Sources and implications of resonant mode splitting in silicon nanowire devices

Molly Nelis
Purdue University, mnelis@purdue.edu

LIn Yu
Purdue University, yulin@purdue.edu

Weixia Zhang
Purdue University, zhang342@purdue.edu

Yanjie Zhao
Purdue University, yzhao@purdue.edu

Chen Yang
Purdue University, yang@purdue.edu

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub

Nelis, Molly; Yu, LIn; Zhang, Weixia; Zhao, Yanjie; Yang, Chen; Raman, Arvind; Mohammadi, Saeed; and Rhoads, Jeffrey, "Sources and implications of resonant mode splitting in silicon nanowire devices" (2011). *Birck and NCN Publications*. Paper 827.
http://dx.doi.org/10.1088/0957-4484/22/45/455502

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Authors
Molly Nelis, LIn Yu, Weixia Zhang, Yanjie Zhao, Chen Yang, Arvind Raman, Saeed Mohammadi, and Jeffrey Rhoads

This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/nanopub/827
Sources and implications of resonant mode splitting in silicon nanowire devices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Nanotechnology 22 455502

(http://iopscience.iop.org/0957-4484/22/45/455502)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 128.46.220.170
The article was downloaded on 19/12/2011 at 15:13

Please note that terms and conditions apply.
Sources and implications of resonant mode splitting in silicon nanowire devices

M R Nelis1,2, L Yu1,3, W Zhang4, Y Zhao3, C Yang1,3,4, A Raman1,2, S Mohammadi1,5 and J F Rhoads1,2,6

1 Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
2 School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
3 Department of Physics, Purdue University, West Lafayette, IN 47907, USA
4 Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
5 School of Electrical Engineering, Purdue University, West Lafayette, IN 47907, USA
6 Ray W Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA

E-mail: jfrhoads@purdue.edu

Received 22 June 2011, in final form 23 June 2011
Published 21 October 2011
Online at stacks.iop.org/Nano/22/455502

Abstract

This work investigates the effects of asymmetric cross-sectional geometry on the resonant response of silicon nanowires. The work demonstrates that dimensional variances of less than 2% qualitatively alter a nanosystem’s near-resonant response, yielding a non-Lorentzian frequency response structure, which is a direct consequence of resonant mode splitting. Experimental results show that this effect is independent of device boundary conditions, and can be easily modeled using continuous beam theory. Proper understanding of this phenomenon is believed to be essential in the characterization of the dynamic response of resonant nanowire systems, and thus the predictive design of such devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Resonant nanowire systems have demonstrated utility in applications ranging from radio frequency (RF) filtering and mass sensing to quantum-level detection [1, 2]. The functionality of these devices is commonly founded upon the single-peak, Lorentzian frequency response structure that is associated with a predominately single-degree-of-freedom resonator. Nanofabrication process variability results in structures with asymmetric cross-sectional geometries. Silicon nanowires, for example, commonly feature irregular hexagonal cross sections [3, 4], as shown in figure 1. Small dimensional variances and asymmetries (often <2% of the nominal dimension) qualitatively alter a nanosystem’s near-resonant response, yielding a multi-peak, non-Lorentzian frequency response structure. This mode splitting effect has been experimentally verified by Biedermann, Gil-Santos, and their respective collaborators [5, 6]. Given the endemic nature of this response feature in all resonant nanowire devices, particular care must be taken to account for this effect in the course of predictive device design.

2. Modeling

Generally speaking, resonant mode splitting does not occur in devices with circular or regular hexagonal cross sections, as the orthogonal modes of vibration, transverse to the cross-sectional plane, associated with each resonance occur at identical frequencies in these systems. In the presence of cross-sectional irregularity, each of these resonance peaks split, yielding nearly orthogonal modes with distinct natural frequencies. This effect also occurs in elliptical cross sections, as observed by Garrett [7].

