Scroll Compressor: Thrust Bearing Design with Rigid Body Dynamics of the Runner Plate

S. S. Kulkarni
Copeland Corporation

Follow this and additional works at: http://docs.lib.purdue.edu/icec

http://docs.lib.purdue.edu/icec/722

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/Herrick/Events/orderlit.html
SCROLL COMPRESSOR: THRUST BEARING DESIGN WITH RIGID BODY DYNAMICS OF THE RUNNER PLATE

Sunil S. Kulkarni
Senior Project Engineer
Research and Development Department
Copeland Corporation
Sidney, Ohio, U.S.A.

ABSTRACT

This paper presents the results of a theoretical study of the scroll compressor orbiting thrust bearing. The film thickness profile is computed from the rigid body dynamics of the scroll plate with six degrees of freedom. Euler's equations of motion are integrated to describe the angular velocities. Euler parameter representation is used to obtain the angular position of the rigid body. Translation equations are derived and integrated to obtain linear velocities and position. The Reynolds equation under incompressible laminar condition with constant viscosity is solved sequentially to the rigid body dynamics.

NOMENCLATURE

\(\ddot{A}_G \) = Acceleration of center of gravity

\(B_i \) = Orthonormal basis; \(i = 0, 1, 3 \)

\(C, D \) = Transformation matrices

2d = thickness of the scroll plate

\(E \) = Euler theorem axis of rotation

\(E_i \) = Direction cosines of the axis \(E; \ i = 1, 2, 3 \)

\(\mathbf{F} \) = Resultant force acting on the scroll plate

\(F_{AX} \) = Axial gas force on the scroll plate

\(F_{OIL} \) = Oil film restoring force

\(F_{RAD} \) = Radial gas force component on the scroll plate

\(g \) = Gravitational acceleration

\(G \) = Center of Gravity of the scroll plate

\(h \) = Local film thickness (Reynolds Equation)

\(h_0, h_2, h_3, h_4 \) = Film thickness at the outer radius

\(H \) = Radial gas force moment arm

\(I_i \) = Principal moment of inertias; \(i = 1, 2, 3 \)

\(m \) = Mass of the scroll plate

\(M_i \) = Moments in \(B_i \) basis; \(i = 1, 2, 3 \)

\(O \) = Spherical joint support

\(P_0, s_0 \) = Restoring oil force location (\(\bar{x}_3, \bar{y}_3 \)) in \(B_3 \) basis

\(p \) = Pressure in clearance space (Reynolds Equation)

333
\[p_1 \] = Pressure at the inner radius of the bearing (Reynolds Equation)
\[p_2 \] = Pressure at the outer radius of the bearing (Reynolds Equation)
\[q_i \] = Euler parameters or quaternions; \(i = 0, 1, 2, 3 \)
\[r \] = Radial coordinate (Reynolds Equation)
\[r_G \] = Center of gravity of scroll plate
\[R_1 \] = Inside radius of bearing
\[R_2 \] = Outside radius of bearing
\[R_b \] = Radial coordinate with shaft center as reference
\[u \] = Radial velocity component (Reynolds Equation)
\[v \] = Tangential velocity component (Reynolds Equation)
\[w \] = Squeeze velocity component (Z direction - Reynolds Equation)
\[w_s \] = Scroll plate local squeeze velocity component
\[X, Y, Z \] = Cartesian coordinate system
\[X_i \] = Cartesian coordinate Systems; \(i = 1, 2, 3 \)
\[\omega \] = Angular velocity vector
\[\omega \] = Shaft angular velocity
\[\omega_i \] = Angular velocity in \(B_i \) basis; \(i = 1, 2, 3 \)
\[\theta \] = Tangential coordinate (Reynolds Equation)
\[\mu \] = Lubricant viscosity (Reynolds Equation)
\[\phi \] = Velocity phase angle (Reynolds Equation)
\[\psi \] = Euler theorem rotation angle

INTRODUCTION

The study of the dynamic process between an orbiting scroll plate and a stationary thrust bearing is of definite scientific and practical interest. The thrust bearing in the scroll compressor must be designed to support the axial gas force and at the same time resist the overturning moment.

