1992

Efficiency Improvement of Inverter Rotary Compressor by the Optimal Design of Vane

J. Park
Samsung Electronics Company; Korea

W. Lee
Samsung Electronics Company; Korea

H. Kim
Samsung Electronics Company; Korea

Follow this and additional works at: http://docs.lib.purdue.edu/icec

http://docs.lib.purdue.edu/icec/856

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/Herrick/Events/orderlit.html
EFFICIENCY IMPROVEMENT OF INVERTER ROTARY COMPRESSOR BY THE OPTIMAL DESIGN OF VANE

Jeongsoo Park¹, Wonseok Lee², Hyungsuk Kim²
R&D CENTER, SAMSUNG ELECTRONICS CO.,

ABSTRACT

To improve the efficiency of the inverter rotary compressor we analyse the dynamic characteristics of the moving parts of the compressor and designed a new vane which has the reduced size and mass to decrease the inertia force of vane and the contact force between roller and vane.

Numerical analysis is used for calculating the temperature and the stress distribution of both the roller and the vane as well as the cylinder using the commercial FEM (Finite Element Method) program I-DEAS to confirm the reliability of the new vane.

We get some mechanical properties such as friction coefficients and Young's Moduli of vane and roller by the experiments.

To predict the wear characteristics of the vane at high rotating speed of roller we get the relationship between the wear rate of vane and rotating speed of the roller using AE (Acoustic Emission) technique from the wear tests.

List of symbols

\[\begin{align*}
 a & \quad \text{Acceleration of vane} \\
 C_x & \quad \text{x coordinate of contact point between vane and roller from vane tip center} \\
 C_y & \quad \text{y coordinate of contact point between vane and roller from vane tip center} \\
 e & \quad \text{Eccentricity of roller center} \\
 F & \quad \text{Contact force between vane and roller} \\
 F_a & \quad \text{Inertia force of vane} \\
 F_s & \quad \text{Spring force of vane} \\
 k & \quad \text{Spring Constant} \\
 L & \quad \text{Depth of cylinder} \\
 m_v & \quad \text{Mass of vane} \\
 N & \quad \text{Reaction force at vane} \\
 O & \quad \text{Origin of the cylinder} \\
 O_r & \quad \text{Origin of the roller} \\
 O_t & \quad \text{Origin of the vane tip radius} \\
 P_c & \quad \text{Pressure in the compression chamber} \\
 P_d & \quad \text{Pressure inside closed housing} \\
 P_s & \quad \text{Pressure in the suction chamber} \\
 R & \quad \text{Reaction force at support} \\
 q & \quad \text{Distributed force} \\
 q_w & \quad \text{Wear rate} \\
 r_o & \quad \text{Outer radius of roller} \\
 r_i & \quad \text{Inner radius of roller}
\end{align*} \]

¹. Senior Research Engineer
². Engineer
\text{\textbf{Vane tip radius}}
\text{\textbf{S}} \text{\textsubscript{v}} \text{Free length of spring}
\text{\textbf{t}} \text{\textsubscript{v}} \text{Vane slot length}
\text{\textbf{T}} \text{Torque due to friction between vane and roller}
\text{\textbf{T}} \text{\textsubscript{c}} \text{Temperature in the compression chamber}
\text{\textbf{T}} \text{\textsubscript{s}} \text{Temperature in the suction chamber}
\text{\textbf{v}} \text{\textsubscript{c}} \text{Maximum suction volume}
\text{\textbf{v}} \text{\textsubscript{s}} \text{Volume of the compression chamber}
\text{\textbf{W}} \text{Weight}
\text{\textbf{w}} \text{Thickness of vane}
\text{\textbf{x}} \text{Displacement of vane}
\alpha \text{Angle of } \overline{O \text{c}O \text{p}} \text{and } x \text{axis}
\text{\textbf{\beta}} \text{proportional constant}
\theta \text{Rotating angle of crank shaft}
\text{\textbf{\kappa}} \text{Polytropic coefficient}
\mu \text{Coefficient of friction between vane and roller}
\mu \text{Coefficient of friction between vane and slot}

\textbf{Introduction}

The rolling piston rotary compressors are widely used for the domestic air conditioners now. The advantages of this compressor are high efficiency, compact size, and light weight compared to the conventional compressors.

