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Design concepts of terahertz quantum cascade lasers: Proposal for
terahertz laser efficiency improvements

Tillmann Kubis,a� Saumitra Raj Mehrotra, and Gerhard Klimeck
Network for Computational Nanotechnology, Birk Nanotechnology Center, School of Electrical and
Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA

�Received 24 September 2010; accepted 11 November 2010; published online 28 December 2010�

Conceptual disadvantages of typical resonant phonon terahertz quantum cascade lasers �THz-QCLs�
are analyzed. Alternative designs and their combination within a concrete device proposal are
discussed to improve the QCL performance. The improvements are �1� indirect pumping of the
upper laser level, �2� diagonal optical transitions, �3� complete electron thermalization, and �4�
materials with low effective electron masses. The nonequilibrium Green’s function method is
applied to predict stationary electron transport and optical gain. The proposed THz-QCL shows a
higher optical gain, a lower threshold current, and a higher operation temperature. Alloy disorder
scattering can worsen the QCL performance.
© 2010 American Institute of Physics. �doi:10.1063/1.3524197�

A wide range of scientific and commercial applications
requires high power and coherent terahertz sources since the
characteristic excitation lines of many molecules lie within
the terahertz spectral region.1–3 Terahertz quantum cascade
lasers �THz-QCLs� are promising candidates to supply in-
tense coherent terahertz light. Since the realization of THz-
QCLs by Koehler et al.,4 the performance of these lasers has
been significantly improved, but their operation is still lim-
ited to cryogenic temperatures.

To increase the maximum operating temperature and to
increase the output power, several disadvantages of the com-
monly used resonant phonon THz-QCL design are analyzed.
Subsequently, alternative design concepts and their combina-
tion within an efficient THz-QCL are presented. Finally, the
calculated data of a concrete example of the proposed design
concept are presented. Although the various parameters of
this proposed QCL have not been optimized, this example
shows a much higher optical gain and a higher operating
temperature.

The mechanisms that are responsible for optical gain in a
typical resonant phonon THz-QCL can be deduced from Fig.
1�a�. It depicts a schematic of the conduction band profile
and the resonant states at an applied electric field close to
threshold. The upper laser level �labeled 4� is aligned with
the injector state 5 in the leftmost source-sided quantum well
and therefore gets filled by resonant tunneling. The spatial
overlap of the lower laser level 3 with the upper one is very
large to guarantee a large oscillator strength of the optical
transition. The lower laser level 3 gets efficiently emptied by
two mechanisms. State 3 is aligned with state 2 of the right-
most well, which allows its coherent depletion by tunneling.
Second, the energy difference between this state and the low-
est resonant state �1� matches the energy of an LO-phonon,
which leads to an additional depletion by the resonant emis-
sion of LO-phonons. The alignment of the resonant states as
well as the electric field at threshold are chosen such that the
potential drop per period �e�th� equals the sum of the energy

of one emitted photon �E�� and the energy of one LO-
phonon �ELO�.

There are several issues with this design concept that
intrinsically lower the overall device performance:

Coherent filling. The alignment of the injector state 5
with the upper laser level 4 allows for a delocalization of the
upper laser level beyond the area of the lower laser level 3.
This reduces the oscillator strength as well as the lifetime of
electrons in the upper laser level. In addition, multibarrier
tunneling across a complete QCL period becomes more
likely if the upper laser level is not confined well enough.5

Direct laser transition. The large spatial overlap of the
upper �4� and lower �3� laser level significantly increases the
probability of nonluminescent transitions. Accordingly, it has
been shown in previous work that the optical gain of this
kind of THz-QCL is dramatically reduced by the electron
scattering on rough interfaces.6 Scattering on rough inter-
faces suggests to increase the laser frequency: a larger energy
separation between the laser levels increases the scattered
in-plane momentum and thereby reduces the scattering
probability.7,8 However, the thermally activated LO-phonon
emission of electrons in the upper laser level is another im-
portant degradation mechanism.9 The LO-phonon emission
suggests a smaller laser frequency: the larger the energy dif-
ference between the laser levels 3 and 4 is, the more elec-
trons meet the minimum energy requirement for the phonon
emission and the smaller is the scattered in-plane momen-
tum. The conflict of both effects limits the improvement op-
tions in typical THz-QCLs.

