1989

Polygon Nesting and Robustness

Chanderjit Bajaj
Tamai Dey

Report Number: 89-918

http://docs.lib.purdue.edu/cstech/782

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
POLYGON NESTING AND ROBUSTNESS

Chanderjit Bajaj
Tamal Day

CSD-TR-918
October 1989
Polygon Nesting and Robustness

Chanderjit Bajaj*,
Tamal Dey†,

Computer Sciences Department
Purdue University
CSD-TR-918
October, 1989

* Supported in part by NSF Grant MIP 88-16286, ARO contract DAAG29-85-C-0018 under Cornell MSI and ONR contract N00014-88-K-0402.
† Supported in part by a David Ross Fellowship.
Polygon Nesting and Robustness

Chanderjit L. Bajaj*
Tamal Dey†

Department of Computer Science
Purdue University
West Lafayette, IN 47907

1 Introduction

We consider the problem of computing the nesting structure of a set of \(m \) simple, planar polygons with \(n \) vertices and \(N \) notches (reflex angles). The polygons are mutually nonintersecting, that is they do not intersect along their boundary. This problem arises as a fundamental subproblem in our robust polyhedral decomposition algorithm [2] as well as in the algorithms of [4] and [12].

Problem: Let \(\mathcal{P} \) be a set of \(m \) simple polygons \(P_i, i = 1, \ldots, m \). Corresponding to each polygon \(P_i \) we define \(\text{ancestor}(P_i) \) as the set of polygons containing \(P_i \). The polygon \(P_k \) in \(\text{ancestor}(P_i) \) is called the parent of \(P_i \) if \(\text{ancestor}(P_k) = \text{ancestor}(P_i) - P_i \). Notice that there may not exist any such \(P_k \) since \(\text{ancestor}(P_i) \) may be empty. In that case we say that the parent of \(P_i \) be \(\text{null} \). Any polygon whose parent is \(P_k \) is called the child of \(P_k \). See Figure 1.1. The nesting structure \(G \) of \(\mathcal{P} \) is an acyclic directed graph (A forest of trees) in which there is a node \(n_i \), corresponding to each polygon \(P_i \) in \(\mathcal{P} \), and there is a directed edge from a node \(n_i \) to \(n_j \) if \(P_j \) is the parent of \(P_i \). The polygon nesting problem is to compute the nesting structure of a set of simple nonintersecting polygons.

Related Work: In [4] Chazelle gives an \(O(n \log n) \) algorithm to detect the outermost polygons and their children, given a set of simple nonintersecting polygons with \(n \) vertices. However his algorithm does not compute the nesting structure of the given set of polygons.

Results: In section 3 we give an algorithm which computes the polygon nesting structure in \(O(n + (m + N) \log (m + N)) \) time where \(n \) is the total number of vertices in \(m \) polygons and \(N \) is the total number of notches. Since in practice \(m \) and \(N \) are much less than \(n \), this algorithm runs much faster than any \(O(n \log n) \) algorithm. In section 4 we give a robust algorithm for the same problem restricted to a class of polygons called fleshy polygons. Our robust algorithm has a worst-case time bound of \(O(n \log n + m + N) \).

2 Preliminaries

Definitions: Let \(P \) be a simple polygon with vertices \(v_1, v_2, \ldots, v_n \) in clockwise order. A vertex \(v_i \) is a notch of \(P \) if the inner angle between the edge \((v_{i-1}, v_i)\) and \((v_i, v_{i+1})\) is \(> 180^\circ \). Between any two consecutive notches \(v_i, v_j \) in the clockwise order, the sequence of vertices \((v_i, v_{i+1}, \ldots, v_j)\) is called a convex polygonal-line. Each polygonal-line can be partitioned into convex-chains, which are maximal pieces of a polygonal-line, with the property that its vertices form a convex polygon. Each convex-chain can be further partitioned into at most three \(z \)-monotone maximal pieces called subchains, i.e., vertices of a subchain have \(x \)-coordinates in either strictly increasing or decreasing order. See Figure 2.1.