Now the rapid development of semiconductor enables to control the speed of the motor easily using the inverter control technology. The compressor driven by the inverter motor has the variable rotating speed between 1800 rpm and 10800 rpm and their operation conditions generally more severe than the conventional rotary compressors.

In this paper we analyse the equation of motion of vane and roller of rolling piston rotary compressor whose speed is changed and perform the computer simulation of the motion of vane and roller. Next we design the new type of vane on the basis of analysis of motion and show the reliability of the vane. Experiments are undertaken to determine some mechanical properties of vane and roller and to examine the wear between vane and roller.

\textbf{Equation of motion of vane and roller}

We can see the construction of the rolling piston rotary compressor in Fig. 1. The specification of the compressor is shown in Table 1 and the dimensions of the cylinder, vane and piston are shown in Table 2.

1. Definition of coordinate system and variables

The coordinates system and variables are defined to derived the equations of motion of vane and roller, as shown in Fig. 2. The main variables are the rotating angle \(\theta \) of crankshaft from \(x \)- axis and the rotating angle of the piston.
2. Pressure in compression chamber

The volume of compression chamber can be calculated from the following equation:

\[V_c = [\pi r_b^2 - \pi r_1^2 - (\pi r_b^2 \times \frac{\theta}{(2\pi)} - \pi r_1^2 (\theta + \alpha)/(2\pi) - \frac{1}{2}x_{ve} \sin \theta \\
- \pi r_b^2 a/(2\pi)) - \frac{1}{2}(h_w + \pi r^2 \times \gamma/(2\pi) - \pi r \cos \gamma/2] \times L \] \hspace{1cm} (1)

where

\[\sin \gamma = w/(2rv) \]

The maximum volume of suction chamber can be given by the equation as follows:

\[V_o = (\pi r_b^2 - \pi r_1^2) \times L \] \hspace{1cm} (2)

The pressure of the compression chamber is calculated from the following equation:

\[P_c = P_a \times \left(\frac{V_o}{V_c} \right)^x \] \hspace{1cm} (3)

The temperature of the compression chamber is calculated from the equation as follows:

\[T_c = T_a \times \left(\frac{P_c}{P_a} \right)^{\frac{x-1}{x}} \] \hspace{1cm} (4)

3. Equation of motion of vane

The forces acting on the vane are the spring force, inertia force of vane itself and contact force. The spring force \(F_{vs} \) is calculated from the following equation:

\[F_{vs} = k (S_b + x_v + h_{ve} - S_a) \] \hspace{1cm} (5)

The inertia force \(F_{vi} \) is given by the following form:

\[F_{vi} = -m x_v g''(\theta) \] \hspace{1cm} (6)

where

\[g''(\theta) = \frac{-34((r_1 + r_v)^2 - e^2 \sin^2 \theta)^{3/2} \epsilon^2 \sin^2 \theta}{(r_1 + r_v)^2 - e^2 \sin^2 \theta}^{1/2} \epsilon (2 \sin^2 \theta - 1) - \epsilon \cos \theta \]

\[= \frac{x_v}{w} \]

The contact force \(F_r \) between vane and roller is calculated from the following equation:

\[F_r = (m(a_v - A)) / A8 \]

\[= \frac{m(a_v - \left(\frac{\mu_s (2 (A_2 - m a_v w/2)/A7 - A1) + A3)}{A6 + 2 m a_8 A7 - \mu_s A4} \right)}{A6 + 2 m a_8 A7 - \mu_s A4} \] \hspace{1cm} (7)
where

