

 FHWA/IN/JTRP-2001/7

Final Report

VALIDATION, CALIBRATION, AND
EVALUATION OF ITS TECHNOLOGIES
ON THE BORMAN CORRIDOR

Srinivas Peeta
Raghubushan Pasupathy
Pengcheng Zhang

January 2002

Final Report

FHWA/IN/JTRP-2001/7

Validation, Calibration, and Evaluation of ITS Technologies on the Borman Corridor

by

Srinivas Peeta
Principal Investigator

Associate Professor of Civil Engineering

and

Pengcheng Zhang
and

Raghubushan Pasupathy
Graduate Research Assistants

School of Civil Engineering
Purdue University

Joint Transportation Research Program
Project No. C-36-75M

File No. 8-9-13
SPR 2208

Prepared in cooperation with the
Indiana Department of Transportation and the

U.S. Department of Transportation
Federal Highway Administration

The contents of this report reflect the views of the authors who are responsible for the facts and
the accuracy of the data presented herein. The contents do not necessarily reflect the official
views or policies of the Indiana Department of Transportation or the Federal Highway
Administration at the time of publication. This report does not constitute a standard,
specification, or regulation.

Purdue University

West Lafayette, Indiana 47907
January 2002

ACKNOWLEDGEMENTS

 The authors acknowledge the assistance and feedback of the members of the study

advisory committee: David Boruff, Shou Li, Scott Newbolds, Mark Newland, and Wes Shaw

from the Indiana Department of Transportation, and Clemenc Ligocki of the Federal

Highway Administration. The authors would also like to thank Troy Boyd of the Indiana

Department of Transportation for his assistance in providing information and feedback on the

Borman advanced traffic management system. The authors further acknowledge the

contributions of graduate research assistants Ioannis Anastassapoulos and Jeong Whon Yu to

the research described in this report.

 This project was funded by the Joint Transportation Research Program of Purdue

University in cooperation with the Indiana Department of Transportation and the Federal

Highway Administration. We appreciate their support and assistance.

12-5 1/02 JTRP-2001/07 INDOT Division of Research West Lafayette, IN 47906

INDOT Research

TECHNICAL Summary
Technology Transfer and Project Implementation Information

TRB Subject Code 12-5 Transportation Systems and Technology January 2002
Publication No.: FHWA/IN/JTRP-2001/07, SPR-2399 Final Report

VALIDATION, CALIBRATION, AND
EVALUATION OF ITS TECHNOLOGIES ON

THE BORMAN CORRIDOR

Introduction
The spawning of the Internet and the

communication revolution, coupled with highly
economical computing commodity hardware
costs, are motivating new paradigms for the real-
time operation and control of large-scale traffic
systems equipped with advanced information
systems and sensor technologies. Non-
availability of reliable on-line data and the
prohibitive costs of high performance computers
to process such data have previously been the
primary barriers in these endeavors. Recently,
falling computer hardware costs, the exponential
growths in their performance capabilities,
sophisticated sensor systems, and the ability to
transmit data through the public domain quickly
and reliably, have been synergistic in enabling
the efficient deployment of real-time route
guidance in large-scale traffic systems.

This study develops an Internet-based
on-line architecture to exert control in large-scale
traffic systems equipped with advanced sensor
systems and information dissemination media.
The aim is to develop an automated on-line
system that disseminates messages to network
users on the optimal paths and/or provides route
guidance while satisfying accuracy and
computational efficiency requirements. It
explicitly accounts for the calibration and
consistency-checking needs of the models being
used within the architecture. The architecture
incorporates fault tolerance methods for errors
encountered at the architecture level and due to
the malfunctioning of field sensors. Since cost is
an important factor for large-scale deployment,
an Internet-based remote control architecture is

proposed to enable deployment and evaluation.
The architecture is remote in that it can be used
to deploy and evaluate alternative solution
strategies in the offline/online modes from
remote site locations (such as the Borman or
Indianapolis traffic control centers). In addition,
a remote architecture ensures that the associated
models can be located at one central server and
accessed from any INDOT site.

The study also proposes to use the
Beowulf Cluster as an economical, flexible, and
customizable computing paradigm to generate
supercomputing capabilities for the real-time
deployment of the proposed on-line control
architecture. It serves as the enabling
environment to execute and coordinate the
activities of the various modules responsible for
real-time network route guidance, data
transmission, calibration and fault tolerance. In
the context of large-scale traffic systems, a
Beowulf Cluster can be configured in centralized
as well as decentralized on-line control
architectures with equal ease. Thereby, it enables
individual traffic operators with smaller
operational scope (such as local traffic agencies)
to install mini Beowulf Clusters at their locations
or allows several of them to operate remotely
using a centrally located large-scale Cluster. For
a large transportation agency, the use of a
centrally located Cluster can significantly aid
operational efficiency and cost reduction by
obviating the need for hardware, software, space
requirements, and maintenance at each individual
location.

12-5 1/02 JTRP-2001/07 INDOT Division of Research West Lafayette, IN 47906

Findings

This research has the following findings that
meet the research objectives.

1. An Internet-based remote traffic control

architecture is economical and efficient,
obviates redundancies in hardware and
maintenance, and can be automated by
incorporating fault tolerant systems.

2. The Beowulf Cluster computing paradigm
serves as a viable alternative to expensive
specialized supercomputing architectures to
address the computational needs of real-time
traffic operations and control.

3. Beowulf Clusters can be configured with
equal ease for centralized and decentralized
on-line control architectures. This enables
small as well as large traffic agencies to

implement a new generation of robust, but
computationally burdensome, methodologies
for traffic operations based on the
application of advanced technologies.

4. The Fourier transform-based fault tolerant
framework can detect data faults due to
malfunctioning detectors and predict the
likely actual data for the seamless operation
of an on-line traffic control architecture. It
can also detect incidents.

The off-line benchmarking tests to analyze data
communication and parallel software codes
suggest that the proposed Cluster computing
architecture is highly efficient, and can enable
real-time deployment of the associated traffic
control strategies.

Implementation
The proposed on-line traffic control

architecture can be implemented on the Borman
Expressway or Indianapolis ATMS corridors for

real-time route guidance operations after
exploring various issues for enabling real-time
communication links.

Contact
For more information:
Prof. Srinivas Peeta
Principal Investigator
School of Civil Engineering
Purdue University
West Lafayette IN 47907
Phone: (765) 494-2209
Fax: (765) 496-1105

Indiana Department of Transportation
Division of Research
1205 Montgomery Street
P.O. Box 2279
West Lafayette, IN 47906
Phone: (765) 463-1521
Fax: (765) 497-1665

Purdue University
Joint Transportation Research Program
School of Civil Engineering
West Lafayette, IN 47907-1284
Phone: (765) 494-9310
Fax: (765) 496-1105

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.

2. Government Accession No.

3. Recipient's Catalog No.

FHWA/IN/JTRP-2001/7

4. Title and Subtitle

Validation, Calibration, and Evaluation of ITS Technologies on the Borman Corridor

5. Report Date
January 2002

6. Performing Organization Code

7. Author(s)
Srinivas Peeta, Raghubushan Pasupathy, Pengcheng Zhang

8. Performing Organization Report No.

FHWA/IN/JTRP-2001/7

9. Performing Organization Name and Address
Joint Transportation Research Program
1284 Civil Engineering Building
Purdue University
West Lafayette IN 47907-1284

10. Work Unit No.

11. Contract or Grant No.

SPR-2399

 12. Sponsoring Agency Name and Address
Indiana Department of Transportation
State Office Building
100 North Senate Avenue
Indianapolis, IN 46204

13. Type of Report and Period Covered

Final Report

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared in cooperation with the Indiana Department of Transportation and Federal Highway Administration.
16. Abstract

This study develops an Internet-based remote on-line traffic control architecture for route guidance in large-scale traffic
systems equipped with advanced information systems and sensors. It also proposes to use the Beowulf Cluster paradigm as
an economical, flexible, and customizable computing architecture to generate supercomputing capabilities within the control
architecture. The Beowulf Cluster provides the enabling environment to execute and coordinate the activities of the various
modules that address real-time network route guidance, data transmission, calibration and fault tolerance. In the context of
large-scale traffic systems, a Beowulf Cluster can be configured in centralized as well as decentralized on-line control
architectures with equal ease. Thereby, it enables individual traffic operators with smaller operational scope (such as local
traffic agencies) to install mini Beowulf Clusters at their locations or allows several of them to operate remotely using a
centrally located large-scale Cluster. To enable automation and the seamless operation of the on-line architecture, a Fourier
transform-based fault tolerant framework is introduced that can detect data faults due to malfunctioning detectors and predict
the likely actual data on-line.

