1990

Geometric Computations with Algebraic Varieties of Bounded Degree

Chanderjit L. Bajaj

Report Number:
90-941
GEOMETRIC COMPUTATIONS WITH ALGEBRAIC VARIETIES OF BOUNDED DEGREE*

Chanderjit L. Bajaj*

Computer Sciences Department
Purdue University
Technical Report CSD-TR-941
CAPO Report CER-90-3
January, 1990

Geometric Computations with Algebraic Varieties of Bounded Degree

Chanderjit L. Bajaj
Department of Computer Science
Purdue University
West Lafayette, IN 47907

Abstract
The set of solutions to a collection of polynomial equations is referred to as an algebraic set. An algebraic set that cannot be represented as the union of two other distinct algebraic sets, neither containing the other, is said to be irreducible. An irreducible algebraic set is also known as an algebraic variety. This paper deals with geometric computations with algebraic varieties. The main results are algorithms to (1) compute the degree of an algebraic variety, (2) compute the rational parametric equations (a rational map from points on a hyperplane) for implicitly defined algebraic varieties of degrees two and three. These results are based on sub-algorithms using multi-polynomial resultants and multi-polynomial remainder sequences for constructing a one-to-one projection map of an algebraic variety to a hypersurface of equal dimension, as well as, an inverse rational map from the hypersurface to the algebraic variety. These geometric computations arise naturally in geometric modeling, computer aided design, computer graphics, and motion planning, and have been used in the past for special cases of algebraic varieties, i.e., algebraic curves and surfaces.

1 Introduction

Background: Current research in geometric modeling is engaged in extending the geometric coverage of solid modelers using polynomial equations of arbitrarily high degree. Effectively manipulating these geometric representations require the ability to manipulate the underlying systems of equations [5, 26]. The set of solutions (or zero set $Z(S)$) of a collection S of polynomial equations

$$S_1 : f_1(x_1, ..., x_n) = 0$$
$$...$$
$$S_m : f_m(x_1, ..., x_n) = 0$$

(1)

is referred to as an algebraic set. Algorithms for manipulating algebraic sets are crucial components for proof systems deciding existential and universal theories of polynomial equations, see for e.g., [38]. An algebraic set that cannot be represented as the union of two other distinct algebraic sets, neither containing the other, is said to be irreducible. An irreducible algebraic set is also known as an algebraic variety.

One computational method for manipulating algebraic sets $Z(S)$ is that of Gröbner basis manipulations [12]. Given the set of polynomials $F = \{f_1, ..., f_m\}$, the Gröbner basis algorithms provide a deterministic iterative method for determining whether a polynomial P lies in the set of all polynomials of the form $\sum a_if_i$ (the ideal of F). It collectively manipulates the combinatorial structure of the entire set F of polynomials and in doing so, indirectly provides answers to questions about the zero set $Z(S)$.

Geometric problems dealing with zero sets $Z(S)$, such as the intersection of surfaces, or the decision whether a surface contains a set of curves, are often first versed in an ideal-theoretic form and then solved using Gröbner basis manipulations. One of the main difficulties involved in using the indirect Gröbner basis technique is that the method may be extremely slow even for small geometric problems. In the worst case, this method requires exponential space and may have running time that is double exponential in the number of variables in problem [35]. Even in special cases where this double exponential behavior is not observed, deriving tight upper bounds on the method's running time is difficult.

In this paper, we present an alternative technique for answering various geometric questions on algebraic varieties of degrees two and three. (We shall define the degree of the algebraic variety in section 3). The technique of constructing rational maps of algebraic varieties with hyperplanes, that we present, deals directly with the zero sets of polynomial equations (rather than just the combinatorial structure of the polynomials). Such rational maps provide a compact data structure for algebraic varieties and also yield simpler algorithms for computing intersections[10], shading, displaying and texture mapping[7], and in general solving systems of algebraic equations[11]. It is based, though not entirely, on lesser known constructs of algebraic geometry, namely the multi-polynomial resultant[34] and multi-polynomial remainder sequences (a generalization of remainder sequences of two polynomials, see for e.g., [25, 33]). These computations can be done in time single exponential in the number of indeterminates of the equations.
Main Results: In section 3 we present a method of computing the degree of an algebraic variety. This essentially relies on a way of computing a hypersurface birational to the given variety, via a valid projection direction along which the projection map is one-to-one. In section 4 we show how to construct the rational inverse of the one-to-one projection map between the hypersurface and the algebraic variety, using either multi-polynomial resultants or multi-polynomial remainder sequences. In section 5 we build on the earlier results of one-to-one maps and present an algorithm to construct the rational parametric equations (a rational map from points on a hyperplane) for implicitly defined algebraic varieties of degrees two and three. This is based on sub-algorithms for parameterizing arbitrary dimension (≥ 3) hypersurfaces of these degrees.