A vertex or an edge is said to lie inside a polygon if it completely lies inside the polygonal region restricted by the boundary of the polygon. A vertex or an edge is said to be contained in a polygon if it lies on the boundary of the polygon.

Let \(L \) be a line drawn through a set of polygons. Let \(E \) be the set of edges which intersect \(L \) in the following two ways. An edge \(e \in E \) either properly intersects \(L \) (i.e., two vertices of \(e \) lies on the opposite sides of \(L \)) or \(e \) intersects \(L \) at a vertex and the other vertex of \(e \) lies to the right of \(L \). The third possible case of \(e \) intersecting \(L \) is ignored as the information related to that edge would already be recorded in a plane sweep. Finally, degenerate intersection (\(e \) is collinear with \(L \)) is handled in section 3.

An edge \(e_1 \) in \(E \) is said to be “above” the edge \(e_2 \) in \(E \) if the point of intersection of \(L \) and \(e_1 \) lies above the point of intersection of \(L \) and \(e_2 \). If \(e_1 \) and \(e_2 \) have a common vertex through which \(L \) passes, \(e_1 \) is “above” \(e_2 \) if the other vertex of \(e_1 \) lies above the line containing \(e_2 \). \(L \) induces a total order \(R \) on the edges in \(E \) with respect to the “above” relation. If \(L \) passes through a vertex \(v_i \), we define \(\text{above}(v_i) \) as the set of edges whose point of intersection with \(L \) is above \(v_i \). The lowest edge in \(\text{above}(v_i) \) is called the neighbor of \(v_i \). Between \(v_i \) and its neighbor there is no other edge intersecting \(L \). See Figure 1.1 and 3.2. Note that there may not exist any neighbor of \(v_i \) since \(\text{above}(v_i) \) may be empty.
Order R naturally extends to another order O of subchains associated with the edges in R. If edges e_1, e_2 of subchains C_1 and C_2 are intersected by L, then C_1 is “above” C_2 if the point of intersection of L and e_1 is above the point of intersection of L and e_2.

Lemma 2.1. Let P be a simple polygon with N_p notches. No line can intersect P in more than $\max(1,2N_p)$ segments or $\max(2,2N_p+1)$ points.

Proof: See [2]

Lemma 2.2. Let P be a simple polygon with N_p notches. The number of subchains S_p in P is bounded as $S_p \leq 6(1 + N_p)$.

Proof: See [2].

Lemma 2.3. Let L be any line through a vertex v_i of a polygon P_i. Let the edge e be the neighbor of v_i. Parent of P_i is either the polygon P_j containing e or P_j’s parent (possibly null).

Proof: If the neighbor edge e of v_i is an edge of P_i, which is a parent of P_j, the lemma holds trivially. Suppose the neighbor edge e of v_i is an edge of P_j which is not the parent of P_i. We claim that v_i lies inside polygon P_j iff e lies inside it. Suppose e lies inside P_j and v_i does not. Then the region between v_i and e on L contains a part which is outside P_j. Hence there must be an edge of P_j between e and v_i on L. But this is impossible since e is the neighbor edge of v_i. Similarly, we can argue that if v_i lies inside polygon P_j, so does e. Hence e lies inside the same set of polygons, within which v_i lies. Hence if P_k is the parent of P_i it is a parent of P_j and vice versa.

Lemma 2.4. Let L be any line passing through v_i of P_i. If v_i is contained in the polygon P_k iff the number of edges of P_k which are in $\text{above}(v_i)$ is odd.

Proof: Since any edge demarks the region which is “inside polygon P” and “outside polygon $P” on L the above proposition is obvious.

Lemma 2.5. Let L be any line passing through v_i of P_i. Let edge e of polygon P_i be the neighbor of v_i on L. If the number of edges of P_k in $\text{above}(v_i)$ is odd and $k \neq i$ then P_k is the parent of P_i. Otherwise, P_k’s parent (possibly null) is the parent of P_i.

