1990

The Study of Rotary Compressor Driven Under Low Electric Frequencies

Y. Sato
Mitsubishi Electric Corporation

Y. Shirafuyi
Mitsubishi Electric Corporation

Follow this and additional works at: http://docs.lib.purdue.edu/icec

http://docs.lib.purdue.edu/icec/746

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/Herrick/Events/orderlit.html
THE STUDY OF ROTARY COMPRESSOR
DRIVEN UNDER LOW ELECTRIC FREQUENCIES

Yutaka Sato Yoshinori Shirafuji
Shizuoka Works, Mitsubishi Electric Corporation
3-18-1, Oshika, Shizuoka City 422, JAPAN
Tel.No. : 542-87-3112, Fax. No. : 542-87-3143

ABSTRACT

Rolling piston type rotary compressor has been widely used with an inverter control which changes the commercial electric frequency driving a compressor motor into various frequencies in order to give an appropriate cooling capacity to the refrigeration and air-conditioning system. However, a conventional rotary compressor of single cylinder type has a considerable problem that the performance severely decreases as its rotational speed of the motor decreases. The reason of this problem could be made clear through the research for a dual cylinder rotary compressor and the analysis for the compressor performance with its rotational-speed fluctuations.

As a result of it, some improvement methods for the performance at low electric frequency operation could become clear theoretically and experimentally. This paper shows the results mentioned above with theoretical analysis and experimental data including comparison between a single and dual cylinder rotary compressor.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ic</td>
<td>Inertia moment of crankshaft system</td>
</tr>
<tr>
<td>t</td>
<td>Time differential</td>
</tr>
<tr>
<td>\dot{\theta}</td>
<td>Acceleration of crank angle</td>
</tr>
<tr>
<td>Tm</td>
<td>Motor output torque</td>
</tr>
<tr>
<td>Tv</td>
<td>Reaction torque</td>
</tr>
<tr>
<td>Tth</td>
<td>Friction torque of thrust bearing</td>
</tr>
<tr>
<td>Mc</td>
<td>Friction moment of piston inside</td>
</tr>
<tr>
<td>Wg</td>
<td>Bearing load for gas compression</td>
</tr>
<tr>
<td>e</td>
<td>Eccentricity of crank</td>
</tr>
<tr>
<td>\alpha</td>
<td>Offset angle of rolling piston center</td>
</tr>
<tr>
<td>Pc</td>
<td>Pressure in compression chamber</td>
</tr>
<tr>
<td>Fs</td>
<td>Pressure in suction chamber</td>
</tr>
<tr>
<td>\omega</td>
<td>Angular velocity of piston</td>
</tr>
<tr>
<td>Fv</td>
<td>Friction force at vane tip</td>
</tr>
<tr>
<td>h</td>
<td>Oil-film thickness in bearing</td>
</tr>
<tr>
<td>ej</td>
<td>Eccentricity of journal from the bearing center</td>
</tr>
<tr>
<td>\varepsilon</td>
<td>Eccentricity ratio</td>
</tr>
<tr>
<td>\eta</td>
<td>Viscosity of lubrication oil</td>
</tr>
<tr>
<td>\omega</td>
<td>Angular velocity of journal</td>
</tr>
<tr>
<td>s</td>
<td>Slip of rotor</td>
</tr>
<tr>
<td>L1</td>
<td>Self-inductance of stator</td>
</tr>
<tr>
<td>L2</td>
<td>Self-inductance of rotor</td>
</tr>
<tr>
<td>M</td>
<td>Mutual inductance between stator and rotor</td>
</tr>
<tr>
<td>\dot{\theta}</td>
<td>Instantaneous rotational-speed of electrical angle</td>
</tr>
<tr>
<td>Ids</td>
<td>d-axis current of stator</td>
</tr>
<tr>
<td>Idr</td>
<td>d-axis current of rotor</td>
</tr>
<tr>
<td>Vds</td>
<td>d-axis voltage of stator</td>
</tr>
<tr>
<td>Vdr</td>
<td>d-axis voltage of rotor</td>
</tr>
<tr>
<td>Iqs</td>
<td>q-axis current of stator</td>
</tr>
<tr>
<td>Iqr</td>
<td>q-axis current of rotor</td>
</tr>
<tr>
<td>Vqs</td>
<td>q-axis voltage of stator</td>
</tr>
<tr>
<td>Vqr</td>
<td>q-axis voltage of rotor</td>
</tr>
</tbody>
</table>
It was often noted that the rotational speed in a single-cylinder rotary compressor driven by an induction motor must influence on its performance defined as C.O.P (Coefficient Of Performance). Particularly it was a big problem that C.O.P fell down remarkably at the rotation below than 2000 R.P.M.