17. Key Words
Internet-based On-line Traffic Control Architectures, Beowulf
Clusters, Real-time Route Guidance Deployment, Fault
Tolerance, Automatic Detection of Sensor Malfunctions, Fourier-
based Short-term Traffic Predictions, Real-time Traffic Data
Communication and Storage

18. Distribution Statement

No restrictions. This document is available to the public through the
National Technical Information Service, Springfield, VA 22161

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

100

22. Price

Form DOT F 1700.7 (8-69)

 i

TABLE OF CONTENTS

Page

LIST OF TABLES����������������������������. iii

LIST OF FIGURES���������������������������... iv

1. INTRODUCTION������������..��������������. 1
1.1 Background and Problem Statement������..���������..��. 1
1.2 Study Objectives�������������..������������. 3
1.3 Organization of the Report��..�������������������. 3

2. ON-LINE ARCHITECTURE FOR REAL-TIME TRAFFIC SYSTEMS CONTROL. 5
2.1 On-line Architecture..������������������������ 5
 2.1.1 Traffic Control Center���������������������...5
 2.1.2 Information Dissemination Strategies���������������...5
 2.1.3 On-Line Traffic Network ..�����������...�������� 6
 2.1.4 Virtual System Simulation �������������������... 6
 2.1.5 Calibration and Consistency Checking ..��������������.. 6
 2.1.6 Control Models ��..���������������������.. 6
 2.1.7 Alternative Solution Strategies����������...�������.. 7
 2.1.8 The Flow Logic��...���������������������.. 7
2.2 Computing Paradigm�������������������������... 8
2.3 Data Routing Architecture�����������������������... 11
 2.3.1 Internet-based Data Routing for On-line Traffic Control Architecture ��... 12
 2.3.2 Data Acquisition System Design �����.������������ 13
 2.3.3 Data Acquisition Architecture ������������������. 14

3. BEOWULF CLUSTERS����������������������.��. 22
3.1 The Beowulf Computing Paradigm��������.. ���������� 22
3.2 Architecture of the Beowulf Cluster��������.. ���������... 24
 3.2.1 Hardware��������.. ������������������ 24
 3.2.2 Support Devices��������.. ���������������. 26
 3.2.3 Software and Data Issues����..���������������� 27
3.3 Supercomputing Cluster for the On-line and Real-time Control of Highways using

Information Technology (SCORCH-IT)�����������������31
3.4 Sample Program Execution���������������������� 32
 3.4.1 Test Network Description��������������������. 34

3.4.2 The Control Variables���������������������... 34
3.4.3 Design of Experiments and Results����������������.. 35

 ii

4. FAULT TOLERANCE������������������������� 54
4.1 Fault Tolerance Issues for the On-line Control Architecture���������. 54
4.2 Methodology���������������������������.. 55
 4.2.1 Fourier Transforms���������������������� 57
 4.2.2 Overview of Methodology������������������� 60
 4.2.3 Initial Data Processing��������������������.. 61
 4.2.4 Training��������������������������. 62
 4.2.5 Detection of Data Faults�������������������� 63
 4.2.6 Correction of Data Faults�������������������.. 64
4.3 Fault Detection Experiments���������������������. 66
 4.3.1 Description of the Experiments�����������������. 66
 4.3.2 Discussion of Results���������������������. 67
4.4 Insights�����������������������������... 70

5. OFF-LINE SIMULATION EXPERIMENTS ����������������. 84
5.1 Off-line Test Experiment Description�����������������. 84
5.2 Data Communication Tests���������������������. 85
5.3 Sequential Algorithm Tests���������������������. 86
5.4 Parallel Algorithm Tests����������������������.. 87

5.4.1 Parallelization Paradigms��������������������. 88
 5.2.2 Parallel Test Results����������������������.. 91
5.5 Future Real-time Tests������������.�����������. 91

6. CONCLUSIONS������������������.��������� 99

LIST OF REFERENCES�������������������������.102

 iii

LIST OF TABLES

Table Page

2.1 Comparison of DAS-to-host System Interfaces ���������������.. 21

3.1 Experiments Performed on SCORCH-IT���������������.��... 51

3.2 Results from Experiment 1���������������.��������. 52

3.3 Speedup and Efficiency Estimates from Experiment 2������������... 53

4.1 The Experimental Scenarios����������������������� 83

5.1 Comparison of Some Internet Connection Services�������������� 98

 iv

LIST OF FIGURES

Figure Page

2.1 On-line Architecture for Real-Time Traffic Systems Control���������� 17

2.2 Concurrency Diagram������������������������� 18

2.3 Data Communication Phases in On-line Traffic Control Architecture������. 19

2.4 Telemetry of Data Acquisition Architecture����������������. 19

2.5 Data Acquisition System (DAS)�����..���������������.. 20

2.6 Layer Structure of Data Acquisition System����������������. 20

3.1 Beowulf Architecture�������������������������. 41

3.2 Data Storage and Transmission���������������������.. 42

3.3 Time-Dependent Shortest Path Algorithm�����������������. 43

3.4 A Parallel Execution of the Time-Dependent Shortest Path Algorithm������. 44

3.5 Average Computational Time (Experiment 2)���������������� 45

3.6 Average Data Input and Output Times (Experiment 2)������������.. 46

3.7 Prediction of Average Total Time (Experiment 2)��������������. 47

3.8 Marginal Time Savings (Experiment 2)������������������.. 48

3.9. Execution Time by Parts (Sequential)������������������� 49

3.10 Execution Time by Parts (Parallel)�������������������� 50

4.1 Fault Tolerance Aspects of the On-line Control Architecture for Real-time Route

Guidance�������������������������������� 72

4.2 Function f(t) Illustrated as Consisting of Two Sinusoidal functions f1(t) and f2(t)��. 73

4.3 The Fourier Spectrum of f(t)����������������������� 73

4.4 Raw and Smoothed Volume Data for a Link on the Athens Network�������. 74

4.5 DFTAs for One Day on a Link on the Athens Network������������.. 74

4.6 FFZ of the Imaginary Coefficients for One-day Data from the Athens Network��... 75

4.7 A Faulty Time Sequence for N = 256�������������...�����...75

4.8 A Fault Time Sequence for N = 256�������������������� 76

4.9 DR for Scenario 4 (Volume = 0 to 500 vph random)�������������.. 76

 v

4.10 DR for Scenario 5 (Volume = 0 to 800 vph random)������������� 77

4.11 DR for Scenario 6 (Volume = 50 % underestimated)������������... 77

4.12 DR for Scenario 7 (Volume = 50 % overestimated)�������������. 78

4.13 DR for Scenario 10 (Occupancy = 15 to 30 % random)������������ 78

4.14 DR for Scenario 11 (Occupancy = 30 % underestimated)����������� 79

4.15 DR for Scenario 12 (Occupancy = 40 % underestimated)����������� 79

4.16 DR for Scenario 13 (Occupancy = 40 % overestimated)�����������... 80

4.17 DR for Scenario 16 (Speed = 0 to 30 mph random)�������������.. 80

4.18 DR for Scenario 17 (Speed = 25 % underestimated)�������������. 81

4.19 DR for Scenario 18 (Speed = 30 % underestimated)�������������. 81

4.20 DR for Scenario 19 (Speed = 30 % overestimated)�������������. 82

4.21 DR for Scenario 20 (Speed = 60 % underestimated)�������������. 82

5.1 Off-line Test Architecture������������������������ 93

5.2 Data Communication Tests�����������������������. 93

5.3 Flow Chart for MUCTDTA Algorithm������������������... 94

5.4 CPU Time for Sequential MUCTDTA Algorithm��������������.. 95

5.5 Flow Chart of MUCTDTA Algorithm for SPMD and MIMD Paradigms�����.. 96

5.6 Parallel Performance for MUCTDTA Algorithm��������������� 97

5.7 CPU Time for Main Parts of Parallel MUCTDTA Algorithm���������� 97

1

1. INTRODUCTION

1.1 Background and Problem Statement

Several intelligent transportation (ITS) technologies are being employed or are currently

under deployment along a number of freeway corridors in Indiana. They include

advanced traffic management systems (ATMS) and advanced traveler information

systems (ATIS) on I-80/94 (Borman expressway) in northern Indiana, in the greater

Indianapolis area, and along the Indiana/Kentucky corridor. In addition, real-time

incident management operators called the Hoosier Helpers are currently operational on

the Borman expressway and in northeastern Indianapolis. Incident detection and

integrated incident detection-response technologies are nearing full deployment on the

Borman expressway. A continuous capability to validate, calibrate, and evaluate the

deployed technologies and related strategies is necessary to significantly enhance the

effectiveness of the ITS program in Indiana, and provide guidelines for future

deployments. Till recently, the sparseness of actual field data has hampered the ability to

predict potential deployment impacts with a high level of confidence. This tends to be a

general issue nationwide. Simulation and/or limited data collection methods have been

used to partly alleviate this crucial problem. However, the implementation of advanced

technologies in recent years under the auspices of ITS provides an ability to generate

huge amounts of detailed and more accurate time-dependent data.