Prior Work: Much of the work in algorithmic algebraic geometry dealing with algebraic curves, and to a limited extent with algebraic varieties, is classical, dating to the pre-1920's, see[16, 23, 28, 29]. However, it was not until the fundamental work of[30, 45] that algebraic geometry found a firm footing, free of the fallacies which the earlier classical methods were often troubled with. Modern algebraic geometry, equipped with the preciseness of commutative algebra, has its main drawback in being abstract and non-constructive. Recent interest, stemming largely from geometric modeling, graphics, robotics, and other geometric manipulation applications, has seen a resurgence in constructive algorithm design activity, dealing with algebraic varieties[12, 13, 17, 18, 38, 42].

Various algorithms have been given for constructing the rational parametric equations of implicitly defined algebraic curves and surfaces of low degree[2, 3, 43]. Computational methods have also been given for constructing parametric equations of the intersection space curves of two degree two surfaces by[31] using the fact that the pencil of quadrics contains a ruled surface and by[37], via the computation of eigenvalues of matrices of quadratic forms. The parameterization algorithms presented in [4] are applicable for irreducible rational plane algebraic curves of arbitrary degree, and irreducible rational space curves arising from the intersection of two algebraic surfaces of arbitrary degree. The parameterization techniques, essentially, reduce to solving systems of homogeneous linear equations and the computation of Sylvester resultants, see for e.g.[39]. For non-rational curves, parameterization algorithms which are valid in local neighborhoods of points, singular or otherwise, are given in[6].

The parametric definition of a curve or surface is a standard example of a rational map. Inverting a parametrization of a surface has applications in areas such as sorting points along a parametric curve[27]. Birational maps have been used in resolving the singular (nonsmooth) points of algebraic curves and surfaces[1]. In particular, [10] uses this idea in the robust tracing of algebraic plane curves. Moreover, [4] use birational maps in determining whether an algebraic space curve has a rational parameterization. From a mathematical point of view, current attempts to classify surfaces and higher dimensional geometric objects usually are restricted to classifications up to birationality[44].

2 Notation and Preliminaries

A point in complex projective space \(\mathbb{CP}^n \) is given by a nonzero homogeneous coordinate vector \((X_0, X_1, \ldots, X_n)\) of \(n + 1\) complex numbers. A point in complex affine space \(\mathbb{CA}^n \) is given by the non-homogeneous coordinate vector
The set of points \(Z(f) \) of \(\mathbb{C}^n \) whose coordinates satisfy a single non-homogeneous polynomial equation \(f(x_1, x_2, \ldots, x_n) = 0 \) of degree \(d \) is called an \(n-1 \) dimensional affine hypersurface of degree \(d \). The hypersurface \(Z(f) \) is also known as a flat or a hyperplane. A hypersurface \(Z(f) \) is a plane curve of degree \(d \), a \(Z(f) \) is known as a cubic hypersurface. The hypersurface \(Z(f) \) is a plane curve of degree \(d \), a \(Z(f) \) is known as a surface of degree \(d \), and \(Z(f) \) is known as a threefold of degree \(d \). A hypersurface \(Z(f) \) is reducible or irreducible based upon whether \(f(x_1, x_2, \ldots, x_n) = 0 \) factors or not. over the field of complex numbers. An algebraic variety \(Z(f) \) is then an irreducible common intersection of a collection of hypersurfaces \(Z_i(f) \).

An irreducible rational hypersurface \(Z(f) \) can additionally be defined by rational parametric equations which are given as \((x_1 = G_1(u_1, u_2, \ldots, u_{n-1}), x_2 = G_2(u_1, u_2, \ldots, u_{n-1}), \ldots, x_n = G_n(u_1, u_2, \ldots, u_{n-1})) \), where \(G_1, G_2, \ldots, G_n \) are rational functions of degree \(d \) in \(u = (u_1, u_2, \ldots, u_{n-1}) \), i.e., each is a quotient of polynomials in \(u \) of maximum degree \(d \).

Multi-polynomial Resultant: Consider \(F_1 = 0, \ldots, F_m = 0 \) polynomial equations in \(n+1 \) variables \((x_0, \ldots, x_n) \) and homogeneous in \(m \) variables \((x_0, \ldots, x_{m-1}) \). These equations could be the homogenization of the earlier system (1) with \(x_0 \) acting as the homogenizing variable. The multi-polynomial resultant \(R(F_1, \ldots, F_m) \) is a polynomial in the coefficients of the \(F_i \) that vanishes if and only if the \(F_i \) have a common zero in projective space. For this reason, the resultant is also often called the eliminant. Geometrically, the resultant vanishes if and only if the hypersurfaces \(Z_i(F_i) \) have a common intersection in projective space.

The resultant of several equations has several different characterizations. Probably the most elegant was discovered by Macaulay [34]. He shows that the multi-polynomial resultant can be expressed as the quotient of the determinant of two matrices whose entries are coefficients of the polynomials. In the case of two equations, the matrix for the denominator always has determinant 1 and the matrix for the numerator is the traditional Sylvester matrix[39]. In computing the multi-polynomial resultant, the \(F_i \) are multiplied by suitable monomials to transform the problem of determining whether the polynomials have a common zero into a problem in linear algebra. We construct a matrix whose entries are the coefficients of the \(F_i, \ldots, F_m \). The determinant of this matrix will be the product of the resultant and the determinant of a specific minor of the matrix.