Proof: Combine Lemma 2.3 and Lemma 2.4.

3 Polygon Nesting Structure

Plane Sweep: Each polygon P_i consists of subchains $C_{i1}, C_{i2}, ..., C_{ik}$. We sweep a line L in the plane through all the polygons, while maintaining the ordering O of the subchains C induced by L. To maintain this ordering we stop only at the endpoints of the subchains, while sweeping say from left to right. We break all the boundaries of the polygons into subchains in no more than $O(n)$ time where n is the total number of vertices of all the polygons. We sort only the endpoints of all the subchains on a line perpendicular to L. At each subchain endpoints we update the ordering O as follows.

Update at a Vertex: if v_i is a vertex such that both subchains C_1 and C_2 connected to v_i have not yet been encountered by the sweep line L, we insert C_1 and C_2 in the ordering O on L by a simple binary search. The search is based on a procedure for determining the position of v_i w.r.t. the edge intersected by L on a subchain C_i already present in the ordering O on L.

For the latter purpose, we keep a last visited edge associated with each subchain C_i in O, as we now detail. This is reminiscent of the topological sweep of [7]. Let the edge associated with C_i initially be e_1, the first edge of the subchain C_i. We visit the sequence of edges $e_1, e_2, ..., e_k$ of C_i stopping at the first edge e_k which intersects L. We determine the “above” relation of v_i w.r.t. e_k and associate edge e_k with C_i. Later, when we need to classify any other vertex w.r.t. C_i we start from edge e_k. See Figure 3.1. Obviously, the edges $e_1, ..., e_{k-1}$ are visited only once, while e_k and e_k are visited more than once throughout a sweep. Now, for each vertex-edge classification, there will be at most two edges similar to e_1 and e_k of a subchain which will be visited more than once. Since in the binary search for determining the position of a vertex in the order O, we encounter only $O(\log S)$ subchains (where S is the total number of subchains) there will be at most $O(\log S)$ edges, for each line position, which will be visited more than once. Hence, for each update at v_i (where we insert subchains) we visit t_i edges which are visited only once throughout the sweep and $O(\log S)$ edges which are visited more than once. If v_i is a vertex such that both subchains connected to v_i have been encountered then we delete both these subchains from the ordering O. This again takes at most $O(\log S)$ time. Hence the total time taken for all updates is $O \left(\sum_{i=1}^{S} t_i \right) + O(\log S)$ where S is the total number of subchains and t_i is the number of edges visited at each update, which is visited only once throughout the sweep. Certainly, $\sum_{i=1}^{S} t_i = O(n)$ where n is the total number of vertices. Hence updates take $O(n) + O(\log S)$ time.

Detecting parent of a polygon: At the vertex v_i of P_i, when we insert the subchains in the ordering O on L we determine the parent of P_i as follows. If parent of P_i has already been determined then we are done. If it has not we find the neighbor edge e of v_i on L (Actually, e is found while inserting the subchains connected to v_i). Let P_j be the polygon containing e on the boundary. We determine k, the number of edges or equivalently the number of subchains of the polygon P_j which are in $\text{above}(v_i)$. Maintaining the ordering of subchains of each polygon separately, this number can be obtained in $O(\log S)$ time where S is the number of subchains in that polygon. If k is even and $P_j \neq P_i$, we set P_j as the parent of P_i. Otherwise we set the parent of P_j to be the parent of P_i (Lemma 2.5).