Paper [1] treats this problem statically and uses a modification of Rumbarger's Theory [2]. In reference [3] the Reynolds equation is developed and solved for an orbiting thrust bearing. The pressure developed in the oil film is computed for a given film thickness distribution. This procedure also solves the thrust bearing problem statically.

In the present paper rigid body equations of motion of the scroll plate are considered in parallel with the Reynolds equation for the orbiting thrust bearing. The Reynolds equation for the bearing is briefly described here, which is fully developed in reference [3]. The restoring oil force and moment are obtained after numerical integration of the Reynolds equation, and are used in the rigid body equations of motion of the scroll plate. The rigid body equations of motion are integrated numerically. In turn, the rigid body dynamics time-dependent film thickness and squeeze velocity are used to solve the Reynolds equation.
The orbiting motion of the scroll plate can be defined by two successive coordinate transformations. Consider a perfectly rigid body in a gravitational field with a spherical joint at the point of support O translating in the z direction as shown in Figure 1. To derive the equations of motion, consider a Cartesian inertial coordinate system X_0 with orthonormal basis $B_0 = \{i, j, k\}$. The origin of the rotating Cartesian coordinate system X_1 is fixed to the shaft center-line. Let $B_1 = \{x_1, y_1, z_1\}$ denote an orthonormal basis for this rotating coordinate system. The basis vectors B_0 and B_1 are related by a linear transformation D defined by $B_1 = [D] B_0$. The origin of the rotating Cartesian coordinate system X_3 is fixed at the support point O of the rigid body. Let $B_3 = \{x_3, y_3, z_3\}$ denote an orthonormal basis for this rotating coordinate system. The basis vectors B_1 and B_3 are related by a linear transformation C defined by $B_3 = [C] B_1$. This gives, $B_1 = [C] [D] B_1 = [CD] B_1$. The linear transformations D and C are defined as follows:

$$
D = \begin{bmatrix}
\cos(\omega t) & \sin(\omega t) & 0 \\
-sin(\omega t) & \cos(\omega t) & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

$$
C = \begin{bmatrix}
(q_1^2 - q_2^2 - q_3^2 + q_0^2) & 2(q_1 q_2 + q_3 q_0) & 2(q_1 q_3 - q_2 q_0) \\
2(q_1 q_2 - q_3 q_0) & (-q_1^2 + q_2^2 - q_3^2 + q_0^2) & 2(q_2 q_3 + q_1 q_0) \\
2(q_1 q_3 + q_2 q_0) & 2(q_2 q_3 - q_1 q_0) & (-q_1^2 - q_2^2 + q_3^2 + q_0^2)
\end{bmatrix}
$$

where ω is the shaft angular velocity and $q = (q_0, q_1, q_2, q_3)$ denotes Euler parameters or quaternions with:

$$
q_r = \cos(\frac{\Psi_r}{2}), \; q_r = E_r \sin(\frac{\Psi_r}{2}), \; r = 1, 2, 3 \text{ and } E = E_1 \tilde{X}_1 + E_2 \tilde{Y}_2 + E_3 \tilde{Z}_3 = E \tilde{x}_1 + E \tilde{y}_2 + E \tilde{z}_3.
$$

The Euler parameters are closely linked to Euler's Theorem, i.e., any rotation of one coordinate system with respect to another system may be described by a single rotation through some finite angle about a fixed axis (E). The transformation C can also be defined with the use of Euler angles. By equating the terms of $C(q)$ to those in $C(Euler \; angles)$ one can convert quaternions into Euler angles and vice versa [4]. The concept of Euler parameters as rotational coordinates may appear as a mathematical tool without any physical meaning. However, careful study of these parameters will prove the contrary. Physical interpretation of Euler parameters is simple and is more natural to implement than any other set of rotational coordinates, such as Euler or Bryant angles [5].