The general construction due to [34] is as follows: In the system \(F_1 = 0, \ldots, F_m = 0 \) of polynomial equations, homogeneous in variables \(x_0, \ldots, x_{m-1} \), let \(F_i \) be of degree \(d_i \). The coefficients of the \(F_i \)'s are treated as indeterminates. Let

\[
d = 1 + \sum (d_i - 1),
\]

and let the \(m \)-vector \(\alpha \) denote the exponents of a monomial in \(x_0, \ldots, x_{m-1} \). For example, if \(\alpha = (\alpha_0, \ldots, \alpha_{m-1}) \), then

\[
x^\alpha = x_0^{\alpha_0} \cdots x_{m-1}^{\alpha_{m-1}}.
\]

Thus, the set of all monomials of degree \(d \) in \(m \) variables is

\[
x^d = \{ x^\alpha | \alpha_0 + \cdots + \alpha_{m-1} = d \}.
\]
If \(N \) denotes the number of monomials in this set, then the monomials will index the columns of an \(N \times N \) matrix.

\[
N = \binom{d + m - 1}{d}
\]

Partition \(\mathcal{X}^d \) into \(n \) disjoint sets. These sets are

\[
\mathcal{X}^d_i = \{ \mathcal{X}^d_i | \alpha_i \geq d_i \text{ and } \alpha_j < d_j \text{ } \forall j < i \}.
\]

Next, for each set \(\mathcal{X}^d_i \), construct a set \(F^d_i \) of polynomials from \(F_i \) using monomials in \(\mathcal{X}^d_i \). Specifically, let \(F^d_i = \frac{\mathcal{X}^d_i \cdot f_i}{x_i^d} \).

The \(F^d_i \) are sets of homogeneous polynomials in \(m \) variables of degree \(d \). Moreover, each of the polynomials in the union of the \(F^d_i \), equated to zero, collectively yields a set of \(N \) homogeneous polynomial equations. Construct an \(N \times N \) matrix (call it \(A \)) whose columns are indexed by monomials in \(\mathcal{X}^d \) and whose rows correspond to the polynomials in the \(F^d_i \)'s. For a given polynomial \(P \) in \(F^d_i \), its row consists of the symbolic coefficients \(a_{ik}, b_{jk} \) etc., of each monomial in \(P \).

\[
A \begin{pmatrix} X_0^d \\ \vdots \\ X_{m-1}^d \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots \\ \vdots & b_{j1} & b_{j2} & b_{j3} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_{m-1}^d \end{pmatrix} \begin{pmatrix} X_0^d \\ \vdots \\ X_{m-1}^d \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
\]

(2)

Now, if the \(F_i \) have a common root \((\hat{X}_0, \ldots, \hat{X}_{m-1}) \), then this root must satisfy all of the polynomial equations in the \(F^d_i \)'s. This fact implies that the nontrivial vector \((\hat{X}_0, \ldots, \hat{X}_{m-1}) \) must be in the null space of \(A \). Thus, \(A \) must be singular or equivalently, the determinant of \(A \) (call it \(D \)) must be zero. This argument establishes that the resultant \(R \) is a factor of \(D \). The remaining factors of \(D \) are extraneous and have no bearing on whether the original equations have a common root. The beauty of Macaulay's result is that he established that the extraneous factors are the determinant of a minor of \(A \). This minor (call it \(B \)) can be constructed from \(A \) in the following manner. Delete all columns of \(A \) that correspond to monomials \(\mathcal{X}^\alpha \) where \(\alpha_i < d_i \) for all but one value of \(i \). (Note there must at least one such \(i \) due to the manner in which \(d \) was chosen.) Delete all rows of \(A \) that correspond to polynomials in \(F_i \) whose multipliers \(\mathcal{X}^\alpha \) have \(\alpha_j < d_j \) for \(i < j \leq n \).

Macaulay shows that the resultant \(R \) satisfies

\[
R = \frac{\text{det}(A)}{\text{det}(B)}
\]

where this division is carried out before the indeterminates forming the entries of \(A \) and \(B \) are specialized. The reason for specializing after division is that \(\text{det}(A) \) and \(\text{det}(B) \) may evaluate to zero even though \(R \) is not identically zero. Techniques for computing \(R \) by specializing before division has recently been considered in [14, 38].
Multi-polynomial Remainder Sequence: Consider first two polynomial equations \(f_1(x_1, \ldots, x_n) = 0 \) and \(f_2(x_1, \ldots, x_n) = 0 \). Treating them as polynomials in \(x_1 \), the pseudo-remainder \((f_1/f_2) = g(x_1, \ldots, x_n) \) for \(\text{degree}_{x_1}(f_2) \leq \text{degree}_{x_1}(f_1) \), is the result of one step of pseudo-division in the ring \(C \) of coefficient polynomials in \(n - 1 \) variables \((x_2, \ldots, x_n) \), i.e. \(\alpha f_1 = \beta f_2 - g \) with \(\alpha, \beta \in C \) and \(\text{degree}_{x_1}(g) < \text{degree}_{x_1}(f_2) \). Repeating the pseudo-division with \(f_2 \) and \(g \) and ensuring that the factors \(\alpha \) and \(\beta \) are 'primitive', one can compute a subresultant polynomial remainder sequence (p.r.s):

\[
f_1, f_2, g = S_{t-1}, \ldots, S_1, S_0
\]

where \(S_i \) is the pseudo-remainder of the two polynomials preceding it in the sequence and is known as the \(i \)-th subresultant of \(f_1 \) and \(f_2 \), with respect to \(x_1 \), see for e.g [25, 33]. Here \(S_0 \) is a polynomial independent of \(x_1 \) and is the resultant of \(f_1 \) and \(f_2 \), with respect to \(x_1 \). (Note in the homogeneous case \(S_0 \) is the polynomial resultant of \(F_1 \) and \(F_2 \), with respect to \(X_0 \) and \(X_1 \).