\[\phi_h = h - d - C \]
\[A_1 = (P_s - P_e)\phi_h \times 1 \]
\[A_2 = F_v(w/2) + F_d \times \frac{w}{2} + (P_s - P_e)\phi_h^2 \times \frac{1}{2} \]
\[- P_e(w/2 - C_y)1(3w/4 + C_y/2) \]
\[- P_s(w/2 + C_y)1(w/2 + C_y)/2 \]
\[A_3 = P_e(w/2 - C_y)1 + P_s(w/2 + C_y)1 - F_v - P_d \times w \]
\[A_4 = \sin \alpha - \mu_r \cos \alpha \]
\[A_5 = \mu_r \cos \alpha \times \phi_h - \mu_r \sin \alpha \times (w/2 + C_y) - \cos \alpha \times (w/2 + C_y) \]
\[- \sin \alpha \times \phi_h \]
\[A_6 = \cos \alpha + \mu_r \sin \alpha \]
\[A_7 = \tau + \mu_s \sigma \]
\[A_8 = A_6 + 2\mu_s A_5/A_7 - \mu_s A_4 \]
\[A_9 = \mu_s[2(A_2 + w/v(w/2))/A_7 - A_1] + A_3 \]

All the forces acting on the vane are shown in Fig.3.

4. Computer simulation

We can see the results of calculation of the pressure and temperature in the compression chamber from (1) and (2) in Fig.4 - 5.

The variation of inertia force of the vane with rotating angle is shown in Fig.6 - 7. The inertia force of the of the thinner vane is reduced by 25%.

We can see the variation of the contact force in Fig. 8 - 11. The contact force is increased by the inertia force which acts in the direction of the center of roller for the rotating angle between 90 degrees and 270 degrees. For the rotating speed of 3600 rpm, there is no effect of the inertia force on the contact force. The contact force is affected by the inertia force for the rotating speed of 7200 rpm.

By reducing the thickness of the vane, the effect of force by the back pressure is greatly reduced, as shown in Fig. 10. The effect of the reduced mass of the vane is slight, as shown in Fig. 11.

Numerical analysis

FEM (Finite Element Method) is used to obtain the temperature, stress and deformation distribution of the vane and roller using the commercial FEM program 1 - DEAS. We have reduced the thickness of the vane and review the strength of the new vane and the interference of it with the slot.

We use 8-nodes shell element in calculation and the number of elements and nodes in use are 1176 and 1350, respectively.

The analysis is performed when the rotating angle is 0 degree and 235 degree. We can see the results of the numerical analysis in Fig. 12 - 16.

The maximum displacement of the modified vane is larger than conventional one by 5.3% and vane tip displacement by 2.0%. Vane tip stress of the modified vane decreases by 6.0%. The effective stress is much smaller than the yield strength of vane material.
Experiment

1. Measurement of friction coefficient of vane and roller

We can see the testing apparatus for coefficient of friction in Fig. 17. It is calculated from the following equation:

\[\mu = \frac{\tau}{N r_1} = \frac{\tau_a}{[W_b(\alpha/2)((d^2-c^2))r_1]}. \] (8)

The results of the test can be seen in Table 3.

2. Measurements of Young’s Moduli of vane and roller

We measure the Young’s Moduli of vane and roller by the normal mode analysis because the specimens are so small that we cannot use the UTM (Universal Testing Machine) for tension or bending test. To measure the natural frequency of the specimen we use the testing apparatus shown in Fig. 18. The Young’s Modulus is calculated by FEM using trial error method. The results of the test can be seen in Table 4.

3. Wear test

To predict the wear phenomenon between roller and vane we derive the equation using the acoustic emission technology.

In the steady state of wear process, AE energy rate is linearly proportional to wear rate. The relationship can be written in the following form:

\[\dot{E}_{AE} = \beta \mu \cdot N q \] (9)

To prove the equation above we perform the wear test. The chemical composition and hardness of the vane and roller are shown in Table 4. We can see the configuration of the specimen in Fig. 19.

Block diagram of apparatus for the wear test is shown in Fig. 20. The rotating speed is continuous during the steady state. For the 5 different rotating speeds (118, 233, 355, 455, 585 rpm) wear test is performed.

In Fig. 21 the change of AE RMS voltage, AE peak amplitude, and AE energy rate are shown. The AE peak amplitude is increased as the rotating speed is increased. The wear rate and wear amount per running distance for various velocity is shown in Fig. 22. The wear rate in 118 and 585 rpm is smaller than that in 233, 355 and 455 rpm. The time needed to reach the steady state grows shorter as the rotating speed grows larger, shown in Fig. 23. We can see the results of the frequency analysis in Fig. 24.