Certainly parent determination at each update add up to at most
Algorithm:
Input: A set of m simple, nonintersecting polygons.
Output: A directed acyclic graph G, called the nesting structure, in which there is a directed edge from a node ni corresponding to a polygon P_i to the node nj corresponding to the polygon P_j if P_j is the parent of P_i.
Step 1: Detect the endpoints of subchains in all polygons.
Step 2: Sort the x-coordinates of these endpoints. If two points have same x-coordinates, the one with higher y-coordinate is sorted before the other. Let this sorted sequence W be v_1, v_2, ..., v_w.
Step 3: Create a node for each polygon in G. Enter two subchains, connected to the leftmost vertex of W, in the ordering O by inserting the two polygon edges connected to that vertex in O. Note O is initially empty.
Step 4: Sweep a pseudo-line from left to right, taking steps at each vertex v_i of W as follows. Let v_i be on the boundary of the polygon P_i. If both subchains connected to v_i have already been visited, delete them from the ordering O and skip steps from 4(a) to 4(d).
Step 4(a): Detect the position of v_i with respect to the subchains intersected by the sweep line. For this, carry out a binary search in the ordering O of these subchains. To detect the position of v_i with respect to a subchain C_i during binary search, find the edge e_i of this subchain kept in O and then follow the linked sequence of edges e_1, e_2, ..., e_k until the edge e_k is found which intersects L.
Step 4(b): Let e'_i of polygon P_j be the neighbor edge of v_i found by step 4(a). Determine the number k of subchains of P_j which are in above(v_i). This is done by a similar binary search, as in step 4(a), in the ordering of chains maintained separately for each polygon.
Step 4(c): Insert two subchains connected to v_i in O and in the ordering of subchains maintained for polygon P_i. In degenerate case, insert or delete the subchain which does not correspond to the edge, collinear with the sweep line, from O.
Step 4(d): If k is odd, then create a directed edge in the nesting structure from the node n_i corresponding to the polygon P_i, to the node n_j corresponding to the polygon P_j. If k is even, create a directed edge from n_j to the node n_k (if any), to which n_i is connected through a directed edge.

Theorem 2.1: The problem of polygon nesting for m polygons can be solved in O(n + (m + N)log(m + N)) time where n is the total number of vertices and N is the total number of notches of all polygons.
Proof: Detecting the endpoints of the subchains takes O(n) time. Sorting these endpoints requires O(SlogS) time. Updating and determining parent takes O(n + SlogS) time. Hence, computing the nesting structure for all polygons takes O(n + SlogS) time. By lemma 2.2, S, the total number of subchains is bounded as S \leq 6(m + N) where m is the total number of polygons and N is the total number of notches. Hence, total time spent is O(n + (m + N)log(m + N)).

4 Robustness under Finite Precision Arithmetic

In the algorithm given in the previous section we assumed arbitrary precision arithmetic in all our computations. In this section we give an algorithm for polygon nesting problem which is robust in that it never fails due to finite precision arithmetic. It correctly yields the nesting structure of a set of simple nonintersecting polygons, possessing a minimum feature with respect to their "skinniness".

We first assume that all our polygons are bounded by a square box, -B < x < B and -B < y < B. We define a polygon P to be "fleshy" if there is a point inside P such that a square with center (intersection of square's diagonals) at that point and with sides of length 2\epsilon B lies inside P. Here, \epsilon is machine precision. In our implementation we set B = 2^{16}, \epsilon = 2^{-24}. Hence the area of the square is 784 \times 2^{-16}. The polygons which are not fleshy are thus extremely skinny for most practical purposes.

Related Work: Robust computations under finite precision arithmetic have recently taken added importance because of the increasing use of geometric manipulations in computer-aided design, and solid modeling, see for e.g. [3]. Edelsbrunner and Mucke [6], and Yap [17], suggest using expensive symbolic perturbation techniques for handling geometric degeneracies. Sugihara and Iri [16], and Dobkin and Silver [5], describe an approach to achieving consistent computations in solid modeling, by ensuring that computations are carried out with sufficiently higher precision than used for representing the numerical data. There are drawbacks however, as high precision routines are needed for all primitive numerical computations, making algorithms highly machine dependent. Furthermore, the required
precision for calculations is difficult to a priori estimate for complex problems. Segal and Sequin [14] require estimating various numerical tolerances, tuned to each computation, to maintain consistency. Milenkovic [13] presents techniques for computing the output for a modified input which preserves some basic topological constraints. Green and Yao [9] present a method for drawing line segment arrangements on a discrete grid which alters the input symbolic data. Hoffmann, Hopcroft and Karasick [11], and Karasick [12], propose a proof of correctness. Sugihara [15] uses geometric reasoning and apply it to the problem of triangulating a planar point set. In this paper we use the methods of topological reasoning with a minimum feature assumption on the skinniness of the polygons.

