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ABSTRACT 

 
The effect of capillary tube-suction line heat exchanger (ctslhx) geometry on system performance was explored at 
various design and off-design conditions by embedding it in a system model. A detailed finite-volume model of the 
capillary tube and suction line, capable of handling all the phase-change complexities was used. All the ctslhx 
configurations considered meet the design constraints and didn’t affect the design COP very much. Captubes with 
large inlet sections and relatively small outlets were found to give best performance at all the simulated off-design 
perturbations. 

 
1. INTRODUCTION 

 
R134a vapor compression cycle efficiency benefits greatly from suction line heat exchange (Domanski et al., 1994). 
The capillary tube suction line heat exchanger in a domestic refrigerator/freezer consists of an adiabatic inlet section, 
a heat exchanger section and an adiabatic outlet section. The refrigerant exiting from the condenser flashes in the 
adiabatic inlet section and enters the heat exchanger section of the captube (Fig. 1), where it rejects heat to the cold 
suction line downstream of the evaporator and enters the adiabatic outlet section at reduced quality and pressure. It 
then exits at a choked condition and expands discontinuously to the evaporator (Moreira and Bullard, 2003).  
 

 
The ctslhx dimensions play an important role in deciding its contribution to the system performance. Since the heat 
exchanger length is maximized to utilize whatever suction line length is accessible, it is important to identify what 
all combinations of captube diameter and inlet and outlet adiabatic lengths can give stable and efficient performance 
both at design and off-design conditions. This paper analyses the effect of capillary tube geometry on system 
performance by embedding it in a system simulation model. In the next section we briefly describe the modeling 
approach and assumptions made to model individual components. Section 3 presents the design point (standard 90°F 
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(32°C) ambient dry coil test condition (USDoE, 1988)) results where a large set of inlet and outlet lengths are 
considered. The critically charged system is then analyzed for stability and performance by allowing it to react to 
some off-design perturbations as explained in section 4. The paper ends with some conclusive remarks about the 
desirable and avoidable captube geometries for efficient and stable operation. 
 

2. SIMULATION MODEL 
 

A Newton-Raphson based solver, EES (Klein and Alvarado, 1995) was used to solve the pressure-enthalpy 
equations describing the interactions among all the system components including the cabinet. Each component was 
modeled using detailed equations in its own subroutine that was designed to solve sequentially, as described below. 
Refrigerant charge calculations were done for each component and summed to obtain the total charge in the system. 

 
2.1 CTSLHX 
A finite volume approach was used in the modeling of ctslhx because of highly nonlinear behavior and large 
pressure drops. Since the inlet and outlet lengths are just adiabatic capillary tubes, a single routine was used to 
handle both of them. A separate routine was, however required for the heat exchanger section to model the 
simultaneous heat transfer and pressure drop taking place in it. The ctslhx was solved by marching upstream on the 
captube side and downstream on the suction side (Fig. 2). As a result a sequential run required critical conditions at 
the captube exit and inlet conditions for the suction line. 
 
Equilibrium equations were used throughout, recognizing that they slightly underestimate mass flow rate in 
adiabatic (Meyer and Dunn, 1996) and diabatic (Liu and Bullard, 2000) capillary tubes. Since correction factors are 
not well developed for R134a, they can be neglected here in the interest of providing insights into ctslhx behavior by 
exploring the parameter space using physically-based equations.  

 
2.1.1 Adiabatic section: The whole of the adiabatic length was divided into a number of equally sized finite 
elements. The routine was capable of handling both the single and two-phase regions and any transitions (flashing, 
re-condensation).  Following Bittle and Pate (1996) the fiction of a two-phase viscosity was employed to model the 
frictional pressure drop (Eq. 1). Calculating the critical mass flux (Eq. 2) at the choked homogeneous isentropic 
captube exit was the first step in the sequential solution. Equilibrium equations were used for the calculation of two-
phase acceleration pressure drop.  
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2.1.2 Heat exchanger section: Each element of the heat exchanger section was modeled as a simple tube-by-tube 
counterflow heat exchanger. Within each finite element fluid properties were assumed constant and suction side 
pressure drop was calculated after the heat transfer was determined. Since the pressured drop was large in a cap-tube 
element, it was calculated simultaneously with the heat transfer. The methodology for the calculation of pressure 
drop in the heat exchanger part of the captube was same as that for the adiabatic part. The suction line pressure was 
adjusted for pressure drop by using Churchill (1997) correlation for single phase and Souza and Pimenta (1995) 
correlation for two-phase. The acceleration pressure drop and the fluid kinetic energy were neglected in the heat 
exchanger section because it is small, but treated explicitly in the adiabatic sections where it can be quite large.  

