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a b s t r a c t

The frequency response of all oxide field-effect transistors with amorphous LaAlO3 on a crystalline SrTiO3

substrate is reported. The intrinsic cut-off frequencies of 4 lm gate-length devices are found to be
approximately 17 MHz indicating that with gate length scaling gigahertz cut-off frequency is possible.
The low cut-off frequency is primarily limited by the low effective mobility. The estimated effective
mobility value determined from the S-parameter measurement is 3.8 cm2/Vs, which is consistent with
previous reports. Small-signal equivalent circuit model parameters are extracted by fitting to on-wafer
measured S-parameters. Good agreement is obtained between measured and simulated S-parameters
based on the equivalent circuit model.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Since Ohtomo and Hwang reported a high-mobility two-dimen-
sional electron gas (2DEG) can be formed at the crystalline LaAlO3/
SrTiO3 heterointerface in 2004 [1], this 2DEG has received increas-
ing attention [2–7]. Dong et al. demonstrated the first all-oxide
FETs based on modulation of the 2DEG at the interface of amor-
phous LaAlO3 and crystalline SrTiO3 [8,9]. These reported transis-
tors showed an on-current of 10 lA/lm with an on–off ratio
around 1000, and exhibited gate leakage below 10 fA/lm2. The
room temperature mobility was estimated to be approximately
4 cm2/Vs [9], which can be expected to limit the speed of these
transistors. However, until now no direct measurements of the fre-
quency response of all-oxide FETs have been reported. The applica-
tion space for all-oxide transistors is still to be determined.

2. Experiment

The measured LaAlO3/SrTiO3 FETs in this paper incorporated a
3 nm Al2O3 capping layer on top of 8 nm LaAlO3, both of which
were deposited by atomic layer deposition (ALD) on a crystalline
SrTiO3 substrate. The schematic cross section and a microscope im-
age of the transistor is shown in Fig. 1. The details of the fabrication
process are reported in [9]. Three sets of devices fabricated using

slightly different LaAlO3 deposition conditions were characterized.
Sample A was initiated with La in the first cycle of an 8 nm LaAlO3

film; sample B was the same except the first cycle was Al; and in
sample C the SrTiO3 substrate was annealed in O2 at 1000 �C for
10 min prior to the La-first-cycle 8 nm LaAlO3 deposition.

The frequency response of the transistors was characterized by
on-wafer S-parameter measurements using 150-lm pitch ground-
signal-ground (GSG) coplanar probes. The S-parameters were
measured from 30 kHz to 30 MHz using an Agilent 8753E vector
network analyzer. An open-short-load-through calibration was
performed using a CS-5 calibration substrate from GGB Industries
to establish reference planes at the probe tips. The dc bias was sup-
plied by an Agilent 4155C semiconductor parameter analyzer con-
nected through network analyzer bias tees. Current voltage (I–V)
measurements were performed through the GSG probes on the
same S-parameter test structure. Measured common source char-
acteristics are shown in Fig. 2. The dc I–V characteristics are similar
to those reported in [9].

3. Results and discussion

The current gain, h21, and the unilateral power gain, U, of typical
4 lm gate length transistors for each of the three LaAlO3/SrTiO3

interface conditions is shown in Fig. 3, where all transistors are
biased at their peak current gain cut-off frequency, fT. Relatively
modest differences are observed for the frequency response among
these three samples, with the oxygen-treated sample performing
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slightly better than either of the un-annealed samples. The low
cut-off frequency and maximum oscillation frequency of the
transistors is primary due to the low effective channel mobility,
which leads to low transconductance, gm, and high source and
drain access resistances.

In order to investigate the transistors’ intrinsic frequency re-
sponse, a small-signal equivalent circuit model was constructed
and the extrinsic parasitics were extracted following the procedure
outlined in [10]. The small-signal equivalent circuit model is
shown in Fig. 4; in this conventional transistor model, RG, RS, and
RD represent the gate, source, and drain resistances, and CGS, CGD,
and CDS represent the gate-source, gate-drain, and drain–source
capacitances. rO is the small-signal output resistance. The

voltage-controlled current source is expressed in terms of the
transconductance, gm, and the voltage V1 appearing across the

(a) (b)
Fig. 1. (a) Schematic cross section and (b) a microscope image of the LaAlO3/SrTiO3 all-oxide FET.
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Fig. 2. Measured (a) drain current vs. gate-source voltage, ID–VGS, and (b) drain current vs. drain–source voltage, ID–VDS, for a representative LaAlO3/SrTiO3 FET.
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Fig. 3. Small-signal RF performance of the transistors with 4-lm gate length on three samples: (a) La-first, (b) Al-first, and (c) oxygen treated.

