Facile synthesis of ultra-small Bi2Te3 nanoparticles, nanorods and nanoplates and their morphology-dependent Raman spectroscopy

Liangliang Chen  
*Purdue University*, chen277@purdue.edu

Qing Zhao  
*Purdue University*, zhao172@purdue.edu

Xiulin Ruan  
*Purdue University - Main Campus*, ruan@purdue.edu

Follow this and additional works at: [http://docs.lib.purdue.edu/nanopub](http://docs.lib.purdue.edu/nanopub)  
Part of the *Nanoscience and Nanotechnology Commons*

Chen, Liangliang; Zhao, Qing; and Ruan, Xiulin, "Facile synthesis of ultra-small Bi2Te3 nanoparticles, nanorods and nanoplates and their morphology-dependent Raman spectroscopy" (2012). *Birck and NCN Publications*. Paper 868.  
[http://dx.doi.org/10.1016/j.matlet.2012.04.135](http://dx.doi.org/10.1016/j.matlet.2012.04.135)
Facile synthesis of ultra-small Bi$_2$Te$_3$ nanoparticles, nanorods and nanoplates and their morphology-dependent Raman spectroscopy

Liangliang Chen, Qing Zhao, Xiulin Ruan *
School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

Abstract

High-crystalline 0D, 1D and 2D ultra-small Bi$_2$Te$_3$ nanocrystals were synthesized using the pyrolysis of organometallic compound method. The Bi$_2$Te$_3$ nanocrystals was studied with transmission electron microscopy (TEM). Samples synthesized at 35 °C possessed a dominant morphology of 0D nanoparticles or 1D nanorods, while samples synthesized at temperatures higher than 75 °C possessed a dominant morphology of 2D nanoplates. Phonon vibrations were investigated by Raman spectroscopy. The 2D nanoplates showed similar Raman features as few-quintuple-thick Bi$_2$Te$_3$ layers, while the 0D and 1D nanostructures showed a blue-shifted A$_{1g}^2$ mode and a much stronger A$_{1u}$ mode. This is the first report regarding the morphology effect on the Raman-active phonon modes of Bi$_2$Te$_3$ nanocrystals.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Bismuth telluride based alloys have received extensive attention by virtue of their excellent TE performance at room temperature. Bulk Bi$_2$Te$_3$-based alloys possess a ZT value close to 1 [1]. However, in order for TE power generation to become competitive to other power generation approaches, a ZT value of 4 is required [2].

Theoretical studies showed that making bulk TE materials into nanostructures could enhance their performance by decreasing their phonon thermal conductivity. Hicks et al. showed that the ZT value of Bi$_2$Te$_3$ quantum well might be 9 times higher than the bulk value [3] and the ZT value of 1D Bi$_2$Te$_3$ nanowire could be increased to ~14 from the bulk value [4].

Despite the progress in the synthesis of Bi$_2$Te$_3$ nanocrystals [5–8], the synthesis of pure-phase Bi$_2$Te$_3$ nanoparticles smaller than 10 nm still remains a challenge due to the high reactivity between bismuth and tellurium salts. To summarize, Bi$_2$Te$_3$ nanoparticles can be synthesized via methods like co-precipitation [9], reverse micelle [10], micro-emulsion [11], reduction of metal-organo complexes [12], and hydrothermal (solvothermal) method [8]. Due to the application of high pressure, hydrothermal (solvothermal) approaches normally result in oversized Bi$_2$Te$_3$ nanocrystals [8]. Purkayastha et al. [11] developed a micro-emulsion method to synthesize Bi$_2$Te$_3$ nanoparticles of 5 nm, however the XRD results showed the existence of sulfur-related impurities. Scheele et al. [12] used a two-step reduction method to produce nanoparticles of 7 nm, but there was still a trace of impurities.