 
The heat transfer from the captube to the suction line was calculated using �-NTU relations (Incropera & DeWitt, 
1996). Because of high pressure drop, the two-phase temperature in the captube was taken to be the average value of 
the element inlet and outlet temperatures. Single phase heat transfer coefficient was obtained using Gnielinski 
(1976) correlation for both the captube and the suction side. The correlations from Dobson and Chato (1998) 
provided the two-phase heat transfer coefficient for the captube side, and Wattelet et al. (1994) for the suction side. 
When flashing or recondensation occurred within an element, it was split into two sub-elements that were solved 
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separately. The model was well equipped with different routines to handle subcooled and two-phase refrigerant on 
the captube side and two-phase and superheated refrigerant on the suction side, along with any phase changes.  

 
2.2 Evaporator and Condenser 
The evaporator model simulated a typical finned tube design used in auto-defrost refrigerators. A single tube circuit 
serpentines downwards from the refrigerant inlet to the air inlet, and then serpentines upward to join the suction line. 
The downward tube passes were modeled as an overall counterflow heat exchanger and the upward passes as an 
overall parallel flow; each seeing half the evaporator air flow. The condenser was a cross-counterflow wire-on-tube 
type condenser, consisting of 15 rows in the air flow direction with two passes per row. A multi-zone approach was 
used to solve both the components. Depending upon the refrigerant state, the evaporator was divided into two-phase 
and superheated parts and the condenser into subcooled, two-phase and superheated zones. Heat transfer in each 
zone was calculated by using �-NTU relations. Correlations from Wattelet et al. (1994) (evaporation), Dobson and 
Chato (1998) (condensation) and Gneilinski (1976) (single phase) were used to obtain refrigerant side heat transfer 
coefficient. Wang and Chang (2000) correlation provided the air side heat transfer coefficient for the evaporator. 
The same was obtained for the condenser from Hoke et al. (1997), as modified by Petroski and Clausing (1999). 
 
The compressor was modeled using standard 10-parameter polynomial curve fits provided by the manufacturer, 
expressing mass flow rate and power as function of suction and discharge pressures. A scaling factor was used to 
size the compressor to meet the load at the target runtime at the design condition.  
 

3. TRADEOFFS AT THE DESIGN CONDITION 
 

The model was run in design mode for a fixed superheat and subcooling of 2°C at 90°F (32°C) ambient temperature. 
The compressor was sized for a run time fraction 0.6 at the design condition. Over the wide range of captube 
adiabatic inlet and outlet lengths considered, (0.524m < Lin < 2.024m and 0.3m < Lout < 2.0m), each combination 
required a slightly different captube diameter, compressor size and total system charge.  
 

 
 
Generally, longer captubes require a larger diameter to carry the design mass flow rate, as shown in Fig. 3.  
Increasing inlet length creates more two-phase pressure drop and therefore a lower temperature at the inlet of the 
heat exchanger section. This diminishes heat transfer from the captube and hence increases evaporator inlet 
enthalpy, thus requiring an increased mass flow rate to satisfy the design load. The extra pressure drop in the inlet 
section forces the captube’s choked exit to occur at lower pressures, where density is lower. Hence it requires an 
increased diameter to carry this extra mass flow rate. On the other hand, the captube diameter is only slightly 
dependent on the outlet length. For a particular inlet length, a long outlet section generates more pressure drop 
causing the refrigerant to exit at lower density, so the diameter must increase to carry this high volume fluid. Now 
since the tube is fatter, there is slightly less pressure drop in the inlet section and hence slightly more heat transfer 
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occurs. The resultant lower evaporator inlet enthalpy requires less mass flow rate to match the load. As a result the 
net increase in diameter is small.  
 