A related problem of critical importance to the successful deployment of ITS

technologies is the ability to quickly process huge amounts of these real-time data to

generate on-line solution strategies (for example, detour information provision, route

2

guidance, dynamic signal systems control) to manage large congested traffic networks.

Off-line solutions are either restrictive or involve massive computational efforts in

considering multiple plausible scenarios. They may serve as initial solutions on-line.

However, the on-line solution is characterized by the need to be responsive to unfolding

on-line conditions, thereby requiring the computation of updated solutions in sub-real

time. It inherits a host of other issues arising from the on-line nature. Consistency issues

arise because models are abstractions of real world phenomena and suffer from

inaccuracies introduced by simplifying assumptions and other factors. The models need

to be updated on-line to ensure realistic representation of the actual traffic conditions.

Another aspect is the need for fault tolerant mechanisms that account for possible failure

modes in such on-line systems. The associated procedures aim at providing fallback

strategies when essential system components fail. This is especially important for

automated real-time systems.

The recent spawning of the Internet, and the communication revolution, are motivating

new paradigms for the real-time operation of large-scale traffic systems equipped with

advanced technologies. Non-availability of reliable on-line data and the prohibitive costs

of high performance computers to process such data have previously been the chief

impediments in these endeavors. More recently, falling computer hardware costs, the

exponential growths in their performance capabilities, sophisticated sensor systems, and

the ability to transmit data through the public domain quickly and reliably, have been

synergistic in enabling the efficient deployment of large-scale traffic system operations

such as real-time route guidance.

3

1.2 Study Objectives

The primary objective of this study is to develop an internet-based on-line architecture to

exert control in large-scale traffic systems equipped with advanced sensor systems and

information dissemination media. The aim is to develop an automated on-line system that

disseminates messages to network users on the optimal paths and/or provides route

guidance while addressing the on-line issues discussed earlier. Since economic efficiency

is an important requirement for large-scale deployment of real-time traffic systems, the

study seeks to develop an internet-based remote control architecture to aid and enable

ITS deployment and evaluation. The architecture is remote in that it can be used to

deploy and evaluate alternative solution strategies in the offline/online modes from

remote site locations (such as the Borman expressway or the Indianapolis traffic control

centers). In addition, a remote architecture ensures that the associated models can be

located at one central server and accessed from any site in the state.

This study also proposes to use the Beowulf Cluster as an economical, flexible, and

customizable computing architecture to generate supercomputing capabilities within the

control architecture. The Beowulf Cluster as the computing paradigm in the on-line

architecture will serve as the environment that will execute and coordinate the activities

of the various modules responsible for real-time network route guidance, data

transmission, calibration and fault tolerance.

1.3 Organization of the Report

The report consists of six chapters. Chapter 2 describes the on-line architecture for real-

time traffic systems. Chapter 3 discusses the Beowulf Cluster computing paradigm and

4

describes in detail the hardware, software and data transmission mechanisms that were

used in the design of a sixteen processor Beowulf cluster called Super Computing Cluster

for On-line and Real-time Control of Highways using Information Technology

(SCORCH-IT). Chapter 4 describes some of the fault tolerance issues in the context of

on-line and real-time traffic systems. Some off-line tests that were performed to evaluate

the functioning of the on-line architecture and the Beowulf computing paradigm are

reported in Chapter 5. Chapter 6 provides some concluding remarks and

recommendations.

5

2. ON-LINE ARCHITECTURE FOR REAL-TIME TRAFFIC SYSTEMS CONTROL

This chapter describes an internet-based on-line architecture to exert control in

large-scale traffic systems equipped with advanced sensor systems and information

dissemination media. The objective is to develop an automated on-line system that

disseminates messages to network users on the optimal paths and/or provides route

guidance while addressing the on-line issues discussed earlier. The chapter is organized

into two parts: the first part describes the various components of the on-line architecture

and the associated logic. The second part describes the computing paradigm that enables

efficient on-line implementation of the on-line architecture.

2.1 On-line Architecture

The on-line architecture, shown in Figure 2.1, is described in terms of (i) the main

components of the architecture, and (ii) the flow logic that integrates these components.

2.1.1 Traffic Control Center

The traffic control center is the traffic controller. The controller aims at enhancing

the network performance through information dissemination strategies that provide

routing information to network users. The traffic controller is a significant functional

component of the architecture because the controller is the system operator. Thereby, the

on-line network conditions are significantly influenced by the controller�s actions.

 2.1.2 Information Dissemination Strategies

They represent the strategies implemented by the traffic controller on the network.

The controller can disseminate information through one or more of several available

6

media, e.g. in-vehicle navigation systems, dynamic message signs, radios etc. Also

different messages may be used to target different groups of users based on their

behavioral tendencies. These strategies represent the primary control mechanism for the

traffic controller. However, other control mechanisms can be easily incorporated, as the

architecture is not mechanism specific.

2.1.3 On-Line Traffic Network

Real-time data from various sensors on the traffic network is a critical component

of the proposed on-line architecture. Hence, changing traffic conditions, data type,

measurement mechanisms, transmission issues, and associated failure modes define the

on-line nature of the traffic network.

2.1.4 Virtual System Simulation

This component runs in real-time and aims to faithfully replicate actual traffic

conditions. It is an essential element vis-à-vis fault tolerance and is used to generate

fallback control strategies under failure modes.

2.1.5 Calibration and Consistency Checking

This component aims at bridging the gap between actual data measurements of

traffic conditions and the traffic conditions predicted by the models embedded in the

control logic. It seeks to re-calibrate models on-line to enhance the prediction accuracy of

evolving traffic conditions.

2.1.6 Control Models

They represent the collection of tools necessary to generate the solution strategies

to be provided to the traffic controller. They use data from the traffic system, feedback

from the consistency module, and historical trends to specify the on-line control

7

strategies. This is computationally the most intensive part of the architecture and is the

focal point for the design of efficient computing paradigms.

2.1.7 Alternative Solution Strategies

The solution strategies represent the output of the control components and the

primary input to the traffic controller. These strategies are transmitted to the traffic

controller to begin a new cycle of operations.

2.1.8 The Flow Logic

The flow logic for the on-line architecture can be differentiated based on the

normal and failure modes. The normal mode refers to the situation when all components

of the on-line architecture are functioning normally. In this mode the traffic network

conditions in response to the control strategies implemented by the control center are

measured using the sensor system. Real-time traffic data obtained from detectors and data

on the information dissemination strategies employed is sent via communication channels

(such as the internet) to the computing and processing unit, which may be located at a

different site. Simultaneously, it is also archived in the traffic control center�s database

for possible future use. The processing unit, typically a dedicated computer server, is the

location where the major computational components such as the virtual system

simulation, calibration and consistency checking modules, and the control models, are

executed. Figure 2.1 illustrates the flow logic for the computing and processing unit. The

output from the consistency module is used to update model parameters in the control

models. The system state is updated using the modified parameters in the virtual

simulator. The associated data is transmitted to the control models. The solution

strategies generated using the control models are then transmitted to the traffic control

8

center using communication channels such as the internet to complete a typical flow

cycle under normal circumstances. The failure mode is caused either due to the failure of

the communication links, sensors, and/or the computing hardware. When the

communication link (internet) that transmits data to the processing unit from the traffic

control center fails, data is obtained directly from the traffic control center database

through a dedicated communication channel (such as a dial-up connection). Another

failure scenario is when a detector located on the field malfunctions, and is no longer able

to transmit data to the traffic control center. In such a case, the control models use data

from the virtual system simulator to determine solution strategies. The calibration and

consistency checking modules are by-passed in the failure mode as real-world data is

unavailable.

