

VPO

� �j

; (A7)

where j � 0:5 is the scaling-exponent; Eq. (6) is the same as

Eq. (A7) above.

In practice, high precision numerical simulations sug-

gest that j ¼ 0:5 6 0:1. The observed spread in j reflects the

implicit approximation in Eq. (A6). In case of a circular and

cross shaped support configuration, the relation A
Aa
¼ L

l needs

to be restated differently; however, the value of j � 0:5 can

still be justified (see Appendix C for details).

APPENDIX B: ANALYTICAL APPROXIMATION FOR
Cbp-V RELATIONSHIP

The analytical expression of the scaled air-gap ( ~zA ) as a

function of V
VPI

for a spring mass model has been analytically

derived.40 Consequently, one can derive the analytical

expression for ð Cbp

COFF
ÞA as a function of ~zA for a spring-mass

system as follows:

~f A

V

VPI

� �
¼ Cbp

COFF

� �
A

¼ 1

~zA

¼ 3

1þ 2 cos
1

3
cos�1 1� 2

V

VPI

� �2
 ! ! : (B1)

We assume that the numerically obtained/experimen-

tally characterized value of the change in Cbp is proportional

to its analytical equivalent. In other words,

Cbp � COFF

COFF
¼ d� Cbp � COFF

COFF

� �
A

; (B2)

where d is a proportionality factor. Using Eq. (B2), scaling

function ~f can therefore be expressed as

~f
V

VPI

� �
¼ 1þ Cbp � COFF

COFF
¼ 1þ d� Cbp � COFF

COFF

� �
A

¼ 1þ d� 1

~zA
� 1

� �
¼ 1þ d� ~f A

V

VPI

� �
� 1

� �
:

(B3)

Substituting the value of ~zA from Eq. (B1) in Eq. (B3),

we can express the scaling function ~f analytically, in terms

of a single scaling parameter d. This claim is tested by

obtaining a best fit between numerically simulated and ana-

lytically obtained values for ~f for five GCs, namely,
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cantilever, fixed-fixed, circular membrane, and cross-beam

of electrostatic dimension n ¼ 2, and a CNT beam in Fig.

5(a). We observe that the analytical model with a best-fit d is

able to replicate the numerical results with excellent accu-

racy. In Figs. 5(b) and 5(c), we summarize the values of d
obtained for all the GCs studied in this work. The error bars

of the fitting obtained for each data point (also plotted in Fig.

5(b)) are too small to be visible atop the symbols. This indi-

cates that Eq. (B3) with scaling parameter d is an excellent

analytical approximation for the scaling function ~f .

Additionally, we observe that the normalized values of d
given by dðnÞ=dðn ¼ 2Þ exactly overlaps on top of each

other. This indicates that the value of d ¼ dgeom:dn, where

dgeom is a constant entirely dependent on the geometrical

support configuration, and dn is a constant dependent on the

electrostatic dimension of the system.

APPENDIX C: j in Cbp-V RELATIONSHIP FOR
CIRCULAR ELECTRODES

For the post pull-in state, the value of Cpp is approximated

in terms of the total electrode area (A), contacted area (Ac),

and non-contact area (Aa) (Eq. (A6)), to eventually obtain

CON � CPO

CON � Cpp
¼ A

Aa
: (C1)

In the case of a circular membrane, A
Aa
¼ R2

R2�r2, where R
is the radius of the top electrode and r is the radius of the

region in contact with the bottom electrode. Using the termi-

nology in Eq. (A6), L � R and l � ðR� rÞ, Eq. (C1) can be

written as follows:

CON � CPO

CON � Cpp
¼ R2

R2 � r2
¼ L2

L2 � ðL� lÞ2
¼ L2

l2
2L

l
� 1

� �

� L

2l
� V

VPO

� �1
2

: (C2)

Hence, the value of j � 0:5 is justified, even in the case of a

circular membrane. A similar argument can be applied for

cross-shaped electrodes as well. Apart from the approxima-

tion used in Eq. (A6), the approximation in Eq. (C2) also

contributes to the small spread observed in the values of j
(around the value of 0:5) in numerical simulations for circu-

lar and cross-shaped electrode support configurations.
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