Raman spectroscopy has been used to detect the lattice vibration of Bi$_2$Te$_3$ materials. With Raman spectroscopy, the influence of thickness in few-quintuple Bi$_2$Te$_3$ layers and chemical stoichiometry in Bi$_2$Te$_3$ films has been studied [5–7,13]. To our best knowledge, no work has been done to study the phonon modes in Bi$_2$Te$_3$ nanorods and small Bi$_2$Te$_3$ nanoparticles whose sizes are within the strong quantum confinement region.

In this work, using pyrolysis of organometallic compounds, high-crystalline, pure Bi$_2$Te$_3$ nanoparticles as small as 2 nm were synthesized. Furthermore, Bi$_2$Te$_3$ nanocrystals of various morphologies were also synthesized. The morphology effect on the phonon vibrations in Bi$_2$Te$_3$ nanocrystals was then studied.

2. Experimental details

All chemical reagents, unless stated otherwise, were purchased from Alfa Aesar. For synthesis, a mixture of 1.82 mmol tellurium powder and 3 ml tri-n-octylphosphine was loaded into a flask and then heated up to 250 °C. The solution turned clear in 5 min and was immediately removed from the heater and transferred into a syringe for injection after it cooled down. A mixture of 1.22 mmol bismuth acetate, 20 ml oleic acid (TCl America), and 20 ml octadecene was loaded into a flask and then heated to different temperatures and kept there for 10 min. After the solution turned clear, the tellurium precursor was quickly injected (~0.5 s) with vigorous stirring. After injection, the temperature of the solution dropped by 5 °C and was kept at that temperature until the reaction was quenched. The as-prepared nanocrystals were precipitated by adding a mixture of...
ethanol and acetone to the solution and then washed by repeating the dispersion/precipitation cycle three times. The synthesis detail of each sample is shown in Fig. 1.

For characterization, the washed samples were either dissolved in hexanes or deposited on glass substrates. X-ray diffraction patterns were recorded on Bruker D8 X-ray Diffractometer. TEM and HRTEM images were taken on Titan Field-Emission TEM with an accelerating voltage of 300 kV. Raman spectra were recorded at room temperature on Renishaw Invia Raman Microscope. The 633 nm excitation laser had a spot size of 5 μm and a power of 0.5 mW.

3. Results and discussions

XRD patterns are shown in Fig. 1. All the patterns match the record of rhombohedral-structured Bi₂Te₃ (JCPDS 82–0358). No unidentified peaks exist, indicating that the samples are impurity-free.

Representative TEM images are shown in Fig. 2. Fig. 2a and b is taken at different locations of Sample 1, made at the lowest reaction temperature (35 °C) that can yield Bi₂Te₃. The average size of nanoparticles in Sample 1 is 3 ± 1 nm, much smaller than nanoparticles made by other groups. The inset of Fig. 2a is the high-resolution TEM image of a single nanoparticle in Sample 1. Despite the existence of some lattice faults, the existence of periodical atomic arrangement confirms the high crystallinity of the nanoparticle. Although no obvious agglomeration of nanoparticles is observed and the dominant morphology is 0D nanoparticle, some nanoparticles are seen to self-arrange into line shapes, shown in Fig. 2b, indicating the tendency of nanoparticles growing into nanorods.

Fig. 2c shows the morphology of Sample 2, produced with a longer reaction time compared with Sample 1. Bi₂Te₃ nanorods have formed in Sample 2, matching the tendency of nanoparticles self-arranging into the line shape seen in Sample 1. The diameters of nanorods in Sample 2 match the diameters of nanoparticles in Sample 1. Although in Sample 2 some nanoparticles have grown into quasi-2D nanoflakes, the dominant morphology is OD nanoparticle and 1D nanowire.

Fig. 2d shows the morphology of Sample 3, made at a higher temperature compared with Sample 2. Compared with Sample 2, the growth of quasi-2D nanoflakes in Sample 3 has been significantly boosted, changing the dominant morphology from OD and 1D nanocrystals in Sample 2 to 2D nanoflakes in Sample 3.