For the set of polynomial equations \((1) \), treating them as polynomials in \(x_1 \), we select the polynomial, say \(f_k \), of minimum degree in \(x_1 \). We then compute the subresultant pseudo-remainder for each pair \((f_i/f_k) = g_i \), \(1 \leq i \leq m \) and \(i \neq k \), yielding a new system of equations \(g_i \) and \(f_k \). We repeat the above, first selecting from the new system, a polynomial of minimum degree in \(x_1 \), and then computing pairwise subresultant pseudo-remainders. Eventually, we obtain a system of \(m - 1 \) polynomial equations, say \(S^{m-1} \)

\[
\tilde{f}_1(x_2, \ldots, x_n) = 0 \\
\vdots \\
\tilde{f}_{m-1}(x_2, \ldots, x_n) = 0
\]

independent of \(x_1 \).

The above is then one (macro) step of the multi-equational polynomial remainder sequence (m.p.r.s). For the new set of polynomial equations \((4) \), treating them as polynomials in \(x_2 \), we repeat the entire process above and obtain yet another reduced system \(S^{m-2} \) of \(m - 2 \) polynomial equations, all independent of \(x_2 \), and so on. This sequence of systems of multi-equational polynomial equations

\[
S = S^m, S^{m-1}, S^{m-2}, \ldots, S^1, S^0
\]

is what we term the multi-equational polynomial remainder sequence.

3 Birational Hypersurface and Degree Computation

A map of the form

\[
Y_1 = \psi_1(X_0, X_1, \ldots, X_m)Y_0 \\
\vdots \\
Y_n = \psi_n(X_0, X_1, \ldots, X_m)Y_0,
\]
where the \(v_i = \frac{g_i(X_0, ..., X_n)}{h_i(X_0, ..., X_n)} \) are ratios of homogeneous polynomials of equal degree in the \(X_i \) is referred to as a rational map. In general, a rational map may be thought of as a function that transforms some set of points \(X \) in \((X_0, ..., X_m)\) space to set of points \(Y \) in \((Y_0, ..., Y_n)\) space. Note that the denominators are polynomials and can have zeros. Thus the map may not be defined at all points. We denote this map by \(\psi : X \rightarrow Y \).

A rational map \(\psi : X \rightarrow Y \) is called birational if it admits an inverse. That is, there exists a rational map \(\sigma : Y \rightarrow X \) such that \(\psi(\sigma(Y)) \) has the same dimension as \(Y \), \(\sigma(\psi(X)) \) has the same dimension as \(X \), \(\psi \sigma = 1 \) almost everywhere, and \(\sigma \psi = 1 \) almost everywhere. Two sets \(X \) and \(Y \) are said to be birational if there exists a birational map between \(X \) and \(Y \).

A classical theorem from algebraic geometry states that "Any algebraic variety \(Z(S) \) is birational with a hypersurface \(Z(h) \) of appropriate dimension" (see [22], Prop.1.4.9).

Definition 1 The degree of the algebraic variety \(Z(S) \) is then defined as the corresponding degree of the birationally equivalent hypersurface \(Z(h) \).

The construction of the hypersurface \(h \) for a given variety \(S \) can be done straightforwardly using multi-polynomial resultants. (Computationally, as we shall show in the next section, under certain assumptions on the variety, this can also be achieved using multi-polynomial remainder sequences). Given \(m \) independent equations in \(n \) variables \((1)\), let \(S \) be the algebraic variety of dimension \(n - m \) defined by these equations, i.e. \(Z(S) \) is the complete intersection of the \(m \) polynomial equations. We may construct a generic linear projection onto \(n - m + 1 \) of the variables. The image of this projection is the hypersurface \(H \) in these \(n - m + 1 \) variables. Determining the dimension of an arbitrary variety is a non-trivial problem. However, various solutions have been offered, for e.g., see [21, 30].

To find a generic linear projection, the following general procedure can be adopted. Consider the linear projective coordinate transformation

\[
Y_0 = a_{00}X_0 + a_{10}X_1 + ... + a_{1n}X_n
\]

\[
Y_n = a_{n0}X_0 + a_{n1}X_1 + ... + a_{nn}X_n
\]

The linear coordinate transformation transforms the original homogenized variety \(V : Z\{F_i(X_0, ..., X_n)\} \) into a bilinearly related variety \(\tilde{V} : Z\{\tilde{F}_i(Y_0, ..., Y_n)\} \), \(i = 1, ..., m \) (w.l.g.).