The translational equation of motion of the center-of-gravity G of the orbiting scroll plate is:

$$
\ddot{\mathbf{r}} = m \mathbf{a}_G
$$

The position vector of G is:

$$
\mathbf{r}_G = \mathbf{R}_{OR} \mathbf{x}_1 + z_0 \mathbf{k} + d \mathbf{z}_3
$$
The angular velocity of the scroll plate with respect to the inertial coordinate system is:

\[\omega = \omega_k + \omega_1 x_3 + \omega_2 y_3 - \omega z_3 \]

(3)

The velocity and acceleration of G are:

\[\vec{v}_G = \dot{z}_0 \vec{k} + \hat{R}_O \omega y_1 + \omega d (CD_{31} \vec{j} - CD_{32} \vec{j}) \]

(4)

\[\vec{a}_G = \dot{\omega} \hat{R}_O \omega^2 \vec{x}_1 + \omega^2 d (-CD_{31} \vec{j} - CD_{32} \vec{j}) \]

- \(\omega \dot{d} y_3 + \omega_2 d \dot{x}_3 + \omega\vec{x}(\omega_1 d \vec{y}_3 + \omega d \dot{x}_3) \)

- \((\omega_1^2 + \omega_2^2) d \vec{z}_3 - \omega \omega d \vec{x}_3 - \omega \omega d \vec{y}_3 \)

(5)

[CD] is used to convert \(x_3, y_3, z_3 \) in terms of \(\vec{i}, \vec{j}, \vec{k} \). Combining the \(\vec{i}, \vec{j}, \) and \(\vec{k} \) terms of acceleration of G along \(\vec{i}, \vec{j}, \vec{k} \) yield respectively:

\[A_{Gx} = -\omega_2^2 d CD_{31} + \omega_1^2 d CD_{22} - \omega_2 \omega_1 d CD_{12} \]

+ \((\dot{\omega}_1 - \omega \omega d) CD_{11} + (\dot{\omega}_2 - \omega \omega d) CD_{12} \)

+ \((-\omega_1^2 \omega_2^2 d) CD_{31} - \hat{R}_O \omega^2 \cos(\omega t) \)

(6)

\[A_{Gy} = -\omega_2^2 d CD_{22} - \omega_1^2 d CD_{11} + \omega_2 \omega_1 d CD_{12} \]

+ \((\dot{\omega}_2 - \omega \omega d) CD_{12} + \dot{\omega}_1 \omega_2 d CD_{12} \)

+ \((-\omega_1^2 \omega_2^2 d) CD_{32} - \hat{R}_O \omega^2 \sin(\omega t) \)

(7)

\[A_{Gz} = \ddot{z}_0 + (\dot{\omega}_1^2 - \omega_1 \omega d) CD_{13} + (-\dot{\omega}_1 - \omega \omega d) CD_{23} \]

+ \((-\omega_1^2 \omega_2^2 d) CD_{33} \)

(8)

The resultant force acting on the scroll plate is:

\[\vec{F} = (-F_{AX} + F_{OIL}) CD_{31} \vec{j} + (-F_{AX} + F_{OIL}) CD_{32} \vec{j} \]

+ \((-mg + (-F_{AX} + F_{OIL}) CD_{33} \vec{k} \)

(9)

From equations (1) through (9) the acceleration terms \(A_{Gx}, A_{Gy} \) and \(A_{Gz} \) can be obtained.