By using a model that parameterizes an irregular hexagon by the largest vertex-to-vertex distance \((a)\) and perpendicular width \((b)\), see figure 1, the frequencies of a given nanowire’s split modes can be represented by a continuous beam in lateral vibration with undamped natural frequencies \((\text{in Hz})\) given by

\[
 f_{a,b} = \frac{\beta^2}{2\pi} \sqrt{\frac{E I_{a,b}}{\rho A}},
\]

(1)

Here, \(\beta\) is a boundary condition dependent modal factor, \(E I\) represents the system’s flexural rigidity, \(\rho\) represents...
the system’s mass density, \(A \) defines the resonator’s cross-sectional area, and \(I_a \) and \(I_b \) delineate the device’s cross-sectional moments of inertia. The latter parameters are defined according to:

\[
A = \frac{3ab}{4},
\]

\[
I_a = \frac{5a^3b}{128},
\]

\[
I_b = \frac{5ab^3}{96}.
\]

Note that when \(a \) and \(b \) are parameterized such that the hexagon is regular, the values of \(I_a \) and \(I_b \) are identical.

The aforementioned split in resonant frequencies and associated modes can be quantified by defining a mistuning metric as the ratio between the difference in the split frequencies and the center frequency. As verified by substituting equation (1) into (5), the mistuning metric \(\delta \) is only a function of the vertex-to-vertex distance (\(a \)) and the perpendicular width (\(b \))

\[
\delta = \frac{2(f_a - f_b)}{f_a + f_b} = \frac{2\sqrt{3}a - 4b}{\sqrt{3}a + 2b}.
\]

This means that regardless of boundary conditions and material properties, the mistuning exhibited by a nanowire system is only a function of the geometry of the cross section.

Accordingly, the only way to avoid mistuning in such systems is to have a perfectly regular cross section.

For analytical purposes, the nanowire can also be modeled in an approximate sense as a two-degree-of-freedom uncoupled system, as shown in figure 3. Note that the damping coefficients, \(C_a \) and \(C_b \), and the applied forces, \(F_a \) and \(F_b \).
Figure 4. A schematic of the effect of viewing angle on the measured magnitude of displacement for the two modes.

Figure 5. Theoretical frequency response of the silicon nanowire as a function of mistuning. Assumed system properties: \(Q = 60 \), \(\alpha = \frac{\pi}{6} \) rad.

Figure 6. Theoretical frequency response of the silicon nanowire as a function of quality factor. Assumed system properties: \(\delta = 4.73\% \), \(\alpha = \frac{\pi}{6} \) rad.

Using these relationships as a functional basis, nominal quality factors and natural frequencies for the system can be defined according to:

\[
\omega_a = \frac{\omega_n}{1 + \delta/2} \quad \omega_b = \frac{\omega_n}{1 - \delta/2}
\]

(7)

When the excitation frequency is non-dimensionalized with respect to \(\omega_n \), and the two equations of motion are simplified, (9) and (10) result:

\[
Z_a = \frac{X}{F_a} = \frac{1}{\omega_n^2 (1 - r^2 + \frac{\sigma r}{Q})},
\]

(9)

\[
Z_b = \frac{Y}{F_b} = \frac{1}{\omega_n^2 (1 - \frac{\sigma r}{Q})},
\]

(10)

In the equations above \(\sigma \) and \(r \) are the excitation frequency and normalized excitation frequency, respectively, and \(F_a \) and \(F_b \) are the mass normalized applied forces. Note that both equations of motion are identical if there is no mistuning. In practice, when the system displacement is measured, only the out-of-plane motion can be resolved, so a new variable \(\alpha \) is introduced which captures the projection effect due to viewing angle and orientation, as shown in figure 4. This renders an observable net displacement given by:

\[
\overline{U} = |X \sin \alpha + Y \cos \alpha|.
\]

(12)
3. Device fabrication

Silicon nanowires (150 nm in nominal width) were synthesized using the nanocluster-catalyzed vapor–liquid–solid method. In this process, growth is realized through the use of 150 nm gold nanocluster catalysts in conjunction with a silicon reactant (silane), P-type dopant (diborane gas balanced with hydrogen gas), and hydrogen carrier. Following synthesis, the wires were removed from the growth substrate via sonication and dissolved into isopropyl alcohol. The wires were then deposited by dropper (randomly dispersed) onto a silicon substrate with a 10 μm SU-8 grating pattern. Near field forces were exploited for anchoring. Figure 1 shows a typical nanowire device. Note that since the silicon nanowires examined herein derive from a single fabrication batch, they feature nominally identical material properties. Accordingly, device to device variations in frequency arise solely from varying boundary conditions and length, as well as cross-sectional irregularity.