Let \(R(\tilde{F}_1, ..., \tilde{F}_m) = 0 \) be the irreducible resultant polynomial equation corresponding to the projection hypersurface \(H \) of the variety \(V \). Irreducibility of \(H \) follows from the irreducibility of \(V \) and the projection mapping[22]. Let \(k \) be the multiplicity of polynomial \(R \) (i.e. there exists a factor \(R_i \) such that \(R_i^k \) divides \(R \) but \(R_i^{k+1} \) does not). Then by applying ([19],Theorem 8.4.13), we see that the projection map is generically \(k \) to one. To make the map one-to-one we choose the coefficients of the linear projective transformation, \(a_{ij} \), \(i, j = 0..n \) such that (i) the determinant of \(a_{ij} \), is non zero (making the map well defined) and (ii) the discriminant of the polynomial \(R(\tilde{f}_1, ..., \tilde{f}_m) \) to be non zero. As "bad" values for \(a_{ij} \) which do not satisfy (i) and (ii) above, satisfy a set of hypersurface conditions, any random choice of values will in general suffice with probability 1, see [41].
4 Birational Map Computation

The earlier section gave a way of constructing a hypersurface H as a one-to-one projection of the original algebraic variety V, or a bilinearly related variety \tilde{V}. We now show how such a one-to-one map can be inverted, yielding a birational map between H and V.

Theorem 1 Let X and Y be two irreducible n-dimensional varieties and ω a rational map from X to Y that is generically one-to-one. Then under ω, X and Y are birational.

This follows from ([22], Cor. 1.4.5). Hence, since the map from \tilde{V} to H is one-to-one, there exists an inverse rational map from H to \tilde{V}. Such an inverse rational map from the irreducible polynomial R to the C_i's may be recovered by using the Theorem of the Primitive Element ([45], section 11.9). This construction for $m = 2$ is described in [4, 20]. A more general version for unrestricted m is described in [17, 9]. We now show that by using the Macaulay derivation of the multi-polynomial resultant, the construction of the inverse rational map reduces to applications of Cramer's rule ([24], Thm. 6.9.2) in linear algebra.

Recall the matrix equation (2) of section (2)

\[
A \begin{pmatrix} X_0^d \\ \vdots \\ X_{m-1}^d \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}
\]

Thus, the eliminated homogeneous variables $\mathcal{X} = (X_0^d, \ldots, X_{m-1}^d)$ spans the kernel of A. To apply Cramer's rule, we must first show that there exists a $(N - 1)$ by $(N - 1)$ minor A that is non-singular. Since the birational map ω is generically one-to-one, the order of vanishing of $\det(A)$ must be one. Since the order of vanishing of $\det(A)$ is one, the kernel of the matrix A must be one dimensional. Thus, the $N - 1$ vectors A_1 through $A_{N - 1}$ are linearly independent and therefore there must be an invertible $(N - 1)$ by $(N - 1)$ minor of the matrix $(A_1, \ldots, A_{N - 1})$.

Removing a single row from the matrix $(A_1, \ldots, A_{N - 1})$, we obtain an invertible square matrix. Let A_i^j denote the i^{th} column of the matrix when the j^{th} row is deleted. Then using Cramer's rule the inverse rational map is constructed for each of the eliminated dehomogenized (affine) variables $x_i = \frac{X_i}{X_0}$, $x_{m-1} = \frac{X_{m-1}}{X_0}$

\[
x_i = \frac{X_i}{X_0} = \frac{\det(A_1^1, \ldots, A_{N - 1}^1)}{\det(A_1^2, \ldots, A_{N - 1}^2)}
\]

where the rows j and k are chosen such that $x_i = \frac{\text{monomial of vector } \mathcal{X}}{\text{monomial of vector } \mathcal{X}}$ and $1 \leq i \leq (m - 1)$. Using multi-polynomial resultant computations [15, 38], all calculations can be done in time single exponential in m and n.

We now present an alternate method using the multi-polynomial remainder sequence of section (2) on the original affine polynomial system (1). We assume that the hypersurfaces $f_i = 0$ $1 \leq i \leq m$ intersect transversally. First, consider the subresultant polynomial remainder sequence (p.r.s) (3): $f_1, f_2, g = S_{k-1}, \ldots, S_1, S_0$. If the projection
direction x_1 is birational, and the hypersurfaces $f_1 = 0$ and $f_2 = 0$ have a transversal intersection, we show in [4] that

$$S_1(x_1, \ldots, x_n) = h_1(x_2, \ldots, x_n)x_1 + h_0(x_2, \ldots, x_n)$$

$$S_n(x_1, \ldots, x_n) = f(x_2, \ldots, x_n)$$

That is, the last polynomial S_n is independent of x_1, and is the resultant of f_1 and f_2 with respect to x_1. More importantly the next-to-last polynomial S_1 is linear in x_1. It is referred to as the subresultant of f_1 and f_2 with respect to x_1. The subresultant equation $S_1 = 0$ then provides the rational inverse map $x_1 = \frac{h_0(x_2, \ldots, x_n)}{h_1(x_2, \ldots, x_n)}$.