The components of the angular velocity can be obtained by solving Euler’s equations referred to the principal axes for a rigid body
with center-of-gravity G as the moment center [6] as follows:

\[
M_1 = I_1 \dot{\omega} + (I_3 - I_2) \omega \dot{\omega}
\]

\[
M_2 = I_2 \dot{\omega} + (I_1 - I_3) \omega \dot{\omega}
\]

\[
M_3 = I_3 \dot{\omega} + (I_2 - I_1) \omega \dot{\omega}
\]

where \(I_1, I_2, \) and \(I_3 \) are the principal moments of inertia. The external moments \(M_1 \) and \(M_2 \) are functions of the axial and radial force components, and the thrust bearing restoring force and its location as indicated below:

\[
M_1 = F_{AX} \cos(\omega t) + F_{RAD} \sin(\omega t) + a_0 F_{OIL}
\]

\[
M_2 = F_{RAD} \cos(\omega t) - F_{AX} \sin(\omega t) - P_0 F_{OIL}
\]

For \(\omega = -\omega \) (constant) and \(I_1 = I_2 \), then:

\[
M_3 = 0
\]

The Euler parameter equations are:

\[
q_0 = 0.5(-\omega q_1 - \omega q_2 - \omega q_3)
\]

\[
q_1 = 0.5(\omega q_0 + \omega q_2 + q_1)
\]

\[
q_2 = 0.5(\omega q_0 - \omega q_1 + q_1)
\]

\[
q_3 = 0.5(\omega q_0 + \omega q_1 - q_1)
\]

where \(\omega \) = -\(\omega \) (constant).

REYNOLDS EQUATION

The restoring oil force and its location for the orbiting thrust bearing is investigated in [3]. Therefore, only a very brief discussion of the formulation follows. For the laminar flow and constant viscosity with the usual assumptions in lubrication theory, the Reynolds equation for the orbiting thrust bearing (refer to Figure 2) is:

\[
\frac{\partial}{\partial r} \left(\frac{h^3 \partial \rho}{12 \mu} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(\frac{h^3 \partial \rho}{12 \mu} \right)
\]

\[
= \frac{1}{2} \frac{\partial}{\partial r} (\omega \rho \frac{h}{r} \cos \phi + \omega \frac{\rho}{2 r} (r R_B \sin \phi h))
\]

\[- R_B \omega \cos \phi \frac{\partial h}{\partial \theta} - r R_B \omega \sin \phi \frac{\partial h}{\partial \theta} - r w_s
\]

The pressure boundary conditions are:

\[
\rho = p_1 \text{ at } r = R_1, \quad \rho = p_2 \text{ at } r = R_2
\]
The restoring oil force and its location, using the Sommerfield boundary condition, can be calculated as follows:

\[
F_{\text{OIL}} = \int_{R_1}^{R_2} pr \, dr \, d\theta \tag{22}
\]

\[
F_0 = -\int_{\theta_1}^{\theta_2} \int_{R_1}^{R_2} r^2 \sin(\theta - \pi) \, dr \, d\theta \tag{23}
\]

\[
F_0 = -\int_{\theta_1}^{\theta_2} \int_{R_1}^{R_2} r^2 \cos(\theta - \pi) \, dr \, d\theta \tag{24}
\]

The oil film thickness and squeeze velocity each vary at different points on the scroll plate, and are also time-dependent.

METHOD OF SOLUTION

The rigid body equations of motion of the orbiting scroll plate can be integrated by using the fourth order Runge-Kutta method to give linear velocities and position, and angular velocities and position. The Reynolds equation (sequentially to the rigid body dynamics) is solved for the restoring pressure and its centroid. Note that at \(t = 0 \), the Reynolds equation is solved using initial conditions for the film thickness and squeeze velocity. The calculated restoring force and its location is then used in rigid body dynamics to estimate the film thickness and squeeze velocity, which are then transferred to the Reynolds equation. This procedure is repeated until \(t = t_{\text{final}} \).

NUMERICAL EXAMPLE

The following hypothetical data will be used as an example of the procedures explained above:

at \(t = 0 \), \(z = h_0 \) (constant) inch, \(q_0 = 1 \), all other initial conditions are zero.