4. Experiment

Following fabrication, a scanning laser Doppler vibrometer was used to measure the thermally excited displacement response of the nanowire devices in the direction perpendicular to the device substrate, as shown in figures 8 and 4. The adopted measurement procedure mirrors that previously used by Biedermann et al [5, 8] and is akin to that utilized by Belov et al [9]. Samples were measured at room temperature in a 2 mTorr environment. This setting ensured that surface effects and anchor losses were the primary source of dissipation ($Q = 30–200$) and not molecular-regime fluid damping. Note that the utilized vibrometer could only resolve out-of-plane motions of the thermally excited system with an effective displacement noise floor of approximately 150 fm. In addition, the planes of vibrations were oriented at an unknown angle with respect to the substrate due to the random dispersion of the nanowires (as is commonly the case in final device implementations). As a result, the split modes featured orientation-dependent resonant amplitudes, as highlighted in figures 2 and 7.

5. Results

Theory predicts that mode splitting occurs as a function of cross section geometry. Experimental data appear to validate this, in that resonant mode splitting occurred in most of the examined nanowires, regardless of the length of, or boundary conditions associated with, the device (see table 1). Note that the measured frequencies are all within the geometry-based uncertainty of the theoretical predictions and match within 5%.

The actual mistuning between the modes was extrapolated by substituting the peak frequencies into (5). The mistuning values that could be calculated from the experimental data ranged from 2% to 10%. A mistuning value of 3% was the most common value of the 13 devices that showed mode splitting. For the cases where no mode splitting was observed either the mistuning was smaller than 2%, resulting in obscured peaks, or the viewing angle was such that contributions from the other mode were minimal.

Small magnitudes, the thermomechanical/measurement noise floor, and the lack of phase information all contributed to
the difficulty in matching the analytically predicted frequency response with experimental results. Despite these issues, in some instances it was possible to use nonlinear regression to fit the model presented herein to the experiments. Figure 9 shows the model presented in (12) plotted with experimental data recovered from a cantilevered nanowire. As evident, there is appreciable fidelity between the simple model and experiment.

6. Conclusion

Mode splitting in silicon nanowire systems occurs due to geometry-based irregularities in their cross sections. This effect is independent of material properties and boundary conditions of the devices, and occurs even when the dimensional differences between them are on the order of 2% of their nominal values. In this paper the mode splitting was modeled by parameterizing a hexagon, and using a simple two-degree-of-freedom mechanical model to qualitatively and quantitatively capture pertinent dynamics. This modeling approach accurately reflected experimental data in nanowire systems where mode splitting was evident.

Given the simplicity of the systems examined herein, non-Lorentzian frequency responses, akin to those presented here, can be expected in most nanowire devices. Accordingly, designers of functional nanoscale devices, such as resonant mass sensors and electromechanical signal processing elements, should account for this mechanism in the course of device design. For example, in resonant mass sensing applications, device designers should not only account for added mass and stiffness change effects, but also for quantitative changes in coupling between the split resonant modes. This added complexity should not be seen as a technical deterrent, but rather as an opportunity for innovative devices and resonant tuning, as the intentional varying of process parameters should lead to a direct alteration of a given resonator’s near-resonant response. Ongoing efforts are aimed at exploiting this opportunity and investigating the effects of cross-sectional asymmetry in the presence of noise, nonlinearity, and/or parametric effects.

Table 1

Theoretical and experimental natural frequencies of the silicon nanowires. Assumed material and geometric properties: $\rho = 2339$ kg m$^{-3}$, $E = 189$ GPa, $a = 159$ nm, and $b = 148$ nm. Quality factors were large enough to allow direct comparison between undamped theory and the experiment for the displayed significant figures. Also note that C = cantilevered; FF = fixed-pinned; and FF = fixed-fixed boundary conditions. Finally, stars in the mistuning column indicate systems where splitting was present but the second frequency could not be recovered.