In this paper, some reasons bringing on this problem were discussed with dynamic analysis that the instantaneous values of motor torque, inertia torque and load torque for the compression process were solved as simultaneous equations. With this analysis, a certain way to improve C.O.P of rotary compressor under low speed rotation could be found, and it was shown in some figures that the results of simulation analysis were in approximate agreement with the results of experiment.

Consequently, it was able to say that the performance of rotary compressor driven by a frequency control system called an inverter, including a dual-cylinder rotary compressor, could be accurately estimated with this simulation analysis.

DYNAMIC ANALYSIS FOR ROTATIONAL FLUCTUATIONS

(1) Basic Equation

A basic equation as a function of the crankshaft angle, in regard to the rotational-direction system, can be expressed as follows.

\[I_c \cdot \dot{\theta} + T_l(\theta) = T_m(\dot{\theta}) \] (1)

Hence, \(I_c \) is the value of inertia moment determined from the compressor specifications which consist of a distance of the eccentricity and the mass around the rotational center of the crankshaft system. \(T_m \) means motor output torque. Although \(T_m \) was treated as a constant value determined by motor characteristics with a constant slip speed so far, \(T_m(\dot{\theta}) \) is considered as a function of \(\dot{\theta} \) this time. Because an inductance term in the motor characteristics equations must be influenced by the electric current fluctuations due to the required load torque fluctuations for compression process, values caused by such an influence must take into the term of \(T_m(\dot{\theta}) \) here.

(2) Equations For The Required Load Torque

\(T_l(\theta) \) means the required load torque for compression work in a defined small crankshaft angle, \(d\theta \), and \(T_l(\theta) \) is given by the next equation.

\[T_l(\theta) = T_g(\theta) + T_v(\theta) + T_f(\theta) \] (2)

Gas compression torque \(T_g \) can be expressed as following equations and pressure in compression chamber \(P_c \) and pressure in suction chamber \(P_s \) are given by experimental data here.

\[T_g = 2_1 W_{gi} \cdot e \cdot \sin((\alpha_i + \theta_i)/2) \] (3)

\[W_{gi} = (P_{ci} - P_{si}) \cdot 2\pi \cdot \sin((\alpha_i + \theta_i)/2) \cdot H \] (4)

Hence, \(i = 1, 2 \) for a single and dual cylinder rotary compressor respectively as explained in an equation (3) and (4).

Fig.1 and Fig.2 shows the schematic views indicating forces and moments acting on rolling piston and vane. \(F_v, F_s, \) and \(F_d \) in Fig.1 and Fig.2 are constraint forces acting on vane tip and sides. These values can be obtained by solving the equilibrium equation and the motion equation of rolling piston described as an equation (5) considering the effect of angular velocity \(\theta \) and angular acceleration \(\dot{\theta} \) of crankshaft.

\[I_p \cdot \ddot{\theta} = M_c - \pi \cdot \mu v \cdot F_v - M_b \] (5)

The reaction torque \(T_v \) can be obtained as follows.

\[T_v = \Sigma F_v \cdot e \cdot \sin(\alpha_i + \theta_i) \] (6)