Fig. 4 shows how design COP varies with Lin as outlet length increases from 0.3m to 2.0m. Surprisingly the effect 
on COP at the design condition is quite small. Smaller inlet lengths fetched a higher value of COP because smaller 
inlet pressure drop provides higher inlet temperature to the heat exchanger section. The larger heat transfer increases 
the refrigerating effect and hence the COP. The COP increases with outlet length, though the effect is much smaller. 
Thus at the design condition COP is maximized by selecting the longest outlet and shortest inlet length. By 
maximizing the refrigeration effect through internal heat exchange, the refrigerant mass flow rate is also minimized, 
so the most efficient system also requires smallest compressor. Note that the COP variation for all the configurations 
simulated is only 1.15% because the ctslhx is already operating at high effectiveness (~80%) as it is utilizing the 
maximum available suction line length.  
 

4. OFF-DESIGN BEHAVIOR 
 

After the captube geometry has been fixed at the design condition, it is important to see how it reacts to changes in 
external conditions such as weather, door openings, frosting and dust fouling. A complete system simulation would 
involve letting these variables change across their full operational range, while observing the performance of the 
system capacity and COP in general, and the CTSLHX inlet/outlet states in particular.  The most important objective 
would be to prevent liquid from entering the compressor and to maintain adequate capacity at high ambient 
temperatures. To analyze the off-design behavior, nine combinations of Lin and Lout representative of the whole 
range of inlet and outlet lengths examined at the design point were selected. Table 1 shows the chosen 9 
combinations and their performance at the design point, with S, M and L designating short, medium and long 
inlet/outlet sections, respectively. Four types of off-design conditions were simulated: 
 

1) Letting the system react to a room temperature change across a wide range of 16°C to 49°C. 
2) Increasing the evaporator air inlet temperature to 10°C to simulate frequent door openings and resultant 

high load conditions. 
3) Reducing the evaporator air flow rate by half to account for excessive frosting. 
4) Reducing the condenser air flow rate by half to account for dust fouling or blockage of the outdoor coil.  

 

Table 1: Performance of ctslhx configurations at the design condition 

Captube Lin [m] Lout [m] COP Dcap [mm] flowV� [m3/s]*1000 
SS 0.524 0.3 1.660 0.649 0.2345 
SM 0.524 1.0 1.664 0.655 0.2343 
SL 0.524 2.0 1.667 0.681 0.2339 
MS 1.024 0.3 1.655 0.710 0.2352 
MM 1.024 1.0 1.659 0.713 0.2348 
ML 1.024 2.0 1.664 0.722 0.2342 
LS 2.024 0.3 1.648 0.790 0.2363 
LM 2.024 1.0 1.653 0.792 0.2357 
LL 2.024 2.0 1.658 0.796 0.2348 

 
4.1 Ambient temperature 
Figure 5 shows how COP of systems having the above nine ctslhx configurations would change with the ambient 
temperature. As we move off-design by increasing the ambient temperature the COP decreases and remains pretty 
close for all the cases. As the evaporator exit becomes saturated due to increased refrigerant flow, heat exchanger 
protects the compressor inlet by maintaining superheat. As ambient temperature falls below the design point, COP 
increases due to a decrease in compressor work requirement. But this increase in COP is not alike for all the cases 
and gets hindered after some point. For a particular inlet length, the poor-performing captubes were identified as 
those having relatively long outlet sections. A marked difference of 9% can be seen in the COP of systems SS and 
SL at 21°C (a more common operating condition).  
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To explain this behavior we consider two captubes; MS and ML. Both of them have same inlet length (1.024m) but 
different outlet lengths (0.3m and 2.0m respectively). At 21°C MS has about 3.7% greater COP than ML. When the 
ambient temperature decreases, the captube inlet state moves down and to the left (Figure 6) and the captube reacts 
by moving its choked exit down and towards left, decreasing mass flow rate due to lower exit density. The 
compressor reacts by lowering Tevap to equalize the mass flow rate, increasing the size of the evaporator’s 
superheated zone. The mass flow rate and Tevap reduction is far greater in the case of ML because its choked exit 
moves down faster (Figure 6). The system COP’s soon diverge because the rapidly decreasing evaporating 
temperature increases the specific volume at the suction inlet, increasing the compressor work faster than the falling 
condensing temperature reduces it.  
 