Incomplete thermalization. Typical THz-QCLs are de-
signed such that the potential drop per period at threshold
bias equals the sum of the emitted photon energy and the
energy of one LO-phonon. On the average, however, most
electrons pass THz-QCL periods without emitting light.6 It
has been shown in previous work that electrons that pass a
period without emitting a photon get heated up with respect
to their in-plane distribution.6 When these electrons are ther-
malized in subsequent periods, the population inversion is
significantly reduced. The resulting overall optical gain can
be lowered by almost a factor of 2.6a�Electronic mail: tkubis@purdue.edu.
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Material properties. It is very common to use unstrained
Al0.15Ga0.85As /GaAs quantum well heterostructures for reso-
nant phonon THz-QCLs. Meanwhile, it is known that the
optical gain is proportional to �1 /m��3/2, with the effective
electron mass m�.10 Therefore, designing the THz-QCLs
based on materials with lower effective electron masses can
lead to a higher optical gain.

These issues are solved in a THz-QCL design proposed
in the next paragraphs. The mechanisms that lead to occupa-
tion inversion and optical gain in this design are depicted in
Fig. 1�b� with a schematic of the conduction band profile and
the resonant states at an applied electric field close to thresh-
old. The upper laser level 4 is filled by electrons of the in-
jector state 5 that resonantly emit an LO-phonon. The lower
laser level 3 is spatially separated from the upper laser level
forcing the optical transition to be diagonal. The lowest level
of the collector well �1� is exactly one LO-phonon energy
below the upper laser level �4�. This guarantees that most of
the electrons �i.e., the nonluminescent ones� are thermalized
in each QCL period. Compared to the conventional resonant
phonon design of Fig. 1�a�, this concept has several advan-
tages:

Indirect pumping. The upper laser level is well confined
within a single quantum well. This reduces the chance of
coherent leakage to the next QCL stage. In addition, the
number of �rough� interfaces that can influence the upper
state lifetime is reduced. As has been shown in previous
work, just indirect pumping alone can increase the peak gain
by a factor of approximately 3.9 Recent experimental and
theoretical works confirm that indirect pumping can improve
the device performance.11,12

Diagonal transitions. Nonluminescent transitions be-
tween the laser levels are suppressed because the spatial
overlap is much smaller than in the typical design. Please
note that the optical transition is proportional to the transition
dipole element, which has a different spatial characteristic
than nonluminescent transitions. Previous work has demon-
strated that the optical gain of a diagonal transition is much
less sensitive to scattering on rough interfaces than direct
transitions.13 It is worth to note that the THz-QCL with a
temperature limit of 186 K utilizes diagonal optical
transitions.14 Once the nonluminescent elastic transitions are
suppressed, the energy difference between the laser levels
can be reduced in order to suppress the probability for ther-
mally activated LO-phonon emission of electrons in the up-
per laser level.

Complete thermalization. The energy balance of the
QCL in Fig. 1�b� is neglecting the photon energy. In this way,
it is guaranteed that the majority of electrons, i.e., those that

are not emitting light, are thermalized within each period.
Therefore, nonperiodic effects, which have shown to signifi-
cantly worsen the QCL performance, are efficiently
suppressed.6,15

Low effective mass. The combination of In0.53Ga0.47As
and GaAs0.51Sb0.49 layers instead of the commonly used
Al0.15Ga0.85As /GaAs material system has the advantage of
lower effective electron masses. This material system has
recently been shown to yield optical intersubband
transitions.16