Assumptions and Definitions: A binary predicate CONT is defined as $\text{CONT}(P_1, P_2)$ iff P_1 contains P_2. $\text{NOT}(\text{CONT}(P_1, P_2))$ denotes the negation of $\text{CONT}(P_1, P_2)$. A point p_1 is said to be vertically visible from another point p_2 if the vertical line through p_2 also passes through p_1 and the vertical segment between p_1 and p_2 does not intersect any other edge. Similarly, we define an edge to be vertically visible from a point p_1 if the vertical line through p_1 intersects the edge and does not intersect any other edge in between. The numerical computations in our algorithm are carried out in two places.

1. Sorting the vertices:
 Sorting can be carried out without any error as the comparison of two floating point numbers is exact to within machine precision. (This is true on most of the machines available today.) Here we assume that given input data (coordinates of polygon vertices) is accurate.

2. Computing the points of intersection of a vertical sweep line with the edges:
 In Lemma 3.1 we will develop a bound on the maximum error which can occur during this computation. Actually, this bound leads us to the estimate of a square box with side $28\varepsilon B$, to define a fleshy polygon.

Results: We present a robust algorithm for computing the nesting structure of a set of simple, nonintersecting, fleshy polygons. Our algorithm runs in $O(n(m + N + \log n) + m^3)$ time.

Lemma 3.1: Given an edge e at a point p, the absolute error e_{abs} in the computed position of p is bounded as $e_{abs} < 7\varepsilon B$, where ε is the machine precision and B is the largest value of any of the coordinates.

Proof: Let us consider a vertical line $x = x_0$ which intersects e at p. Obviously, x coordinate of p is x_0. Let the y coordinate of p be y_0 and y_e be the computed value of y_0. By simple geometry,

$$\frac{x_2 - x_1}{x_0 - x_1} = \frac{y_2 - y_1}{y_0 - y_1}$$

and

$$y_0 = \frac{(y_2 - y_1)(x_0 - x_1)}{x_2 - x_1} + y_1$$

With finite precision the computed value y_e of y_0 is given by

$$y_e = \frac{(y_2 - y_1)(x_0 - x_1)(1 + \varepsilon^*)}{x_2 - x_1} + y_1(1 + \varepsilon_0)$$

where $1 + \varepsilon^* = \frac{1 + \varepsilon + \varepsilon_0(1 + \varepsilon + \varepsilon_0)}{1 + \varepsilon_0}$ and $|\varepsilon_0| < \varepsilon$. Let $t_0 = \frac{(y_2 - y_1)(x_0 - x_1)}{x_2 - x_1}$. We can write

$$y_e = t_0(1 + \varepsilon^*) + y_1(1 + \varepsilon_0)$$

$$y_e - y_0 = t_0\varepsilon^* + y_1\varepsilon_0$$

$$e_{abs} \leq |t_0\varepsilon^*| + |y_1\varepsilon|$$

Neglecting higher order terms in ε, we get $|\varepsilon^*| \leq 6\varepsilon$

Since $\frac{|x_0 - x_1|}{|x_2 - x_1|} < 1$, we have

$$|t_0| < |y_2 - y_1|$$

$$|t_0| < B$$

$$e_{abs} < 6\varepsilon B + \varepsilon B$$

$$e_{abs} < 7\varepsilon B$$
coinciding with two sides of the square as shown in the Figure 4.1.