2.2 Computing Paradigm

Due to the significant computational intensity of the various components of the

processing unit and the need for real-time or sub real-time solutions for the traffic control

center, a computing environment is desirable that is capable of efficient and cost-

effective high performance computing. Traditionally, this role has been the domain of

prohibitively expensive supercomputers. The recent drastic reduction in computer

hardware costs coupled with exponential increases in computing capabilities motivate the

development of a Cluster computing architecture that is customized to the problem being

addressed, and can approach supercomputing capabilities. We propose the use of a

Beowulf Cluster that has several advantages in the operational context of on-line systems.

A Beowulf Cluster is a distributed computing system consisting of several nodes

9

connected together through standard Ethernet adapters and switches. A node here refers

to one physical machine containing one or more processors. The system includes a master

node and several client nodes that receive instructions from the master. Characteristics

that facilitate high performance computing include:

• Low communication overheads between the various nodes of the Cluster, made

possible through fast ethernet switches.

• An architecture that is customized to the problem being addressed. For example, if

the problem requires large input-output capabilities, the associated hardware can be

selectively included.

Dedicated stand-alone architecture that circumvents the vagaries of network

traffic thereby enhancing reliability and computational efficiency. The architecture of

typical Beowulf Clusters, associated hardware and software configuration, and data

storage and performance issues will be discussed in detail in Chapter 3. The various

functions of the Beowulf Cluster performed over the typical time cycle of the computing

system are illustrated in Figure 2.2. The four layers of rectangles represent specific

functions of the Cluster. All distinct functions in a layer are executed sequentially.

However, tasks of two different layers may be executed concurrently if they share the

same timeline. The first layer is data related and includes data retrieval, formatting, and

storage. Since the master node is the Cluster�s only gateway to the outside world (for

security reasons), it performs the function of continually receiving field traffic data.

However, if the data retrieval is the computational bottleneck in the time cycle, additional

nodes may be used to receive the data. The data received is formatted for use by the

virtual system simulation and the control models. Here as well, the task may be assigned

10

to one or more nodes. In order to maximize efficiency in the Cluster, it is advisable not to

pre-assign tasks to individual nodes. Instead, tasks can be distributed dynamically based

on the current load on each node. The data storage task involves storing the data at

different nodes in the Cluster based on future data retrieval needs. If the tasks of the

various nodes are not fixed, an optimal allocation strategy for data storage may not exist.

Under such a framework, a node with large disk space can be dedicated to data storage.

Load balancing is critical to the computational efficiency of the Cluster. Typically

performed by the master node, it focuses on the mechanism to assign individual tasks of a

process to various nodes so that the execution time is minimized. Hence, load balancing

is the rule by which a process is decomposed and distributed in the Cluster. Apart from

optimization at the Cluster level, tasks can be optimized at the individual node level. This

is possible if a node contains more than one processor. The associated procedure, called

multi-threading, uses the fact that multiple processors share the same memory pool

resulting in fast communication and synchronization between these processors. Hence,

large tasks that involve little global data can be executed on multi-processor nodes.

The other functions in this layer include visualization and output formatting and

transmission. Visualization is the animation component of the application and is

performed by a specific node using the output data. Simultaneously, the output data

containing the dissemination strategies to be deployed on-line is encrypted and

transmitted through the Internet back to the traffic control center.

Since the Beowulf Cluster is employed for on-line operations using the on-line

architecture, fault tolerance is an important functionality. Fallback strategies are

necessary to address node failures. A fault tolerance mechanism will warn the master

11

node about imminent node failure so that its tasks can be re-allocated. Some Clusters

have multiple master nodes to address the possibility of master node failure. The fault

tolerance rectangle in Figure 2.2 covers the entire cycle implying that this function is

performed at all times.

The virtual system simulation is another function that is performed by the Cluster

at all times. As discussed earlier, the virtual simulator provides data to the control models

when either the detectors or the communication link to the Cluster fail.

2.3 Data Routing Architecture

One of the key issues in the on-line traffic control architecture is the transmission

and acquisition of traffic-related data such as volume, density and speed as detected by

the sensors installed in the roadway. These data will be collected by local Traffic Control

Center (TCC), and be processed to generate real-time traffic control strategies, which aim

to optimize network performance. A reliable, fast, secure, and cost efficient data routing

architecture is key to the efficient functioning of the Internet-based on-line control

architecture.

In earlier applications, remote data acquisition and communication to capture data

in multiple locations have been enabled either by leaving standalone equipment and

collecting the data periodically, or by using expensive wired or radio links. Until early

1990�s, data acquisition and logging have required custom hardware and software

solutions, which have been prohibitively expensive for large-scale implementations such

as multi-pointed field traffic data collection. During the past decade, PC-based

12

instrumentation appeared on the scene, which have brought significant improvement on

data acquisition.

2.3.1 Internet-based Data Routing for On-line Control Traffic Architecture

Data acquisition could reap the benefits of low cost and standardized user

interfaces due to the spawning of Internet in recent years. The Internet has provided

access between networks separated by large geographical distances. The use of Internet

for data acquisition provides a number of advantages, a few of which include: 1) real-

time access to data for more than one individual user; 2) access to a number of data

loggers for each individual user; 3) relatively low cost; 4) abundant software resources

and strong technical support; 5) mature technologies and communication architectures

such as TCP/IP, Sockets, FTP, and distributed database; and 6) facility to change the

operating characteristics of a data logger remotely.

Figure 2.3 shows an Internet-based data acquisition architecture. The data flow

could be readily grouped into four phases. Phase 1 is termed �raw data acquisition�. In

this phase, traffic related data are collected by field sensors such as video camera,

infrared sensors, magnetic detectors, microwave detectors, or loop detectors. These data

will be transmitted to a local traffic control agency in real-time for further process,

distribution, or storage. Normally there are dedicated links between field sensors and the

TCC, and the data could also be transmitted through wireless communication such as

satellite or microwave. Phase 2 is called �computational data acquisition� and involves

the transmission of data between TCC and a computing environment called the

�computational unit�. This unit typically possesses powerful computational capabilities

and is embedded with traffic optimization algorithms. Data will be transmitted from the

13

TCC to the computational unit and processed by relevant algorithms. Corresponding

control strategies such as shortest path information, route guidance, and traffic signal

setting update plans will be generated and sent to the TCC for traffic network control.

The computational unit could potentially be located locally with the TCC, in which case

the data can be carried through fast Ethernet thereby enhancing the communication speed

and security; or located remotely, in which case the data could be transmitted through the

Internet. The advantages of the latter case is that multiple users can share the same

hardware, software, and personnel resources, which facilitate the update and maintenance

of the system, and make full use of expensive resources. Phase 3 is called �real-time

traffic information acquisition�. The real-time traffic control strategies generated in

computational unit will be applied into the network. Traffic-related information will be

provided to drivers, freight carriers, police, and other end users or managers of

transportation systems through VMS, in-vehicle devices, public media, Internet, or

wireless communications facilities. The communication will be carried through satellite,

microwave or dedicated lines. Phase 4 is called �off-line data acquisition�. Historical

traffic data stored in the TCC database can be accessed by traffic planners, insurance

companies, local traffic engineers or any other qualified users in an off-line manner.

2.3.2 Data Acquisition System Design

Figure 2.4 shows a realization of data acquisition architecture. The hardware

components of such an architecture include (i) On-site traffic condition detectors, (ii)

Data acquisition domains, (iii) Data processing units, (iv) End-user facilities and (v) Data

communication connections. These components are collectively responsible for the

gathering and processing of real-time traffic-related data, generation of real-time traffic

14

control strategies, storage and dissemination of advisory and/or guidance information to

end-users. An important issue in the data acquisition architecture is the remote Data

Acquisition System (DAS) design, which will be discussed in detail in the following

section.