Similarly, computing the multi-polynomial remainder sequence (m.p.r.s) (5), under a birational projection direction x_1, yields after the first macro step, a reduced system (4) independent of x_1 as well as the inverse map $x_1 = \frac{h_0(x_2, \ldots, x_n)}{h_1(x_2, \ldots, x_n)}$. After the second macro step, under a birational projection direction x_2, we obtain a reduced system independent of x_2 as well as the inverse map $x_2 = \frac{h_3(x_3, \ldots, x_n)}{h_3(x_3, \ldots, x_n)}$, and so on. Starting with m equations in (1), and after $m - 1$ steps, with the elimination order of $x_1, x_2, \ldots, x_{m-1}$ one obtains the rational projection as well as the rational inverse map:

$$f(x_m, \ldots, x_n) = 0$$

$$x_{m-1} = \frac{h_3(x_m, \ldots, x_n)}{h_3(x_m, \ldots, x_n)}$$

$$x_2 = \frac{h_3(x_3, \ldots, x_n)}{h_3(x_3, \ldots, x_n)}$$

$$x_1 = \frac{h_0(x_2, \ldots, x_n)}{h_1(x_2, \ldots, x_n)}$$

(7)

5 Parameterizing Varieties

Having an explicit birational mapping (projection and inverse maps) between the variety \mathcal{V} and a hypersurface \mathcal{H} of equal dimension, the problem of computing the rational parametric equations of algebraic varieties \mathcal{V} then reduces to the problem of parameterizing birationally related hypersurfaces \mathcal{H}. We now provide such rational parameterization algorithms for hypersurfaces of degree 2 in space $n \geq 2$ and degree 3 in space $n \geq 3$.

5.1 Parameterizing Hypersurfaces of Bounded Degree

Quadric Hypersurfaces $\mathcal{Z}_2^n(f), n \geq 2$
Geometric Idea: A line through a fixed point on $Z^2(f)$ intersects $Z^2(f)$ in at most 1 additional point. The coordinates of this additional point are then rational functions of the parameters of the line.

Algebraic Technique:

1. Pick a point on $Z^2(f)$ and translate $Z^2(f)$ to the origin via a linear change of coordinates.
2. Map the origin to infinity along the X_n axis via another linear change of coordinates.
3. The transformed equation of the hypersurface must now be linear in x_n, and hence x_n is expressible as a rational function of the remaining variables.

See Appendix A for algorithmic details.

Cubic Hypersurfaces $Z^3(f)$, $n \geq 3$

Geometric Idea: A line intersects $Z^3(f)$ in at most three points. If two of these points lie on rational elements of $Z^3(f)$ then the parameterized transversal connecting these two points will intersect $Z^3(f)$ in at most 1 additional point. The coordinates of this additional point are then rational functions of the parameters of the transversal.

Algebraic Technique:

1. Pick a point on $Z^3(f)$ and translate $Z^3(f)$ to the origin via a linear change of coordinates.
2. Intersect $Z^3(f)$ with the tangent plane at the origin to yield a rational hypersurface $Z^3_{-1}(g)$.
3. Repeat (1) and (2) for a different point on $Z^3(f)$ to yield another hypersurface $Z^3_{-1}(h)$.
4. Now consider transversals connecting points on the two rational hypersurfaces $Z^3_{-1}(g)$ and $Z^3_{-1}(h)$.
5. The intersection of the transversal with $Z^3(f)$ yields three roots. Two of these are the chosen points on $Z^3_{-1}(g)$ and $Z^3_{-1}(h)$, which can be factored out, leaving the remaining to be written as a rational function of the parameters of the transversal.

See Appendix B for algorithmic details.

6 Possible Extensions

A natural extension to consider is computations with algebraic varieties of unbounded degree. One possibility for constructing a general parameterization algorithm is perhaps to use an inductive argument on the degree of the variety, with the results of this paper providing the base cases. Another interesting problem is to derive worst case time bounds, using bit complexity analysis to model coefficient growth in all the multivariate polynomial
manipulations. Finally, interesting open algorithmic questions (which we did not get to consider in this paper) are to compute the singularities and the multiple genera of algebraic varieties.

Acknowledgements: I thank Guru Abhyankar for answering numerous questions and providing me references on algebraic geometry. Also, thanks to John Canny, Tom Garrity and Joe Warren for many enlightening conversations.

References

Appendix: Quadric Hypersurfaces

Consider the implicit representation of a quadric hypersurface (which is neither a cylinder or a cone)

\[Z^n_2(f) = \sum_{1+1+\cdots+i_n \leq 2} a_{i_1,i_2,\ldots,i_n} x_1^{i_1} \cdots x_n^{i_n} = 0 \]

We assume that all quadratic terms of \(Z^n_2(f) \) are present, for otherwise there exists a trivial parametric representation.