All these suggestions have been combined into a con-
crete In0.53Ga0.47As /GaAs0.51Sb0.49 QCL device design.
Starting from the leftmost barrier in Fig. 1�b�, one period of
the indirect-pumped QCL sequence was taken as 2.7/9/1.8/
20.7/2.7/15.3/2.7/18.9 nm. The bold and regular numbers
represent GaAs0.51Sb0.49 and In0.53Ga0.47As layers, respec-
tively. The underlined 9-nm-thick quantum well is the only
n-doped region at the level of 2.04�1016 cm−3. We have
applied the nonequilibrium Green’s function �NEGF� method
on the stationary charge transport and the linear optical re-
sponse of this QCL. Thereby, the QCL is considered as an
open quantum device with multiquantum well leads. Elec-
trons within each lead are distributed according to Fermi
distributions. Therefore, all electrons enter the QCL device
in equilibrium distributions and nonequilibrium electrons
that leave the device are thermalized within the leads. Inco-
herent scattering of electrons on optical and acoustic
phonons, charged impurities, rough interfaces, and random
alloy disorder is included. The electron-electron interaction
in the Hartree approximation is taken into account. Please
refer to Ref. 6 for implementation details. Figure 2 shows the
spectral function A�z ,E� at zero in-plane momentum of the
proposed QCL resulting from this NEGF calculation. Reso-
nant states correspond with peaks of A�z ,E�. We have as-
sumed an LO-phonon energy of 34 meV in the composed
material system and designed the potential drop at threshold
bias commensurable with this LO-phonon energy. The alloy
scattering potential �VTB is estimated from empirical tight-
binding parameters to be 0.493 eV for In0.53Ga0.47As and
0.36 eV for GaAs0.51Sb0.49.

17–19 All remaining material pa-
rameters are taken from Ref. 10. The calculated emission
energy of the present laser is 10 meV. Figure 3 compares the
calculated peak gain as a function of the lattice temperature

FIG. 1. �Color online� Schematics of the conduction band �black� and the
resonant states �thick� of a typical resonant phonon THz-QCL �a� and the
presently proposed design concept �b� at threshold voltage �th. Arrows de-
pict emitted photons �white� and phonons �black�. The potential drop e�th in
the typical design �a� equals the energy of one photon and one phonon. In
the proposed design �b�, it is equal to the energy of two phonons.

FIG. 2. �Color online� Calculated conduction band profile �line� and contour
plot of the energy and spatially resolved spectral function A�z ,E� at vanish-
ing in-plane momentum in the proposed QCL at the threshold bias voltage
of 68 mV per period and a lattice temperature of 100 K. The zero in energy
marks the chemical potential of the source.
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in the present QCL to the conventional THz-QCL of Ref. 20
with the same effective doping density per period. The pro-
posed design yields a higher optical gain for all temperatures
and has an about 20 K higher maximum operation device
temperature. Note that the high threshold current of the con-
ventional design heats the QCL by 20–50 K above the heat
sink temperature.21,22 It is also worth to mention that the
threshold current density of the proposed design at 40 K
lattice temperature is 0.13 kA /cm2. This is approximately
four times smaller than in the conventional design of the
same effective doping and temperature.20 Rough interfaces
reduce the optical gain of the proposed design by only about
40% �instead of 90% in the old design� and tend to stabilize
the carrier transport. In particular, the calculations predict a
higher current density if the QCL is grown with the source-
sided barrier interfaces being rough and the opposite inter-
faces being smooth. The implemented alloy scattering poten-
tial in In0.53Ga0.47As agrees with experimental findings.23

However, some authors use the conduction band difference
of the binary alloys �VCB instead �about 1 eV for
In0.53Ga0.47As and 0.1 eV for GaAs0.51Sb0.49�. Figure 3 shows
the influence of the alloy disorder scattering on the proposed
QCL. At low temperatures, the filling of the upper laser level
and the optical gain is slightly improved by alloy disorder
scattering. Once this level filling gets saturated by high dis-
order potentials �V or at high temperatures by enhanced pho-
non scattering �at about 175 K in Fig. 3�, alloy disorder
scattering preferably supports nonradiative losses and re-
duces the optical gain.

In conclusion, several conceptual disadvantages of com-
mon resonant phonon THz-QCLs have been discussed. Al-
ternative concepts have been presented that avoid all of these
disadvantages and result in THz-QCLs with improved laser
performance. A concrete THz-QCL that combines all alter-

native design concepts has been proposed. Nonequilibrium
Green’s function calculations of this proposed QCL show
significantly higher optical gain, a higher maximum tempera-
ture, and an approximately four times lower threshold cur-
rent density than in a comparable conventional THz-QCL. It
is shown that a strong alloy disorder scattering can worsen
the optical output performance.
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Fund FWF �Grant No. SFB-IRON� and the National Science
Foundation �NSF� �Grant Nos. OCI-0749140, EEC-0228390,
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