2.3.3 Data Acquisition Architecture

At each end of server domains, a DAS is used to control the data acquisition

process. Each DAS will have a two-way communication channel with the server. The

acquired data is transmitted over this channel, which is then archived on the server. The

server can also send commands over the channel to the individual DAS to change their

operating characteristics. The archived data can be accessed by the clients, and at the

same time instruct the server to change operating characteristics of any DAS. In a DAS,

the data acquisition hardware is controlled by a host computer. Figure 2.5 shows the

principal functional units of a DAS.

There are a wide variety of ways in which communication between the PC and

DAS hardware can be accomplished. The most common interface is the type of cards that

�plug in� directly into the computer bus within the computer case. The main advantage of

such an interface is that it provides both a high bandwidth and the ability to apply the

host�s computational resources to data reduction and analysis on a real-time basis.

Another popular interface method is to use an external communications link to the host

computer. The advantage of this method is that the DAS hardware can be disconnected

quickly and easily from the host, simplifying maintenance and increasing portability. The

choice of DAS is often determined by issues such as cost, performance, portability and

15

ease of maintenance. Table 2.1 lists some of the available options and their main

advantages and disadvantages.

In a DAS architecture, the conversion of electric signals to digital data is

accomplished by a data converter. Conversion of a signal from the analogue to the digital

domains requires a number of discrete and sequential operations to be performed. The

control logic sends commands to the Analogue/Digital converter and reads the results.

More sophisticated DA cards add functions that increase the ability of the device to

behave autonomously from the host. One such function is the ability of a card to

periodically acquire data and stream it to the host computer�s memory without host

intervention. Specialized DAS systems may also contain on-board digital signal

processors (DSPs) as well as logic for capturing and processing specialized inputs such as

video signals from video cameras.

Figure 2.6 shows the layer structure of a typical data acquisition system. Data

obtained from the monitoring system is at the bottom of the architecture. Alarms function

ensures the continuity and security of data transmission. The network interface (NI)

forms the application interfaces (API), which provide a link between the network layer

protocol and the actual application to implement network functionality. The network

interface has to meet the following requirements: (i) Network layer protocol

transparency. The NI should be independent of the network layer protocol. The functional

calls in a NI should not be dependent on the underlying network layer protocols like

TCP/IP, Novell�s IPX/SPX, NetBEUI, AppleTalk, and ISO TP/4. (ii) Asynchronous

operation. The NI function calls should not wait for a network action to occur and then

continue further execution. Those types of function calls are known as blocking calls.

16

The blocking calls are not suited for preemptive multitasking operating systems

(especially with a single processor). The function calls should respond to occurrence of

an event. Those types of function calls are known as non-blocking calls. 3) Data transfer

rate. The NI should have sufficient data transfer rate capability so that it does not cause

the underlying network layer protocol to introduce delays.

The database management function is used to facilitate the manipulation and

storage of data. Software architecture provides a tool to users to interact with the data

communications. The most popular programming languages used for data acquisition are

Microsoft Visual C++ and JAVA. Microsoft Visual C++ provides an Object-Oriented

library known as Microsoft Foundation Class (MFC) to implement the WinSock

interface. The applications developed are platform dependent (Windows 95 or NT). At

present, this tool has wide acceptance in the software community. Java also comes with

classes to implement the WinSock interface. The main advantage in using Java is

platform independence. Java is also suited for embedded programming, which will help

in developing embedded data acquisition systems consisting of Internet communication

facilities.

17

Figure 2.1 On-line Architecture for Real-Time Traffic Systems Control

Suggested Control
Strategies

Data from the On-
line Network

Fault Tolerance

Calibration
and

Consistency
Checking

Control Models

Traffic Control
Center

Information Dissemination

Strategies Implemented on the
Network

TCC
Database

Beowulf Cluster

Fa
ilu

re
m

od
e

(D
ed

ic
at

ed
C

om
m

un
ic

at
io

n

INTERNET

INTERNET

Virtual System
Simulation

18

Time

Fu
nc

tio
na

lit
y

Data Retrieval Input Formatting Data Storage

Load Balancing
(Task Distribution) Task Coordination

 Simulation

Control Models Calibration &
Consistency Checking

Visualization

Format Output

Output
Transmission

Fault Tolerance

Virtual System Simulation

Figure 2.2 Concurrency Diagram

19

TCC 2TCC 1 Phase 1

 Phase 2
 Phase 3

 Phase 4

Figure 2.3 Data Communication Phases in On-line Traffic Control Architecture

Sensor

Satellit

Receiv

Dedicated
Line/

Information Dissemination

Server
Wirele

Wirele
Internet

or Ethernet

Server End User

Wirele

Portable Devices
Internet or

Printer Workstatio PC File Server

End

Figure 2.4 Telemetry of Data Acquisition Architecture

20

Local
Memo

Control
Logic

Data
Converter

Host
Computer

Input
Buffer

Input
Buffer

Input
Channels

Figure 2.5 Data Acquisition System (DAS)

 Monitoring

 Network Interface

 Data Acquisition

Operating

 Database Software

 Programming

 User Interface

Alar

Figure 2.6 Layer Structure of Data Acquisition System

21

Interface/bus Advantages Disadvantages Bandwidth (Mb/S)

ISA/EISA (i) Fast
(ii) Variety (i) Obsolescent 1 (d-bit ISA)

33 (EISA)

PCI (i) Very fast
(ii) Plug-and-play

(i) Few cards
available 133

RS-232 (i) Common (i) Very slow 0.001-0.01

RS-485 (i) Fast (i) Expensive 0.01-1
IEEE_488 (i) Fast (i) Expensive 0.1-1

USB (i) Fast (i) Few cards
available 0.2-1.5

Port IEEE-1284 (i) Fast (i) Limited range 0.1-1
 Courtesy: Adapted from Ramsden (1999)

Table 2.1 Comparison of DAS-to-host System Interfaces

22

3. BEOWULF CLUSTERS

3.1 The Beowulf Computing Paradigm

A Beowulf Cluster [1] is a collection of personal computers (PCs) interconnected

using fast and dedicated Ethernet technology. PCs are extremely economical due to the

mass production of microprocessors, memory chips, input/output (I/O) controllers,

motherboard chip sets and the associated systems in which these components are

incorporated. Further, the cluster typically uses one of several open-source operating

systems such as Linux or FreeBSD which are freely available from the world wide web.

Consequently, Beowulf Cluster costs are much lower than corresponding custom

architectures that provide comparable computing power. Though the custom architectures

(also called massively parallel processors or MPPs) use similar processors and memory,

they have the burden of incorporating special communication features, packaging, and

advanced compiler technologies that greatly increase cost and development time.

Beowulf Clusters have the added advantage of flexibility since any obsolete components

in the cluster can easily be replaced with minimal cost and time unlike customized

architectures. Additionally, the Beowulf Cluster is flexible implying that the different

computing units within its distributed architecture can have different computing speeds

and memory capabilities. This flexibility provides the Cluster the capability to customize

itself to the specific problem being addressed, and hence fosters efficient utilization.

Since Beowulf Clusters use only mass-market components they are not usually subject to

delays associated with custom parts and custom integration.

23

The primary philosophy of a Beowulf Cluster is to achieve explosive

computational power at affordable costs. There are a number of inherent features that

help the Beowulf Cluster achieve this objective. First, the PCs in the cluster are usually

located in close proximity and are dedicated to executing a single application or program.

This is the Beowulf Cluster�s primary difference from a cluster of workstations (COW)

where the PCs may be used for diverse tasks. For the same reason, the network

experiences no external traffic thereby improving communication speeds between

machines in the cluster. Second, the connections between machines in a Beowulf Cluster

are through high-speed Ethernet adapters and switches that help reduce the inter-process

communication times during the execution of different processes. Third, there is no

theoretical limit to the number of PCs that can reside on a Beowulf Cluster. This implies

that Beowulf systems can be expanded over time as additional resources become

available or extended requirements drive system size upward. It should be noted however

that more processors in a cluster does not necessarily mean faster execution times. This

issue will be discussed in further detail in a later section.