Hence, \(i = 1, 2 \) for a single and dual cylinder rotary compressor respectively as explained in an equation (3) and (4).
The condition of bearings around the crankshaft can be reasonably assumed as fluid lubrication, and friction forces can be obtained by solving the basic equations (7) and (8) for journal bearing with a finite length under load fluctuations. In the equations the averaged velocity of crankshaft is used tor simplicity. The journal bearing model discussed here are shown in Fig.3.

\[
\frac{1}{r_j^2} \cdot \frac{\partial}{\partial \theta} \left(\frac{h_j^a \delta P}{\delta \theta} \right) + \frac{h_j^a \delta^2 P}{\delta \theta^2} = 6 \eta \cdot Cr \cdot [- \varepsilon (\omega_j \omega b - 2 (\phi + \phi) \sin \theta b)] + 2 \varepsilon \cdot \cos \theta b \tag{7}
\]

\[
\left(\frac{\eta \cdot \omega_j \cdot r_j^a \cdot L}{Cr} \left(\frac{\omega_j \omega b}{\sqrt{1 - \varepsilon^2}} \right) + \frac{2 \varepsilon (Cr)^{\frac{1}{2}} \omega \cdot \sin \theta}{\eta \cdot r_j \cdot \omega_j \cdot L} \right)
+ \frac{2 \pi \cdot Cr \cdot \delta \left[\frac{1}{\sqrt{1 - \varepsilon^2}} \right]}{r_j \cdot \omega_j}
\tag{8}
\]

Total friction torque \(T_f \) can be expressed as follows.

\[
T_f = \sum_i F_{fi} \cdot r_i + T_{\text{th}} \tag{9}
\]

Hence, \(i = 1, 2, 3 \) Subscripts 1,2 and 3 in an equation (9) mean the upper,eccentric and lower bearing respectively.

Consequently, the required load torque for compression work \(T_l(\theta) \) should be expanded in Fourier series like an equation (10) in order to express \(T_l \) as a function of \(\theta \). It is necessary to obtain \(T_m(\theta) \) and \(\theta \) with \(T_l(\theta) \) simultaneously.

\[
T_l(\theta) = T_{l_0} \cdot \{A_o + \sum_{n=1}^{k} A_n \cdot \cos(n \omega t) + \sum_{n=1}^{k} B_n \cdot \sin(n \omega t)\} \tag{10}
\]

\(T_{l_0} \) : the maximum value of load torque

\(k \) : the required number of term for appropriate solution

(3) Equations For Motor Output Torque

An Equivalent circuit indicated in Fig.4 is generally authorized and used for analysis of a conventional induction motor. Electric current and voltage equations for dynamic analysis of induction motor can be defined as a matrix equation (11). Equation (11) is obtained by the rotational coordinates transformation called d-q-0 axis transformation usually that the rotary coordinate-system of stator with revolving magnetic field at synchronous speed of the electric frequency can be changed into the fixed coordinate-system. As a result of this transformation, the instantaneous values regarding the motor torque expressed as an equation (12) can be calculated with the instantaneous values of electric currents given by solving equation (11).

\[
\begin{align*}
V_{ds} &= \begin{bmatrix} R_{1+PL1} & 0 & MP & 0 \end{bmatrix} \begin{bmatrix} Ids \end{bmatrix} \\
V_{qs} &= \begin{bmatrix} 0 & R_{1+PL1} & 0 & MP \end{bmatrix} \begin{bmatrix} Iqs \end{bmatrix} \\
V_{dr} &= \begin{bmatrix} MP & M \delta r & R_{2+PL2} & L_2 \delta r \end{bmatrix} \begin{bmatrix} Idr \end{bmatrix} \\
V_{qr} &= \begin{bmatrix} -M \delta r & MP & -L_2 \delta r & R_{2+PL2} \end{bmatrix} \begin{bmatrix} Iqr \end{bmatrix}
\end{align*}
\tag{11}
\]

\[
T_m(\theta) = M(Ids \cdot Idr - Ids \cdot Iqr) \tag{12}
\]

It is required that all equations noted above are solved simultaneously and calculations are continued until solutions are reasonably converged. In these numerical calculation, the friction coefficients are determined by the method that the calculated shaft-power agreed with that of the experimental model measured actually.