\(R_1 = 1.566 \) inch, \(R_2 = 2.969 \) inch, \(R_{\text{OR}} = 0.2701 \) inch,

\(H = 1.837 \) inch, \(d = 2.0 \) inch,

\(I_1 = I_2 = \frac{m}{4} \left(R_2^2 + d^2 \right), \quad I_3 = \frac{m R_2^2}{2} \),

shaft rpm = 3500, \(m = 7.764 \times 10^{-3} \) slug,

\(p_1 = 1.0 \) PSI, \(p_2 = 0.0 \) PSI, \(\mu = 10^{-5} \) lb·sec\(^{-1}\) inch\(^{-1}\)

The time dependent radial and axial gas force components are shown in Figure 3.

Figure 5 demonstrates angular velocities \(\omega_1 \) and \(\omega_2 \) as a function of time. In Figure 6 quaternions are represented for the example. Figure 7 shows the linear velocity and position of point 0. The time-dependent film thickness of the four body-fixed points (defined in Figure 2) are shown in Figure 8 (A and B). The restoring
oil force and its location in \(B_3 \) basis are represented in Figure 4 (A and B); the system develops a restoring force immediately and also the system behavior is stable.

SUMMARY AND CONCLUSIONS

The rigid body equations of motion for the orbiting scroll plate are derived. Euler's equations and Euler parameter equations are used to represent angular velocity and angular position. The rigid body equations of motion are solved using the fourth order Runge-Kutta method. The Reynolds equation for the orbiting thrust bearing is integrated sequentially to the rigid body dynamics using finite difference methods.

The restoring oil force and its position portray a stable behavior. To support the axial gas load and the gas tilting moment for a given inner radius, the bearing outer radius can thus be estimated without any assumption of the film thickness profile and squeeze velocity.

ACKNOWLEDGMENT

Discussions with, and help from B. Anderson, M. Bass, J-L. Caillat, G. Fain, K. Topp, T. Ubach and F. Wallis of Copeland Corporation, as well as comments from Dr. C. Maday of North Carolina State University, were very helpful in the development of this work. The author wishes to thank them all for their help. Thanks are also extended to T. Arthur and P. Hoersten of Copeland Corporation and L. Southern and others of Ohio State Supercomputer Center for their help in the computational aspects of the problem.

REFERENCES

ORBITING THRUST BEARING ANALYSIS
VARIABLE GAS FORCE COMPONENTS

![Graph showing the relationship between time and variable gas force components.]

\(F_{AX} \) and \(F_{RAD} \) are plotted over time, with \(F_{AX} \) decreasing more steeply than \(F_{RAD} \).

\(\gamma = 1E-06, \text{ RPM} = 3500 \)
\(R_1 = 1.566, \ R_2 = 2.969, \ R = 2.701, \ M = 1.837 \)

Figure 3.

ORBITING THRUST BEARING ANALYSIS
RESTORING OIL FORCE

![Graph showing the relationship between time and restoring oil force.]

\(F_{OIL} \) decreases over time, with a sudden increase at the beginning.

\(\gamma = 1E-06, \text{ RPM} = 3500 \)
\(R_1 = 1.566, \ R_2 = 2.969, \ R = 2.701, \ M = 1.837 \)

Figure 4-A.
ORBITING THRUST BEARING ANALYSIS
RESTORING OIL FORCE LOCATION

(VARIABLE GAS FORCE)

Figure 4-B.

ORBITING THRUST BEARING ANALYSIS
ANGULAR VELOCITY

(VARIABLE GAS FORCE)

Figure 5.
ORBITING THRUST BEARING ANALYSIS
EULER PARAMETERS (QUATERNIONS)

Figure 6.

ORBITING THRUST BEARING ANALYSIS
LINEAR VELOCITY AND POSITION OF O

Figure 7.
ORBITING THRUST BEARING ANALYSIS
OIL FILM THICKNESS

Figure 8-A.

ORBITING THRUST BEARING ANALYSIS
OIL FILM THICKNESS

Figure 8-B.