Conclusion

In this research we analyze the moving parts of the rolling piston type rotary compressor for improved performance of the compressor at variable speed. The summary of the research is as following:
1. From the dynamic analysis of the vane and roller we can predict the motion of the vane and roller including forces acting on those.
2. The influence of the inertia force on the contact force is not negligible for the rotating speed of 7200 rpm above.
3. The thickness of the vane affects the contact force for all the rotating speed.
4. The modified vane shows good reliability.
5. It is possible to predict the wear rate between vane and roller using the AE technique.

References

Fig. 1. A sectional view of the rotary compressor.
Fig. 2. Definition of coordinates and variables.

Fig. 3. All the forces acting on the vane.

Fig. 4. Variation of pressure in the compression chamber.

Fig. 5. Variation of temperature in the compression chamber.

Fig. 6. Variation of the inertia force with the rotating angle (3600 rpm)

Fig. 7. Variation of the inertia force with the rotating angle (7200 rpm)
Fig. 8. Variation of the contact force with the rotating angle (3600 rpm)

Fig. 9. Variation of the contact force with the rotating angle (7200 rpm)

Fig. 10. Variation of the maximum contact force with the rotating speed. (mass of vane changed)

Fig. 11. Variation of the maximum contact force with the rotating speed. (thickness of vane changed)

Fig. 12. Temperature field of the compressor.

Fig. 13. Total effective stress field of the compressor.
Fig. 14. Total displacement field of the compressor.

Fig. 15. Total effective stress field of the compressor (modified vane).

Fig. 16. Total displacement field of the compressor (modified vane).

Fig. 17. Experimental apparatus for measurement of coefficient of friction.
Fig. 18. Experimental apparatus for measurement of natural frequency.

(a)

(b)

Fig. 19. Configuration of vane and roller. (a) roller (b) vane

Fig. 20. Block diagram of wear testing apparatus.
Fig. 21. AE results in wear test.

Fig. 22. Variation of wear rate with velocity.

Fig. 23. Variation of time to steady state with velocity.

Fig. 24. Results of frequency analysis using FFT analyzer.
(a) 118 rpm (b) 233 rpm (c) 355 rpm (d) 455 rpm (e) 585 rpm

Fig. 25. Relation between AE energy rate and wear rate.

Table 1. The specification of the compressor and vane.

<table>
<thead>
<tr>
<th>Compressor</th>
<th>Capacity</th>
<th>11000 Btu/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight</td>
<td>127.5 lb</td>
</tr>
<tr>
<td></td>
<td>Synchronous Speed</td>
<td>3600 rpm</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>750 W</td>
</tr>
</tbody>
</table>

Table 2. The dimensions of the cylinder, vane and piston.

Cylinder Diameter	37.2
Cylinder Depth	31.3
Vane Thickness	6.74
Roller Diameter	49.9
Table 3. The coefficients of friction of vane and roller.

<table>
<thead>
<tr>
<th>Wet Condition</th>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Condition</td>
<td>Static</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>Dynamic</td>
<td>0.137</td>
</tr>
</tbody>
</table>

Table 4. The natural frequency and Young's modulus of vane and roller.

<table>
<thead>
<tr>
<th></th>
<th>Natural Freq. (Hz)</th>
<th>E (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VANE</td>
<td>24821</td>
<td>142</td>
</tr>
<tr>
<td>ROLLER</td>
<td>12085</td>
<td>123.5</td>
</tr>
</tbody>
</table>

Table 5. The chemical composition and hardness of vane and roller.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Components of material (%)</th>
<th>Hardness, Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vane</td>
<td>Fe 78.07, W 8.72, Nb 6.67, Cr 4.66, V 2.09</td>
<td>61 - 62.5</td>
</tr>
<tr>
<td>Roller</td>
<td>Fe 95.94, Si 2.58, Cu 0.90, Cr 0.71</td>
<td>46 - 54</td>
</tr>
</tbody>
</table>