Fig. 4. Small-signal equivalent circuit of the all-oxide FET.
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intrinsic gate-source capacitance. The capacitance CPD represents
the parasitic capacitance of the contact pads. The extracted param-
eter values of a typical transistor on sample A (La-first) are
RG � 0 X, RS = RD = 643.5 X, CGS = 4.34 pF, CGD = 2.24 pF, gm = 592
lS, rO = 6.29 kX, and CPD = 1.31 pF; similar values were obtained
for devices on the other two samples. A parasitic drain-to-source
capacitance in the picofarad range is needed to account for the
excess capacitance associated with the drain pad in these non-iso-
lated devices. A similar value of parasitic capacitance was also
measured in an open-circuit coplanar structure on each sample,
indicating that this is a layout-induced parasitic and is not related
to the intrinsic device structure.

Good agreement between measured S-parameters and the
equivalent circuit model fits was obtained for all the transistors
on three samples. Fig. 5 shows a typical example for a typical tran-
sistor on sample A; as can be seen, the frequency response of all of
the S-parameters tracks closely the model behavior. The extracted
transconductance from the small-signal equivalent circuit was
compared to the derivative of the measured dc I�V curve. Good
agreement between the small signal equivalent circuit model
extraction and the dc measurement supported the validity of the
equivalent circuit model. For example, for the three samples A, B,
and C, the measured transconductance from S-parameter measure-
ments was 0.37, 0.35, and 0.30 mS, while the transconductance
from dc measurements at the same bias condition was 0.39, 0.40,
and 0.35 mS.

The extracted source resistance and drain resistance are be-
tween 120 and 180 kX-lm at a gate width of 200 lm and the
gate-source/drain spacing of 1 lm for all three samples. This ex-
tracted resistance can be accounted for by the high sheet resistance
in the 2DEG, which is estimated to be in the range of 120–180 kX/
sq, and is close to the reported values in [9]. In general, it is chal-
lenging to minimize parasitic resistance in all-oxide transistors.

By mathematically removing the effects of the extrinsic resis-
tances, RG, RS, and RD, and capacitance, CPD, the intrinsic device RF
performance can be projected, as shown in Fig. 6. The maximum
frequency of oscillation, fmax, increases by a factor of �20, due to
significantly reducing the output RC time constant with estimated
values of 13–15 ns for the three samples. The cut-off frequency, on
the other hand, does not increase as much because it is limited

primarily by the low effective mobility with estimated values of
4–6 cm2/Vs and the long channels. With scaling the channel length
below 50 nm, we may expect the cut-off frequency over 1 GHz.

To estimate the effective mobility, we employ a first-order
approximation. Assuming the transistor is biased in the triode
region and the charge and the electric field are uniformly distrib-
uted in the channel, the drain current can be estimated as
ID = Qv/L = QlE/L = Ql[VDS � ID (RS + RD)]/L2, where Q is the total
charge in the channel, v is the velocity, L is the gate length, and
l is the effective mobility. The charge Q can be estimated by the
ac measurement as Q = CGVGS, where CG is the total gate capaci-
tance. Therefore the effective mobility can be estimated as
l = IDL2/{CGVGS[VDS � ID (RS + RD)]}. The effective mobility of the
transistor on sample A (La-first) is estimated to be 3.8 cm2/Vs,
which is consistent to the previous reported value of 3.9 cm2/Vs
in [3]. Similar results are obtained on the other structures, with
3.8 and 5.6 cm2/Vs for sample B and C, respectively. The effective
mobility can also be extracted based on the Y-function,
Y ¼ ID=

ffiffiffiffiffiffi

gm
p

, or peak transconductance after Ghibaudo [11]. The
extracted mobilities based on these two techniques for all three
wafers are in the range of 2–4 cm2/Vs, with good agreement
between extraction methods.

From the mobility and sheet resistance, the charge density in
the 2DEG can be estimated as N = 1/qlRSH, where RSH represents
the sheet resistance of the 2DEG and can be extracted from trans-
mission line measurements. As an example, the extracted sheet
resistance on sample A (La-first) is approximately 117 kX/sq,
which is close to the reported value of 140 kX/sq in [9]. Therefore,
the charge density is estimated to be 1.4 � 1013 cm�2.

4. Conclusion

The frequency response of the LaAlO3/SrTiO3 all-oxide FETs is
measured for the first time. The extracted parameters from the
small-signal equivalent circuit are consistent with the dc charac-
teristics. The effective mobility extracted from the ac measure-
ments is also consistent with the dc measurements and confirms
a value of approximately 4 cm2/Vs. The intrinsic cut-off frequen-
cies on 4 lm gate-length devices are found to be approximately
17 MHz indicating that with gate length scaling gigahertz cut-off
frequency is possible in all-oxide transistors.
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