Fig. 2e and f shows the morphologies of Samples 4 and 5 respectively, both made at higher temperatures compared with Sample 3. It is seen that further increase in reaction temperature leads to no significant morphology change but improvement in the crystallinity. Although both 1D nanorods and 2D nanoflakes have been observed to grow larger, the dominant morphology is still 2D nanoflakes in both Samples 4 and 5. The murky image of nanoflakes in Sample 4 can be traced back to the partially crystallized parts and hence a relatively low local crystallinity, while Fig. 2f shows that the crystallinity has been improved in Sample 5, which can be attributed to the increased reaction temperature. The morphology information of each sample is summarized in Fig. 4.

Fig. 3 shows a high-magnification TEM image and its corresponding fast Fourier transform electron diffraction pattern (FFTEDP) obtained on the nanoplate in Sample 5. The uniform contrast all over the image confirms the thickness uniformity of the nanoplate. The diffraction pattern...
in the FFTEDP shows six-fold symmetry and can be matched with the projection of the Bi₂Te₃ reciprocal lattice in [0001] diffraction, implying both surfaces of the nanoplate are parallel to (0001) planes.

With the Bi₂Te₃ nanocrystals of various morphologies, the morphology effect on Raman features is systematically studied. Representative Raman spectra are shown in Fig. 4. All the spectra are normalized to the intensity of A₁u mode. Five samples show two distinct sets of Raman features. The spectra of Samples 1 and 2 are similar, while the spectra of Samples 3, 4 and 5 are similar.

In the spectra of Samples 3, 4 and 5, three vibrational modes, E₂, A₁u, and A₂g, are present, among which E₂ and A₂g are Raman active and A₁u is forbidden in bulk Bi₂Te₃. However, Tewelderhan et al. [6,7] have shown that the A₁u mode shows up in 2D few-quintuple Bi₂Te₃ layers due to the symmetry breaking in atomically-thin films. Considering the dominant morphology in Samples 3, 4 and 5 is 2D nanoplate, it’s reasonable that their Raman features match the record of 2D few-quintuple Bi₂Te₃ layers [6,7].

Due to symmetry breaking, A₁u mode becomes active not only in 2D nanostructure, but also in 0D and 1D structures. As the dimension shrinks from 2D to lower dimensions, the relative intensity of A₁u mode increases, which obscures the in-plane E₂ mode and makes it almost invisible, and the frequency of the A₂g mode shifts from 135 cm⁻¹ to 143 cm⁻¹. Although previous investigations on the blueshift of Raman modes in semiconductor nanocrystals have proposed several possible causes, like lattice contraction [14] and temperature decrease [15], the origin of the A₂g-mode blueshift from 2D structure to 0D/1D structure is not clear yet. Considering the morphology difference between 2D and 0D/1D structures, the blueshift of the mode can be induced by the shrink in the axial direction of the 0D/1D structure.

4. Conclusions

In conclusion, we have synthesized high-crystalline, impurity-free Bi₂Te₃ nanoparticles as small as 2 nm. We have also synthesized Bi₂Te₃ nanocrystals of various morphologies and systematically studied the growth of Bi₂Te₃ nanocrystals. The reaction temperature has a significant influence of the morphology of the nanocrystals. 0D/1D morphologies are dominant at low reaction temperatures, while 2D morphology becomes dominant at temperatures above 75 °C. Phonon vibrations have been studied by Raman spectroscopy. The originally Raman-inactive mode in bulk Bi₂Te₃, A₁u, appears in all 0D, 1D and 2D nanocrystal samples. With further shrink in dimension from 2D to 1D and 0D, the A₁u phonon mode is further intensified and the A₂g mode shifts to the higher-frequency side.

Acknowledgements

This work was partially supported by the National Science Foundation (Award # CBET-0933559) and the Purdue Cooling Technologies Research Center, an NSF-Industry Cooperation Research Center. Discussions with Dr. Bhat are appreciated.
References