The applications being executed on a Beowulf Cluster are typically programmed

in languages such as C or Fortran which are compatible with traditional parallel

programming interfaces. Parallel programming is a process by which an application is

broken down into parts that can be executed simultaneously. Such parts are termed

concurrent. Parallel parts of a program are concurrent parts that are distributed across the

different machines for simultaneous execution. The different concurrent parts may

sometimes require heavy data exchange during execution leading to high inter-process

communication times. Critical to the success of the Beowulf computing paradigm is the

24

task of determining which concurrent parts of the program should be executed in parallel

keeping in mind the possible trade-offs between inter-process communication times and

computation speed-ups. The components resident in the cluster can then be customized

for the optimal execution of the problem being addressed.

3.2 Architecture of the Beowulf Cluster

Figure 3.1 shows the architecture of a four node (five processor) Beowulf Cluster.

Each of the components and the flow logic is discussed below.

3.2.1 Hardware

Node: The fundamental building block in clustered systems is referred to as a node which

is a stand-alone computing system (a physical machine) with complete hardware and

operating system support, and capable of execution of a user program and interaction

with other nodes over a network. A node may contain one or more processors, memory,

and hard disks along with other secondary components such as floppy drives, CD-ROM

drives and Ethernet Cards. A node can access other nodes in the cluster through a fast

switched-ethernet connection for the purpose of data transfer or retrieval. There is usually

one master node and several slave nodes in a Beowulf Cluster. The master node is

responsible for distributing tasks to the slave nodes in the Cluster according to a pre-

specified parallelization scheme. The slave nodes perform the duties assigned to them

and report back to the master node upon completion of the tasks. Any results reported by

the slave nodes are then gathered and formatted by the master node for further

processing. The master node is usually the only gateway implying that external access to

any of the slave nodes can be achieved only through the master node. More complex

25

Beowulf Clusters may incorporate several subsystems with many master nodes each

containing a group of slave nodes, interconnected by means of switches.

Processor: Processor family (Intel x86, IBM/Motorola PowerPC, DEC Alpha), clock rate

of processor, and the cache size are the main characteristics associated with the

processor. One or more processors can reside on each node of the cluster. In an Intelx86

dual processor machine, the main memory, which is shared between processors, can be

used for communication purposes. This type of communication is much faster than

communication between processors across nodes which uses the ethernet connection. For

the same reason, it may be desirable to have as many processors as possible within the

same physical machine.

Memory: The performance of a Beowulf Cluster is as much dependent on the memory

subsystem as the processor. The amount of memory available can be extremely critical to

the execution times of the application. During the data input stage of an executing

program, a processor sometimes reads a large data file and stores it onto the local

memory for subsequent use in a program. If adequate memory is unavailable, this data is

read from the hard disk as and when necessary, a procedure that is much slower than data

retrieval from memory. In such a case, adding more memory to a node or distributing the

task across nodes should be considered. Memory chips are easily installed on processor

motherboards and may be upgraded at any time.

Hard Disk: Hard disks not only provide non-volatile storage but also provide a means of

extending the apparent memory capacity either automatically through virtual memory or

explicitly through programmer control of the file system. Through a judicious choice of

26

hard disk size for each node, one can ensure efficient data transmission in the Beowulf

Cluster. This issue is discussed in greater detail in a later section.

Switch: The demand for higher sustained bandwidths and the need to include a large

number of nodes on a single network have spurred the development of sophisticated

means of exchanging messages among nodes. Switches, like hubs and repeaters, accept

packets on twisted-pair wires from the nodes. Unlike repeaters, these signals are not

broadcast to all connected nodes. Instead, the destination address fields of the message

packets are interpreted and the packet is sent only to the target node or nodes.

3.2.2 Support Devices

A portable 1.4MB floppy disk drive with form factor 3.5� is still used to some

degree, but with the advent of inexpensive CD-ROM and the availability of the Internet,

it is fast losing its preeminence. Floppy drives are crucial for system installation and

crash recovery. CD-ROM is an optical storage medium, and has become the principal

medium for distribution of large software packages. While not necessary, most Beowulf

Clusters have a direct user interface. One of the nodes (usually the master node) is used

as a host and is connected to the monitor, keyboard, and mouse interfaces. This node is

employed primarily for system administration, diagnostics, and presentation. The

Network Interface Cards (NIC) provide communication access to the nodes� external

environment. Each of the slave nodes contains a NIC that connect to the switch to

facilitate communication within the Beowulf Cluster. A second NIC on the master node

provides a link between the Beowulf Cluster and the local area network (LAN) which

connects to other resources such as file servers, terminals, and the Internet.

27

3.2.3 Software and Data Issues

Operating System: The operating system grants access to the processor and memory,

provides services to the application programs, presents an interface to the end user, and

manages the external interfaces to devices. Beowulf Clusters typically use an open source

operating system such as Linux where all the source code is freely available for

modifications and improvements. Linux, in particular, which is a multitasking, virtual

memory, POSIX compliant operating system, supports the complete GNU programming

environment and is the most popular operating system for Beowulf Clusters. Several

commercial versions of Linux (e.g. RedHat) are now available that allow for easy

installation and use.

Network File System: The Network File System (NFS) provides an environment for

seamless data access and system administration on the Beowulf Cluster. NFS facilitates

remote hard disk access to each of the nodes in the Beowulf Cluster. Disk access through

NFS is slightly slower than data transmission through message passing and hence NFS

has generally been used only for system administration. It can be used to keep a single

record (usually in the master node) of all accounts in the Cluster to facilitate easy

maintenance of account information. NFS is known to open up a number of security

issues which should be addressed before installation. As an alternative, especially for

small and medium-sized Beowulf Clusters, account management can be performed by

scheduling frequent transfer of account information from the master node to the slave

nodes using commands such as rdist. Though this method is more secure than NFS, it

may be unsuitable for large clusters (more than 64 nodes) due to the associated increase

28

in network traffic.

Data Storage and Transmission Issues: An issue that is critical to the efficient

functioning of the Beowulf Cluster is the data storage and transmission mechanism that is

used. An application that is being executed often requires multiple I/O operations on files

at various times in the execution cycle. In a Beowulf Cluster, where some or all of the

constituent nodes have their own hard drive, the efficiency of these I/O operations

become critically dependent on the location and the manner in which files are stored and

transmitted. The user typically has a number of options due to the flexibility of the

Beowulf architecture. In Figure 3.2, three different data storage and transmission

techniques are depicted. As is often the case with a Beowulf Cluster, there is no single

most efficient method of data storage and transmission. The efficiency of any particular

scheme will often depend on the (i) size of files being stored, (ii) variance in the file

sizes, (iii) network speed, (iv) number of nodes and (v) the nature of file operations. For

example, in Figure 3.2(a) separate copies of all files are stored on each node so that each

processor in the cluster has free access to all the data from its own hard drive. Problems

with this data storage scheme are the associated increase in data storage requirements, the

need for frequent synchronization of data across nodes and a more convoluted software

coding procedure. However, it was observed through simple experiments that the method

performs well for small applications where file synchronization is relatively simple and

file sizes are so small that any parallel implementation of I/O operations provides only

marginal benefits. By contrast, in Figure 3.2(b) a single processor is fully responsible for

data storage, subsequent retrieval and transmission to other nodes. Although such a

mechanism is straightforward to implement, several processors are typically idle during

29

the data retrieval phase thereby causing inefficiencies. In addition, this scheme will be

efficient only in the presence of a network with high data transmission rates. Scheme 3

shown in Figure 3.2(c) uses each processor to read a portion of the data and the

processors subsequently exchange their data using message passing techniques. There are

some issues to be considered when choosing between Scheme 2 and Scheme 3. If the

files are uniform in size and the cluster in use is small to medium-sized (64 nodes),

Scheme 3 may be more efficient than Scheme 2. This is because, uniformity in file sizes

ensures that parallelization of I/O operations is a relatively simple procedure and does not

involve elaborate load balancing techniques. Furthermore, a small number of nodes in the

Beowulf Cluster makes sure that network traffic does not clog the switch due to the large

number of messages that are being passed between the nodes. If either the files are

heterogenous and/or the cluster is large, a hybrid scheme where a group of processors are

dedicated to data retrieval, storage and transmission may prove the most effective. All of

the three schemes discussed can also be implemented alongside NFS. NFS obviates any

need for synchronization of files across nodes since each node has full access to a

dedicated location where all data is stored. The obvious issues associated with using NFS

for data storage are the associated increase in retrieval times and the need for a single

large storage device. The former issue can be circumvented in most cases by a careful

tuning of network settings soon after installation of NFS. In particular, the efficiency of

NFS depends heavily on the size of data blocks that are used by the server and the clients

(rsize and wsize) in NFS. With careful testing and optimization of these parameters, any

overhead due to NFS can often be made marginal. Also, the drastic reduction in the price

of storage devices is making the requirement for a large and fast storage device for NFS

30

much less of a concern. An alternative to manual optimization of data storage and

transmission mechanisms is the use of dynamic load balancing software such as MOSIX.