Case(i): There is a vertex \(v \) of \(P \) within the two vertical lines. W.l.o.g, \(v \) can be assumed to be above \(ab \). Consider a vertical line \(L \) passing through \(v \). Let \(L \) intersect the line passing through \(q \) and parallel to \(ab \) at \(q' \). The set of intersecting points of the edges of the polygons with this vertical line can be partitioned into three sets \(I_{\text{above}}(v) \), \(I_{\text{close}}(v) \), \(I_{\text{below}}(v) \) based on the closeness of intersecting points to \(v \). \(I_{\text{above}}(v) \) is the set of all points of intersection whose distance from \(v \) is greater than equal to \(14eB \) and which are above \(v \). Similarly, define \(I_{\text{below}}(v) \). The rest of the points of intersection constitute \(I_{\text{close}}(v) \). Corresponding to each set \(I_{\text{above}}(v) \), \(I_{\text{below}}(v) \), \(I_{\text{close}}(v) \), we define \(E_{\text{above}}(v) \), \(E_{\text{below}}(v) \), \(E_{\text{close}}(v) \) as the set of edges on which those points of intersection lie.

Let \(s \) be the point of intersection of \(L \) with the edge of \(P \) which is vertically visible from \(q' \) and which below \(cd \). Any polygon containing \(P \) cannot have an edge intersecting \(L \) in between \(v \) and \(q' \) and \(q' \) and \(s \). Since the distance between \(v \) and \(s \) must be greater than equal to \(28eB \), the computed distance between them must be at least \(21eB \). Hence, \(s \) cannot be in \(I_{\text{close}}(v) \). For any polygon \(P_i \), let \(K_{\text{above}}(v), K_{\text{close}}(v), K_{\text{below}}(v) \) be the number of edges of \(P_i \) in \(E_{\text{above}}(v), E_{\text{close}}(v), E_{\text{below}}(v) \) respectively. Polygon \(P_i \) contains the portions of \(L \) which is in between \(I_{\text{close}}(v) \) and \(I_{\text{below}}(v) \) if \(K' = K_{\text{above}}(v) + K_{\text{close}}(v) \) is odd. This portion also lies in \(P \). Hence, if \(K' \) is odd either \(P \) contains \(P_i \) or \(P_i \) contains \(P \). But using Lemma 3.2 one of these two possibilities is omitted by checking the leftmost vertex of each polygon. Hence, it can be determined correctly whether \(P_i \) is an ancestor of \(P \) or not.

Case(ii): There is no vertex \(v \) which lies in between two vertical lines \(L_1 \) and \(L_2 \). In this case, only two edges of \(P \) will be vertically visible from \(q \). Let these two edges be \(e_1, e_2 \) as shown in Figure 4.1(b). Let \(r \) (resp.) be the first vertex which is hit by a vertical line \(L \) if we sweep \(L \) from the position of \(L_2 \) (resp.) to right (left resp.). Consider a vertical line through \(r \) which intersects \(e_1 \) and \(e_2 \) at \(b' \) and \(c' \) respectively. Similarly, consider the vertical line through \(r \) which intersects \(e_1 \) and \(e_2 \) at \(a' \) and \(d' \) respectively. Certainly, the quadrilateral \(ab'c'd' \) lies inside \(P \). Since \(abcd \) lies inside \(ab'c'd' \), one of the edges \(b'c' \) and \(a'd' \) must be greater than equal to \(28eB \). W.l.o.g let us assume \(b'c' \) is that edge. Certainly, \(r \) is at a distance of at least \(14eB \) either from \(b' \) or \(c' \). W.l.o.g let us assume the distance between \(r \) and \(c' \) is greater than equal to \(14eB \). Following the same logic as in Case (i) we can determine the ancestors of \(P \) by counting the number of edges in \(E_{\text{above}}(r) \) and \(E_{\text{close}}(r) \) for each polygon \(P_i \).

Algorithm:

Input: A set of simple, nonintersecting, fleshy polygons.

Output: A acyclic directed graph, called the nesting structure, in which each node \(n_i \) represent a polygon \(P_i \). There is a directed edge from \(n_i \) to \(n_j \) iff \(P_j \) is the parent of \(P_i \).