1. Choose a simple point \((\alpha_1, \alpha_2, \ldots, \alpha_n)\) on \(Z^n_2(f) \) and apply a linear coordinate transformation

\[y_j = x_j - \alpha_j, \quad j = 1, \ldots, n \]

to make the resulting hypersurface pass through the origin. This yields

\[Z^n_2(f_1) = \sum_{1+1+\cdots+i_n = 1} b_{i_1,\ldots,i_n} y_1^{i_1} \cdots y_n^{i_n} + \sum_{1+1+\cdots+i_n = 2} c_{i_1,\ldots,i_n} y_1^{i_1} \cdots y_n^{i_n} = 0 \]

2. Apply the homogenizing transformation

\[y_j = \frac{y_j}{Y_0}, \quad j = 1, \ldots, n \]

to \(Z^n_2(f_1) \) and clear the denominator \(Y_0^2 \) to yield

\[Z^n_2(F_1) = Y_0 \sum_{1+1+\cdots+i_n = 1} b_{i_1,\ldots,i_n} Y_1^{i_1} \cdots Y_n^{i_n} + \sum_{1+1+\cdots+i_n = 2} c_{i_1,\ldots,i_n} Y_1^{i_1} \cdots Y_n^{i_n} = 0 \]

3. Now in (12) there exists some nonzero coefficient of the quadratic terms \(Y_1^2, Y_2^2, \ldots, Y_n^2 \). Without loss of generality, let that be \(b_{200\ldots0} \neq 0 \). Then set \(Y_1 = 1 \), a dehomogenizing transformation to yield

\[Z^n_2(F_2) = Y_0 \sum_{1+1+\cdots+i_n = 1} Y_2^{i_2} \cdots Y_n^{i_n} + \sum_{1+1+\cdots+i_n = 2} Y_2^{i_2} \cdots Y_n^{i_n} = 0 \]

from where we obtain

\[Y_0 = -\frac{\sum_{1+1+\cdots+i_n = 2} c_{i_1,\ldots,i_n} Y_2^{i_2} \cdots Y_n^{i_n}}{\sum_{1+1+\cdots+i_n = 1} b_{i_1,\ldots,i_n} Y_2^{i_2} \cdots Y_n^{i_n}} \]

4. Using (14) and (11) with \(Y_1 = 1 \) we obtain

\[y_1 = \frac{1}{Y_0} \quad = -\frac{\sum_{1+1+\cdots+i_n = 1} b_{i_1,\ldots,i_n} Y_2^{i_2} \cdots Y_n^{i_n}}{\sum_{1+1+\cdots+i_n = 1} b_{i_1,\ldots,i_n} Y_2^{i_2} \cdots Y_n^{i_n}} \]

\[y_j = \frac{Y_j}{Y_0} \quad = -\frac{\sum_{1+1+\cdots+i_n = 1} b_{i_1,\ldots,i_n} Y_2^{i_2} \cdots Y_n^{i_n}}{\sum_{1+1+\cdots+i_n = 2} c_{i_1,\ldots,i_n} Y_2^{i_2} \cdots Y_n^{i_n}}, \quad j = 2, \ldots, n \]
and finally using (9) we obtain
\[x_j = y_j + a_j \quad j = 1, n. \] (16)

explicit parametric equations with parameters \(Y_2, \ldots, Y_n \).

B Appendix: Cubic Hypersurfaces

Consider the general implicit equation of a cubic hypersurface
\[Z \sum_{i_1+i_2+\ldots+i_n \leq 3} a_{i_1,i_2,\ldots,i_n} x_1^{i_1} x_2^{i_2} \ldots x_n^{i_n} = 0 \] (17)

1. Choose a simple point \((a_1, a_2, \ldots, a_n)\) on \(Z(f) \) and apply the linear coordinate transformation
\[y_j = x_j - a_j, \quad j = 1, \ldots, n \] (18)

which translates the hypersurface \(Z(f) \) to pass through the origin. This yields
\[Z \sum_{i_1+i_2+\ldots+i_n \leq 3} b_{i_1,i_2,\ldots,i_n} y_1^{i_1} y_2^{i_2} \ldots y_n^{i_n} + \sum_{i_1+i_2+\ldots+i_n = 2} b_{i_1,i_2,\ldots,i_n} y_1^{i_1} y_2^{i_2} \ldots y_n^{i_n} + \sum_{i_1+i_2+\ldots+i_n = 3} b_{i_1,i_2,\ldots,i_n} y_1^{i_1} y_2^{i_2} \ldots y_n^{i_n} = 0 \] (19)

2. Apply the linear transformation
\[z_1 = b_{000} y_1 + b_{010} y_2 + \ldots + b_{000} y_n \]
\[z_j = y_j, \quad j = 1, \ldots, n \] (20)

which makes \(z_1 = 0 \) to be the new tangent hyperplane to the hypersurface at the origin. The hypersurface \(Z(f) \) of equation (19) then becomes
\[Z \sum_{i_1+i_2+\ldots+i_n \leq 3} c_{i_1,i_2,\ldots,i_n} z_1^{i_1} z_2^{i_2} \ldots z_n^{i_n} + \sum_{i_1+i_2+\ldots+i_n = 2} d_{i_1,i_2,\ldots,i_n} z_1^{i_1} z_2^{i_2} \ldots z_n^{i_n} + \sum_{i_1+i_2+\ldots+i_n = 3} s_{i_1,i_2,\ldots,i_n} z_1^{i_1} z_2^{i_2} \ldots z_n^{i_n} + \sum_{i_1+i_2+\ldots+i_n = 3} t_{i_1,i_2,\ldots,i_n} z_1^{i_1} z_2^{i_2} \ldots z_n^{i_n} = 0 \] (21)