MOSIX with its own file system and the ability to constantly monitor the loads and the

available memory on each node, can seamlessly migrate tasks across nodes in the cluster

so as to dynamically balance loads. This feature combined with its fault tolerance

capability where processes on a dysfunctional node are automatically migrated to other

nodes can make MOSIX a valuable tool in the efficient operation of Beowulf Clusters.

Message Passing: Message passing is the mechanism by which data and instructions are

conveyed between parallel executing processes in a distributed computing system [2]. In

other words, message passing facilitates the precise assignment of tasks to various

processors and any exchange of data during execution. An efficient message passing

mechanism is extremely crucial for fast execution of parallel programs especially when

the application contains highly interdependent parallel tasks. In such cases, there is a

large amount of inter-process communication which may be extremely costly vis-à-vis

execution time. In the current context, the message passing function is performed using

an implementation of the Message Passing Interface (MPI) called MPICH. Since MPI is

an open standard, there are several public domain implementations that are freely

available. An important advantage of MPI is its portability. Programs written in MPI for

one architecture can be compiled and executed on other architectures without any

modification. This feature is especially useful for Beowulf Clusters which may contain

nodes that frequently change in architecture and environment. The other popular message

passing tool is called Parallel Virtual Machine (PVM) but unlike MPI, PVM is not an

open standard.

31

3.3 Super-computing Cluster for On-line and Real-time Control of Highways using

Information Technology (SCORCH-IT)

 We currently have installed a 16-processor Beowulf Cluster, called SCORCH-IT,

on which the on-line control architecture for real-time route guidance will be

implemented. SCORCH-IT was recently expanded from four processors to sixteen

processors based on insights from a set of experiments using a time-dependent shortest

path algorithm. Since the cluster is constructed only from commodity hardware and runs

open source software, the system costs are significantly lower than those of customized

supercomputers that do not scale well economically.

 SCORCH-IT consists of eight rack-mount cases, each of which constitutes one

node (a physical machine) of the cluster. Each node consists of an ASUS-P2BD

motherboard with dual Pentium III 500MHz or 550MHz processors and a 256MB

SDRAM memory card with provision for expansion. 3c905B network cards are installed

on the eight nodes along with a Cisco 2900XL switch (with a back plane of 2.4GB) to

form a switched Ethernet connection using 10/100BaseT Category 5 cables. The nodes

are configured for a private Beowulf Cluster network and the front-end machine (Node0)

has an additional network card with a real Internet Protocol (IP) address forming the only

link to the outside world. Hence, the master node is not only on the local network but is

also the gateway for the Intranet that it forms with the other nodes. The nodes have Linux

kernel 2.2.5-15 installed and boot from their respective hard drives [3]. Account

management using rdist keeps identical account information on all nodes. The parallel

32

computing software consists of the core MPI implementation [2], profiling libraries

(MPE), and a visualization tool called Jumpshot.

3.4 A Sample Program Execution

The Multiple User Classes Time-Dependent Traffic Assignment (MUCTDTA)

algorithm is a large-scale optimization solution algorithm developed for providing

optimal routes to users on-line, for traffic networks with ATIS/ATMS capabilities. The

algorithm solves for the time dependent assignment of vehicles to network paths for a

given set of time-dependent origin-destination trip desires. As a first step, a component

from this algorithm was chosen for parallelization to obtain insights on the potential

speed-ups for real-time deployment using the 4-processor Beowulf Cluster paradigm.

An important stage in the MUCTDTA algorithm is the calculation of the shortest

paths for every time step over a period of interest in a network with time-dependent arc

costs [4]. In the current context, a time-dependent shortest travel time path algorithm

(SPA) performs this function. SPA, as shown in Figure 3.3 consists of three distinct parts:

(i) READ (ii) COMPUTE and (iii) OUTPUT. In READ, data on the network topology

(fixed characteristics such as geometry), signal timings and traffic information (current

travel times) is read from static files created by a simulation component called

DYNASMART. The input data files are accessed sequentially and stored into large

arrays in memory (RAM) to facilitate faster data retrieval. In order to account for the

possibility of large input files caused by longer periods of interest and/or larger networks,

adequate memory should be provided on each of the nodes in the cluster. Input/Output

(I/O) is generally not suitable for parallelization in computationally intensive

33

applications. However, in I/O intensive modules, significant savings in execution time

may be obtained by assigning the available processors to read different portions of the

same input file and then exchanging the accessed data through memory. The second part

(COMPUTE) consists of the time-dependent shortest path calculation for a given

destination node from all nodes in the network. This step is repeated for each of the

discretized time intervals and for each destination in the period of interest. The iterations

by destination do not share or exchange results and hence are amenable to parallelization.

Such modules that contain independent and computationally intensive loops are termed

embarassingly parallel in programming literature, signifying the ready gains obtainable

through parallelization. Results from the SPA procedure are written to separate output

files for each destination in the network by the third component (OUTPUT). This

component is also readily parallelizable by destination since there is no post-processing

of files that needs to be performed in SPA.

Experiments were conducted under different parallelization schemes using the

four processors in SCORCH-IT. The objective of these experiments was to decrease total

execution time and also gain insights into the scalability of SCORCH-IT. For instance,

the results obtained may suggest investment in processors as opposed to memory, or

increasing network speeds as opposed to processors, etc. Some important performance

measures used in this analysis include: (i) Total Time: This refers to the total time of

execution of the program. It includes time taken for computation, inter-process

communication, and input/output. When averaged over several runs to account for system

randomness, it is called Average Total Time; (ii) Computational Time: Computational

time is the time spent only on computing. When averaged over several runs, it is called

34

Average Computational Time; and (iii) Data Input Time: This refers to the time spent in

reading data files from the hard disk. When averaged over several runs, it is called

Average Data Input Time; (iv) Data Output Time: This measure refers to the time spent

in writing output data files onto the hard disk. When averaged over several runs, it is

called Average Data Output Time; (v) Speedup: The speedup indicates how much faster a

problem will be solved using parallelization as opposed to a single processor [5].

Speedup, denoted by S(P) is defined as the ratio T(1)/T(P) where T(1) refers to the

Average Total Time on a single processor and T(P) refers to the Average Total Time on a

system with P processors. Speedup is an important performance measure used to

determine the performance level of the Cluster for the current execution; (vi) Efficiency:

This measures the fraction of the time a typical processor is busy. Efficiency, denoted by

E(P) is measured as the ratio S(P)/P. Ideally, E(p)=1, implying that no processor

remained idle during the execution.

3.4.1 Test Network Description

The test network that was used in the experiments consists of 178 nodes, 441

links, 20 origins and 20 destinations. A bi-directional freeway runs through the entire

length of the network with the urban street network consisting of arterials and local roads

on both sides of the freeway. The free-flow speed on the freeway links is 65 mph, and 40

mph for most other links in the network.

3.4.2 The Control Variables

The following parameters were used as control variables in the experiments that

were performed using SPA:

35

Period of Interest. The period of interest (T) refers to the time interval during which time-

dependent shortest paths are desired. The experiments in this study use a range of T

values between 10 minutes and 100 minutes.

Load Factor. This parameter is a measure of the congestion level in the network. The

load factor is defined as the ratio of the total number of vehicles generated during the

period of interest compared with a base number of 16717 vehicles (over the same period)

which corresponds to a load factor =1.00. In all of the experiments performed using SPA,

the load factor was held constant at 1.00.

Loading Profile. This parameter refers to the time-dependent pattern in which vehicles

are loaded onto the network. For instance, a uniform loading profile refers to a fixed

number of vehicles being loaded during each time step. Though the loading profile and

the load factor do not directly affect SPA, these factors in combination with the network

topology decide the time-dependent link travel times which in turn influence the

execution time of SPA. The loading profile was held constant for all experiments in the

study.

Number of Processors. This refers to the number of processors P, used to execute the

SPA module.