Step 1: Sort the vertices of the polygons on the x axis. Let this sorted sequence be \(v_1, v_2, ..., v_n \).

Step 2: Sweep a vertical line from left to right taking the following steps at each vertex \(v_i \).

Step 2(a): Let \(P \) be the polygon having \(v_i \) on the boundary and \(E \) be the set of edges which were intersected by \(L \) when the sweep line stopped at \(v_{i-1} \). Compute the intersection point of \(L \) with each edge in \(E \). Construct the sets \(E_{\text{above}}(v_i), E_{\text{close}}(v_i), E_{\text{below}}(v_i) \) for \(v_i \).

Step 2(b): Count the number of edges of \(P \) in \(E_{\text{above}}(v_i) \) and \(E_{\text{close}}(v_i) \). If this number is odd then take step 2(c) otherwise skip 2(c).

Step 2(c): For each polygon \(P_i \) intersected by \(L \) count the number of edges in \(E_{\text{above}}(v_i) \) and \(E_{\text{close}}(v_i) \). Compute \(K' = E_{\text{above}}(v_i) + E_{\text{close}}(v_i) \). If \(K' \) is odd, then check the leftmost vertices of \(P_i \) and \(P \) to determine whether \(\text{NOT}(\text{CONT}(P, P_i)) \) or \(\text{NOT}(\text{CONT}(P_i, P)) \). If \(\text{NOT}(\text{CONT}(P, P_i)) \) then create a directed edge from the node corresponding to \(P_i \) to the node corresponding to \(P \) in the nesting structure. Note that this will create a directed edge from \(n_i \) to \(n_j \) iff \(P_j \) is an ancestor(not merely parent) of \(P_i \). This nesting structure is refined in Step 3.

Step 2(d): If \(v_i \) is a vertex such that both edges adjacent to \(v_i \) were not in \(E \), then include them in \(E \). If \(v_i \) is a vertex such that both edges adjacent to it were in \(E \), then delete them from \(E \). If \(v_i \) is a vertex such that one of the edges were in \(E \) then delete that edge from \(E \) and include the other edge adjacent to \(v_i \) in \(E \).

Step 3: In the nesting structure computed by Step 2(c) determine the longest path from each node \(n_i \) to every other node. If no node is reachable from \(n_i \) then \(P_i \) is the corresponding polygon \(P_i \) is null. Otherwise, the polygon \(P_j \), corresponding to the node \(n_j \) with the longest path length of \(l \) is the parent of \(P_i \).

Time Analysis: Step 1 takes \(O(n \log n) \) time. Since a vertical line intersects at most \(O(m + N) \) edges (Lemma 2.1), Step 2 takes \(O(m + N) \) time for each stop while sweeping. Hence, total time spent for Step 2 is \(O(n(m + N)) \). The longest path determination in step 3 for each node takes \(O(m^2) \). Since the underlying graph of the nesting structure with \(m \) nodes is directed and acyclic, we can apply the well known Dijkstra's shortest path algorithm (See for e.g. [1]) with negative weight of -1 on every edge, to determine the longest path from a source to every other node. Hence, step 3 takes \(O(m^2) \) time for \(m \) nodes. Combining these, the time complexity \(T \) of the robust algorithm for polygon nesting of a set of simple, nonintersecting, fleshy polygons is given by, \(T = O(n \log n + n(m + N) + m^3) = O(n \log n + m + N) + m^3) \).
References

Figure 1.1
Above(v) = \{e_1, e_3, e_5, e_6\}
norther(v) = e_4
Parent of p_3 = p_2, Parent of p_3 = Null
Ancestor of p_3 = \{p_1, p_2\}

Figure 3.1 (a)
e_1 is kept with c_1 before the step at v_1.

Figure 3.1 (b)
e_1 is kept with c_2 after computing position of v_1 with respect to c_2.

Figure 3.2
above(v_4) = \{e_4, e_7, e_8, e_9\}
e_5 is a degenerate case.
Figure 4.1 (a)
Case (i)

Figure 4.1 (b)
Case (ii)