3. Intersecting the hypersurface \(Z(f) \) with the tangent hyperplane \(z_1 = 0 \) yields
\[Z \sum_{i_1+i_2+\ldots+i_n = 2} s_{i_1,i_2,\ldots,i_n} z_1^{i_1} z_2^{i_2} \ldots z_n^{i_n} + \sum_{i_1+i_2+\ldots+i_n = 3} t_{i_1,i_2,\ldots,i_n} z_1^{i_1} z_2^{i_2} \ldots z_n^{i_n} = 0 \] (22)
1. Consider a \(n = (u_1, \ldots, u_k) \), \(k \leq n - 2 \), parameter family of lines, passing through the origin and lying in the hyperplane \(z_1 = 0 \). These lines are given by

\[
\begin{align*}
 z_{i+2} &= u_i z_{2}, & 1 \leq i \leq k \\
 z_j &= z_2, & k < j \leq n - 2
\end{align*}
\]

(23)

5. Intersect these lines given by equation (23) with \(Z_3^{n-1}(f_3) \) of equation (21) to yield

\[
 z_2 = \frac{-\sum_{i_1 + \ldots + i_s = 2} s_{i_2} \ldots s_{i_s} u_{i_1}^2 \ldots u_{i_s}^{i_s+2}}{\sum_{i_1 + \ldots + i_s = 3} s_{i_2} \ldots s_{i_s} u_{i_1}^3 \ldots u_{i_s}^{i_s+3}}
\]

(24)

which together with (23) above yields a parametric representation of \(Z_3^{n-1}(f_3) \) in terms of parameters \(u = (u_1, \ldots, u_k) \).

5. Using the linear transformation (18), (20), the parametric representation of \(Z_3^{n-1}(f_3) \) and \(Z_1 = 0 \) we can straightforwardly construct a \(u \) parameterization of \(Z_3^{n-1}(f_3) \) in the original space \((x_1, \ldots, x_n)\). Namely

\[
x_i = M_i(u) \quad i \leq i \leq n
\]

(25)

7. Next choose another simple point \((\beta_1, \beta_2, \ldots, \beta_n)\) on \(Z_3^n(f) \) and repeat steps 1..2..3. replacing \((\alpha_1, \alpha_2, \ldots, \alpha_n)\) with \((\beta_1, \beta_2, \ldots, \beta_n)\). This would yield another \(Z_3^{n-1}(f_3) \) of similar structure as equation (21), via the intersection of a corresponding hypersurface \(Z_3^2(f_2) \) with an appropriate tangent hyperplane \(z_1 = 0 \).

8. Analogous to Step 4. above, consider then a \(v = (v_1, \ldots, v_l) \), \(l = n - k - 1 \), parameter family of lines, passing through the origin and lying in the hyperplane \(z_1 = 0 \). These lines are again given by

\[
\begin{align*}
 z_{j+2} &= v_j z_{2}, & 1 \leq j \leq l \\
 z_j &= z_2, & l < j \leq n - 2
\end{align*}
\]

(26)

9. Similar to Steps 5. and 6. above, intersect these lines of equation (26) with \(Z_3^{n-1}(f_3) \) to derive a \(v \) parametric representation of \(Z_3^{n-1}(f_3) \) in the original space \((x_1, \ldots, x_n)\). Namely,

\[
x_i = N_i(v) \quad i \leq i \leq n
\]

(27)

10. Finally consider the \((u, v)\) parameter family of lines in \((x_1, \ldots, x_n)\) space joining points \((M_1(u), M_2(u), \ldots, M_n(u))\) and \((N_1(v), N_2(v), \ldots, N_n(v))\). Namely,

\[
x_i = N_1(v) + \frac{(N_i(v) - M_i(v))(x_1 - M_1(u))}{N_1(u) - M_1(u)} \quad 1 \leq i \leq n
\]

(28)

11. Intersect these lines of equation (28) with the hypersurface \(Z_3^n(f) \) to yield

\[
f(x_1, u, v) = 0
\]

(29)

with degree of \(x_1 \) to be at most three, i.e., the lines intersect the hypersurface in at most three distinct intersection points.
12. Two of the intersection points lying on the hypersurface \(Z^g(f) \) have \(z_1 \) values \(M_1(u) \) and \(N_1(v) \). Hence \(\frac{f(z_1, u, v)}{\lambda z_1 - M_1(z_1 - \lambda)} \) yields an expression which is linear in \(z_1 \). Thus \(z_1 = R(u, v) \) where \(R \) is a rational function in the \(l + k = (n - 1) \) parameters \(u = (u_1, \ldots, u_k) \), \(v = (v_1, \ldots, v_l) \). Using this together with equation (28) yields a parametric representation of the hypersurface \(Z^g(f) \) in terms of the \(n - 1 \) parameters \(u, v \).