<table>
<thead>
<tr>
<th>Boundary condition</th>
<th>Length (μm)</th>
<th>Undamped theory (MHz)</th>
<th>Experiment (MHz)</th>
<th>Mistuning (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 mode 1</td>
<td>8.42</td>
<td>2.61 ± 0.17</td>
<td>2.74 ± 0.19</td>
<td>2.47 ± 0.19</td>
</tr>
<tr>
<td>C1 mode 2</td>
<td>8.42</td>
<td>16.36 ± 1.09</td>
<td>17.16 ± 1.17</td>
<td>16.31 ± 1.17</td>
</tr>
<tr>
<td>C2</td>
<td>6.92</td>
<td>3.87 ± 0.30</td>
<td>4.05 ± 0.32</td>
<td>—</td>
</tr>
<tr>
<td>C3</td>
<td>7.39</td>
<td>3.39 ± 0.25</td>
<td>3.55 ± 0.27</td>
<td>3.11 ± 0.19</td>
</tr>
<tr>
<td>C4</td>
<td>6.81</td>
<td>3.99 ± 0.32</td>
<td>4.18 ± 0.34</td>
<td>3.77 ± 0.39</td>
</tr>
<tr>
<td>C5</td>
<td>5.66</td>
<td>5.78 ± 0.54</td>
<td>6.06 ± 0.58</td>
<td>5.68 ± 0.52</td>
</tr>
<tr>
<td>C6</td>
<td>5.43</td>
<td>6.28 ± 0.61</td>
<td>6.58 ± 0.63</td>
<td>6.15 ± 0.62</td>
</tr>
<tr>
<td>C7</td>
<td>4.93</td>
<td>7.62 ± 0.81</td>
<td>7.99 ± 0.83</td>
<td>6.84 ± 0.89</td>
</tr>
<tr>
<td>FP1</td>
<td>8.92</td>
<td>10.12 ± 0.65</td>
<td>10.69 ± 0.70</td>
<td>—</td>
</tr>
<tr>
<td>FP2</td>
<td>9.59</td>
<td>8.82 ± 0.53</td>
<td>9.25 ± 0.57</td>
<td>8.46 ± 0.51</td>
</tr>
<tr>
<td>FP3</td>
<td>9.21</td>
<td>9.57 ± 0.60</td>
<td>10.03 ± 0.64</td>
<td>—</td>
</tr>
<tr>
<td>FP4</td>
<td>9.76</td>
<td>8.52 ± 0.51</td>
<td>8.93 ± 0.55</td>
<td>8.27 ± 0.59</td>
</tr>
<tr>
<td>FF1</td>
<td>11.33</td>
<td>8.95 ± 0.48</td>
<td>9.62 ± 0.53</td>
<td>9.09 ± 0.49</td>
</tr>
<tr>
<td>FF2</td>
<td>10.40</td>
<td>10.89 ± 0.62</td>
<td>11.42 ± 0.67</td>
<td>10.47 ± 0.64</td>
</tr>
<tr>
<td>FF3</td>
<td>9.41</td>
<td>13.30 ± 0.82</td>
<td>13.95 ± 0.88</td>
<td>14.60 ± 0.89</td>
</tr>
<tr>
<td>FF4</td>
<td>10.55</td>
<td>10.58 ± 0.60</td>
<td>11.10 ± 0.65</td>
<td>—</td>
</tr>
<tr>
<td>FF5</td>
<td>13.07</td>
<td>6.90 ± 0.34</td>
<td>7.23 ± 0.37</td>
<td>6.79 ± 0.35</td>
</tr>
<tr>
<td>FF6</td>
<td>9.73</td>
<td>12.44 ± 0.74</td>
<td>13.05 ± 0.80</td>
<td>12.50 ± 0.78</td>
</tr>
<tr>
<td>FF7</td>
<td>9.76</td>
<td>12.37 ± 0.74</td>
<td>12.97 ± 0.80</td>
<td>11.86 ± 0.76</td>
</tr>
<tr>
<td>FF8</td>
<td>10.05</td>
<td>11.66 ± 0.68</td>
<td>12.23 ± 0.73</td>
<td>—</td>
</tr>
<tr>
<td>FF9</td>
<td>10.24</td>
<td>11.23 ± 0.65</td>
<td>11.78 ± 0.70</td>
<td>—</td>
</tr>
<tr>
<td>FF10</td>
<td>9.12</td>
<td>14.16 ± 0.89</td>
<td>14.85 ± 0.96</td>
<td>14.46 ± 0.92</td>
</tr>
<tr>
<td>FF11</td>
<td>10.33</td>
<td>11.04 ± 0.63</td>
<td>11.57 ± 0.68</td>
<td>—</td>
</tr>
<tr>
<td>FF12</td>
<td>10.35</td>
<td>11.00 ± 0.63</td>
<td>11.53 ± 0.68</td>
<td>—</td>
</tr>
</tbody>
</table>
Acknowledgment

This work was supported by the National Science Foundation under grant 0826276.

References