MODELS FOR ANALYSIS AND EXPERIMENT

(1) Main Specifications

The fundamental construction of a single and dual cylinder rotary compressor which are subjects for this study are shown in Fig.5 and Fig.6, respectively.

A dual-cylinder rotary compressor discussed here has a partition plate located between the upper and lower cylinder, and two eccentric cams located with a phase difference of 180 degrees between the two. However, mechanism for compression in each cylinder is completely as same as the case of a conventional single-cylinder rotary compressor.

A single-cylinder rotary compressor can install some flywheel which can
be adjusted and detached on the lower side of the rotor as shown in Fig. 5. It is a quite useful way to investigate a relation between the compressor performance and the amount of inertia moment effecting on the rotational fluctuations. The main specifications of the models for this study are described in Table 1.

<table>
<thead>
<tr>
<th>Compressor Type</th>
<th>Dual-Cyl.</th>
<th>Single-Cyl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swept Volume(cm³/rev.)</td>
<td>13.0</td>
<td>12.7</td>
</tr>
<tr>
<td>Inertia Moment(N·m)</td>
<td>0.434x10⁻²</td>
<td>0.408x10⁻²</td>
</tr>
<tr>
<td>Flywheel</td>
<td>Without</td>
<td>Without</td>
</tr>
</tbody>
</table>

(2) Experimental Apparatus And Method

The experimental models of a single and dual-cylinder rotary compressor were installed in a secondary refrigerant compressor calorimeter to measure gas flow rate and required input power. Pressure in a compression and suction chamber of the cylinder were measured by small piezo type pressure transducers and strain gage type pressure transducers. Temperatures of refrigerant R-22 in the refrigeration cycle were measured with thermocouples. Magnetic encoder type rotational-speed sensor was put in the edge of crankshaft and lower bearing, as shown in Fig. 5 and Fig. 6, in order to check the fluctuational values during one turn of crankshaft.

All theoretical and experimental studies in this paper were performed under a certain operating condition indicated in Table 2.

<table>
<thead>
<tr>
<th>Operating Condition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensing Temperature</td>
<td>52 (°C)</td>
</tr>
<tr>
<td>Evaporating Temperature</td>
<td>5 (°C)</td>
</tr>
<tr>
<td>Return Gas Temperature</td>
<td>15 (°C)</td>
</tr>
<tr>
<td>Liquid Temperature</td>
<td></td>
</tr>
<tr>
<td>Entering Exp. Valve</td>
<td>47 (°C)</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>35 (°C)</td>
</tr>
<tr>
<td>Power Source</td>
<td>3 Ø, Variable</td>
</tr>
<tr>
<td>Freq. and Volt. Converter</td>
<td>Freq. and Volt.</td>
</tr>
</tbody>
</table>

RESULTS OF ANALYSIS AND EXPERIMENT

The compressor performance influenced by the operating electric frequency for induction motor can be shown in Fig. 7. There is a tendency that the performance deceases as the electric frequency driving a compressor motor becomes lower. Particularly in case of a single-cylinder type, the tendency is more remarkable than that of a dual-cylinder type. The rotational-speed fluctuations measured in the experiment for a single-cylinder one are in Fig. 8. There is also a tendency the fluctuational values become larger as the operating electric frequency becomes lower. A relation between two tendencies mentioned above supposes that the rotational fluctuations could effect on the compressor performance.