For all configurations, the run-time fraction (Qevap/Qload) reached unity somewhere around 47°C and was found 
insensitive to the individual captube dimensions. During all off-design perturbations in ambient temperature, the 
compressor received superheated vapor with all captube geometries. Hence, there was no threat to the compressor. 
The variation of COP with ambient temperature highlights the poor performance of captubes SM, SL and ML. 
Although these tubes which have large outlet length as compared to the inlet deliver slightly higher COP at the 
design point, their performance off-design is poor. Region 1 in Figure 11 shows badly performing captubes on an 
Lout vs. Lin plot. Due to their poor performance at low ambient temperatures, captubes SM, SL and ML will not be 
pursued in further analyses. 
 
4.2 Evaporator and Condenser air flow rates 
The system was subjected to variations in evaporator and condenser air flow rates at the more common operating 
condition of 21°C. The effect of decreasing condenser air flow rate on system performance can be seen in Figure 7. 
The volumetric air flow rate over the condenser coil was decreased from a design point value of 0.055m3/s to 
0.0275m3/s. The COP decreases because of decreasing face velocity and increase in LMTD caused by doubling the 
rise in air temperature. All the captubes showed similar trend in the COP and no marked difference in the 
performance was observed.  
 
To simulate the effect of air flow blockage due to frosting in evaporator, the evaporator volumetric flow rate was 
decreased by half from its design point value of 0.021m3/s to 0.011m3/s. Again the COP decreased (Fig. 8) due to 
reduction in face velocity and increase in LMTD. Again as in the case with condenser, all the captubes showed 
similar trend in the performance. The above simulation results suggest that changes in air flow rates affect system 
performance in ways that do not upset the balance between the compressor and ctslhx refrigerant flow rates, so the 
results are relatively insensitive to ctslhx configuration. The compressor was protected in all cases as the suction line 
remained superheated. 

Figure 6: Inlet and outlet states of captubes 
ML and MS at 32 and 21°C ambients 

 

Figure5: Variation of COP with the ambient 
temperature 
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4.3 Evaporator air inlet temperature 
The evaporator air inlet temperature was varied from -12.8°C to 10°C to simulate the effect of frequent door 
openings at 21°C ambient. The COP firstly increases with the inlet temperature and then decreases (Fig. 9). It is seen 
that for captubes SS, MM and LL, the COP decreases sooner and faster as compared to captubes MS, LS and LM. A 
COP difference of about 5.5% was observed between tubes MS and MM at air inlet temperatures near 0°C. As the 
cabinet temperature increases, the evaporating temperature rises, thereby increasing the compressor’s mass flow rate 
and consequently the condensing pressure. The captube accommodates this increased mass flow rate by raising its 
critical exit pressure and density. The increased superheat at the evaporator exit decreases the heat transfer in the 
captube, moving the critical point right in the P-h plane (Fig. 10). Captubes SS, MM and LL fail to accommodate 
the increasing mass flow rate demanded by the increasing load. As the evaporator is starved and its superheated 
region grows, the compressor mass flow rate adjusts and the suction pressure falls. This increases the suction 
specific volume and hence specific work. As a result a drop in COP is observed. Captubes MS, LS and LM are able 
to meet the increasing demand in mass flow rate and hence show an increase in the COP.  
 

 
The above observations can be explained by considering tubes SS, MS and MM and plotting the trajectories of inlet 
and outlet states of their adiabatic outlet section on a P-h diagram (Fig. 10). As load on the system increases, the 
increasing condensing temperature forces the inlet to the outlet adiabatic section up and towards the right. The 
critical exit temperature increases to carry the increased mass flow rate. But as the outlet section moves towards the 
right, a greater portion of it experiences two phase pressure drop (it increases from 5% to 65% for captube MM over 
the range of heat loads simulated). The resulting increase in the outlet section pressure drop and critical quality both 
tend to decrease the mass flow rate. These two effects compete with the increasing condensing temperature and soon 
overcome it. As a result the captube now exits at much lower critical pressure, where it can carry only less mass 