Fig. 9 shows the comparison of the experimental results with calculated results regarding the rotational fluctuations of a single and dual cylinder compressor driving at 34 Hz electric frequency. Through this comparison, theoretically analytical values agree well with the experimental values in both of a single and dual cylinder rotary compressor, and it can be said that this analysis can be used to simulate the other cases.

Fig. 10 shows the instantaneous values of T_m, motor efficiency and the rotational-speed fluctuations obtained by solving a basic equation (1) on the basis of the required-load torque T_l for a conventional single-cylinder compressor driven at 34 Hz electric frequency. The rotational-speed fluctuations are expressed as a unit of electric frequency in Fig. 10.

Considering a basic equation (1), it seems that the value of inertia moment I_c must influence on the rotational system, so a certain flywheel put on the rotor shown in Fig. 5 in order to raise the amount of inertia moment around the crankshaft system of a single-cylinder rotary compressor. As a result of this trial
with a flywheel, the rotational-speed fluctuations could be reduced to a sufficiently low level indicated in Fig.11, and the required input power could be improved in a range of frequency less than 40 Hz as shown in Fig.12. Nevertheless, it could make clear that the input power increased in a range of frequency more than 40 Hz due to windage loss caused by the flywheel rotation in discharged gas. Fig.13 shows a relation between the motor efficiency and the driving electric frequency with the effect of flywheel as an inertia moment value.

In other words, these results can be explained from the aspect of motor characteristics in Fig.14 which indicates the instantaneous torque of motor output with the instantaneous rotational-speed. And it is obviously evident that the value of inertia moment effecting on the rotational stability against the load fluctuations must be important for a single-cylinder rotary compressor under a slow-speed rotation.

On the other hand, Fig.15 and Fig.16 explain that the motor characteristics for a dual-cylinder one driving at a low electric frequency has a small efficiency declining in comparison with a single-cylinder one, because the rotational fluctuations of a dual-cylinder one, having small load fluctuations structurally, is as small as that of a single-cylinder one having a large value of inertia moment. In addition, the performance of a dual-cylinder one can maintain high efficiency in a range of high speed rotation.

CONCLUSION

(1) It was made clear that a main reason why the rotary compressor performance was remarkably decreased as its rotational-speed decreased was the decline of motor efficiency caused by the rotational fluctuations during a turn of crankshaft system for compression work. The reason could be supported by the results of simulation analysis and experiment in this study.

(2) It could be found that the amount of the inertia moment about the crankshaft system was deeply related to the fluctuation values of rotation and the relationship was quantitatively studied by simulation analysis and some unique experimental methods.

(3) Dual-cylinder rotary compressor has a superior characteristics in its structure with regard to the load-torque fluctuations specially under a slow rotational-speed. In consequence of this investigation to compare a single-cylinder rotary compressor adjusting the amount of inertia moment with a dual-cylinder one, it can be made clear that a dual-cylinder type must be a suitable one to be driven by a wide range of electric frequency control in refrigeration and air-conditioning.

REFERENCE

Fig. 1 Schematic view, Forces and Moments acting on Rolling Piston and Vane

Fig. 2 Forces acting on Vane

Fig. 3 Model of journal bearing

Fig. 4 Equivalent circuit for induction motor

Fig. 5 Section view of experimental model for single-cylinder type

Fig. 6 Section view of experimental model for dual-cylinder type
Fig. 7 Efficiency comparison

Fig. 8 Rotational-speed fluctuations of a conventional single-cylinder compressor

Fig. 9 The rotational-speed fluctuations at 34Hz frequency operation
Fig. 10 Analytical results

Fig. 11 The effect of flywheel at 34Hz frequency operation

Fig. 12 The effect of flywheel on input power
Fig. 13 The effect of inertia moment on motor efficiency

Fig. 14 Instantaneous rotation and torque at 34Hz frequency operation

Fig. 15 The effect of load fluctuations on motor efficiency

Fig. 16 Instantaneous rotation and torque at 34Hz frequency operation