Figure 9: Variation of COP with evaporator 
air inlet temperature at 21°C 

Figure 10: Movement of critical point with 
evaporator air inlet temperature at 21°C 
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flow rate due to lower density. This can be seen in Fig. 10 for tubes SS and MM. The above phenomenon is not so 
prominent with captube MS because initially 80% of its outlet length was two phase. The rightward movement of 
the vertical adiabatic line does not add to the two phase pressure drop greatly and hence this captube is able to meet 
the increased demand in the mass flow rate. As a result the COP increases. It was also noticed that the capacity 
decreases for captubes SS, MM and LL and increases for MS, LS and LM with the increase in heat load. Captube 
MS was found to deliver about 12% more COP than captube MM near 0°C. So the latter (more efficient) cap-tubes 
were able to provide the capacity when it was required most while the former ones failed to do so. 
 
The simulations at high heat load perturbations revealed that it is desirable to have ctslhx configurations where 
refrigerant leaves the heat exchanger section inside or near the dome boundary. This can be achieved by having long 
inlet and short outlet lengths. The region of such desirable tubes is marked in Fig. 11.  
 

5. RESULTS AND CONCLUSIONS 
 
The simulations reported in this paper revealed that COP at the design condition could be held within 1.2% of its 
maximum value as ctslhx adiabatic inlet and outlet lengths varied over a wide range (0.524m < Lin < 2.024m and 
0.3m < Lout < 2.0m). For each configuration, the required mass flow could be achieved through minor adjustments in 
captube diameter, compressor displacement, and charge. This gives engineers great flexibility to design the ctslhx 
without sacrificing more than 1% of design COP, at the standard test conditions, and to choose the combination of 
Lin and Lout that meet other performance objectives at off-design conditions. 
 
A variety of off-design conditions were simulated to examine the effects of changing ambient temperature, frequent 
door openings, and excessive frosting, dust fouling and air flow blockage. All the combinations gave almost same 
performance with increasing ambient temperature. However at low ambient conditions, captubes with long outlet 
sections have much lower COP than other configurations due to high compressor work. System SL was found to be 
9% less efficient than system SS at 21°C. The run-time fraction for all the captubes reached unity at about 47°C 
ambient. No marked difference was seen in the performance of the captubes with respect to changing evaporator and 
condensing air flow rates. For a given inlet length, captubes with small outlet lengths gave better performance than 
those having large outlet sections at higher evaporator air inlet temperatures. Captube MS was seen to have 5.5% 
higher COP and 12% higher capacity than captube MM at 0°C air inlet temperature. In all of the above off-design 
steady state conditions, the compressor received superheated vapor because the ctslhx was large enough to handle 
any excessive liquid. 
 

 
Figure 11: Regions identifying good and bad performing captube geometries 

 
Since all the ctslhx configurations are able to meet the design constraints and perform equally at the design point, 
off-design conditions determine their selection. Those having large inlet and relatively short outlet give better and 
stable performance at all the tested off-design conditions because the inlet to the adiabatic outlet section remains 
close to the dome. Region 3 in Figure 11 identifies the most favorable parameter range. Factors like hot-weather 
capacity and maintaining compressor suction superheat are not an issue in the captube design. Finally, tolerances on 
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captube diameter, routing requirements for inlet and outlet segments and material costs may dictate the final 
selection of the captube geometry.  

 
NOMENCLATURE 

 
COP  coefficient of performance  (-)   Subscript 
D  diameter    (mm)   φ2  two-phase  
G  refrigerant mass flux  (kg/m3-s)  a air 
h  enthalpy    (kJ/kg)   cap capillary tube 
Lin  adiabatic inlet length  (m)   cond condenser 
Lhx  heat exchanger length  (m)   crit critical conditions 
Lout  adiabatic outlet length  (m)   evap evaporator 
µ   viscosity    (kg/m-s)   in inlet 
P  pressure    (kPa)   l  saturated liquid 
Qevap  evaporator capacity  (kW)   s entropy 
Qload  heat load on the system  (kW)   v  saturated vapor 
ρ   density    (kg/m3)    
T  temperature   (°C) 

flowV�   volumetric flow rate  (m3/s) 
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