3.4.3 Description of Experiments and Results

SPA was separated from the MUCTDTA algorithm and executed separately using

input files generated externally. Table 3.1 describes the different experiments that were

performed on SCORCH-IT. Each experiment was performed several times to account for

variations in processor speeds, data retrieval and output rates.

36

Experiment 1: In Experiment 1, the sequential version of SPA was executed on different

processor architectures and operating systems using a single processor for a 30 minute

period of interest. This step was aimed at gaining insights on the relative performance of

each of these environments. Table 3.2 summarizes the results from this stage of the

experiment. As can be seen from the table, the execution times are ordered according to

the processor speeds. Faster processors outperform the slower processors irrespective of

the operating system in use. In the case of COMPUTE, this is because of the large

number of numerical calculations involved. Any differences due to the operating system

are more than offset by the effects of processor speed. In each of the cases presented, the

computational time comprises of more than 95% of the total time of execution.

Therefore, the trends observed with the total time are similar to what was observed with

the computational time.

Experiment 2: In Experiment 2, the parallel version of SPA was executed on SCORCH-

IT using different numbers of processors. The individual execution times of each of the

three parts READ, COMPUTE and OUTPUT were recorded and analyzed. In this

context, a process is defined as a task that is spawned on a processor. Figure 3.4 shows

the parallel implementation of SPA across four processors with one process executing on

each processor. In the first step, each of the four processes reads input data files and

stores them into arrays in the memory of the local machine. Next, each process is

assigned a destination for computation of time-dependent shortest paths. On completion

of this task, results are written to an output file on the local hard disk. This procedure is

repeated until all destinations in the network have been distributed. For example, in a

network with 16 destinations, such a parallelization method would result in 4 destinations

37

being assigned to each processor. This is not necessarily the best parallelization scheme

because, depending on the nature of destinations assigned, some processors may finish

faster than others and remain idle during parts of the program execution. A more optimal

parallelization scheme would be a dynamic allocation of tasks where tasks are assigned to

processors as and when they become idle. This may result in an unequal distribution of

destinations across processors but will ensure maximum efficiency. More recent software

tools such as MOSIX facilitate such a dynamic load balancing procedure.

Figure 3.5 shows the relationship between the computational time and the number

of processors used in Experiment 2. Since COMPUTE is embarassingly parallel, we

would expect the execution time of this portion to be inversely proportional to the

number of processors used (directly proportional to 1/P). This can be observed from the

graph which resembles a K/P curve, where K is the execution time when COMPUTE is

executed sequentially. Small deviations from this expected relationship were observed in

the data and these may be attributed to the sequential portions of COMPUTE. Sequential

portions within a program can be thought of as fixed-costs that cannot be reduced by

parallelization. Figure 3.6 shows the same relationship for the READ and OUTPUT

portions of SPA. READ was not subject to any parallelization and hence any variation

that is observed is purely due to the natural randomness in the data retrieval rates.

OUTPUT accounts for a tiny fraction of the total execution time but the trends exhibited

are similar to those of COMPUTE.

Symmetric Multiprocessor Machines (SMP) are machines with multiple

processors capable of sharing a single pool of memory. Such an architecture facilitates

parallelization of the data retrieval process through a procedure called Threading. This

38

procedure facilitates communication through shared memory in SMP machines. Such a

communication is generally much faster than through messaging (e.g. using MPI).

Threading between processors across machines is a substantially more complex task and

requires special hardware. Threading was not performed in SPA because the potential

time savings through the process are marginal when inter-process communication

accounts for only a small fraction of the total time. The lack of substantial inter-process

communication in SPA allows for accurate modeling of the total time. Total time can be

approximated using a model with two components: (i) a fixed component (K1) that is

constant across experiments and accounts for the execution time of READ and any

sequential portions in COMPUTE and OUTPUT, (ii) a variable component (K2/P) where

K2 is a constant. This component depends on the number of processors and accounts for

the execution times of COMPUTE and OUTPUT. Figure 3.7 shows the results of a least

squares regression that was performed using such a model form. The diamond and dashed

markers represent the observed and the predicted average total times as a function of the

number of processors used. The fixed component was estimated at 9.617 sec indicating

that the minimum time of execution of SPA is 9.617 seconds and this is achieved at the

theoretical limit of an infinite number of processors. It can be seen from the model that

the time savings due to a unit increase in the number processors actually decreases with

an increase in the existing number of processors. This is clearly evident through Figure

3.8 that plots the marginal time savings as a function of the number of processors. Here,

the y-axis represents the time savings that can be achieved by adding one more processor

to the cluster while the x-axis represents the current number of processors in the system.

All of the measures discussed thus far are for a single execution of SPA. Multiple

39

iterations (usually 6 TO 7) of SPA are required for converged solutions in real-time and

hence all absolute time savings have to be multiplied by this factor correspondingly.

Experiment 3: Experiments 1 and 2 were performed with a fixed period of interest of 30

minutes. Experiment 3 was designed to demonstrate the effectiveness of SCORCH-IT for

longer periods of interest using the same load factor, loading profile and network in

question. It should be noted that the objective of this experiment is not to study the

sensitivity of SPA for different periods of interest, a task that would entail a more

detailed probabilistic analysis of travel times in the network. Four different periods of

interest (10minutes, 30 minutes, 60 minutes and 100 minutes) were chosen and SPA was

executed first on a single processor and then using all four processors in SCORCH-IT.

Figures 3.9 and 3.10 show the results from this experiment. It is evident from the figures

that the average computation time increases non-linearly with respect to the length of the

period of interest. Longer periods of interest entail an increase in the fraction of time

spent on computation and the non-linear trend is due to the fact that SPA has a worst case

complexity of O(N3T2), where N represents the number of nodes [4]. This is

advantageous from a parallelization standpoint since COMPUTE is embarrassingly

parallel and results in speed-ups between 2.31 and 3.47 with increasing period of interest.

The figures also demonstrate the increasing trend of I/O execution time with period of

interest. Longer periods are associated with larger data files leading to a corresponding

increase in the I/O time. Parallelization of I/O along with a more optimal placement of

input data files depending on the functionality of the nodes in the cluster may result in

increased speed-ups.

Some important conclusions can be made from the above experiments: (i) SPA is

40

amenable to parallelization providing significant savings in execution time. However, this

observation may be true only up to around 10 processors after which additional

processors provide negligible savings. (ii) Memory requirements for the execution of

SPA are well within the existing resources in SCORCH-IT. However, this conclusion

applies only to the specific network that was used in the experiments. Larger networks

and/or longer periods of interest are associated with larger input data files. Hence, if

swapping from the hard disk is to be avoided, additional memory may be needed in the

nodes. Table 3.3 shows the speedup and the efficiency estimates for each of the different

scenarios. The generally accepted lower limit of speed-up for high�performance

computing is P/25. By this definition, it is evident from Table 3.3 that even when all four

processors are used, the Cluster is still performing in the High-performance range. As we

increase the number of processors in the system it can be expected that the Cluster may

fall into the Minimum high-performance or the Intermediate performance ranges for the

execution of SPA.

 41

Figure 3.1 Beowulf Architecture

10/100 Base T Category 5

To External Network

24 Port
Switch

Slave Node 2

Slave Node 1

8 Port
Switch

Slave Node (Typical)Master Node

3

Display Unit

5

4

3

2

1
5

2

Legend
1 → Processor
2 → Support Devices
3 → Hard Disk
4 → RAM
5 → Network Card

4

1
5

 42

Figure 3.2(a) Data Storage and Transmission, Scheme 1

Figure 3.2(b) Data Storage and Transmission, Scheme 2

Figure 3.2(c) Data Storage and Transmission, Scheme 3
Legend
1 → Processor , 2 → File, 3 → Hard Drive, 4 → Message Passing

1 1

2 2

3

1 1

2 2

3

1 1

2 2

3

1 1

 2 2

3

1 1

3

1 1

3

. . .

4

4

. . .

1 1

 2

3

1 1

 2

3

1 1

 2

3

. . .4 4

 43

Figure 3.3 Time-Dependent Shortest Path Algorithm

Start

Read Network

Read Penalties

Set No = 1

No > Number of
Destinations?

Initialize All Variables

Calculate the Time Dependent Shortest
Path from All Origins to Current

Print the Shortest
Path to Output File

No = No + 1

Stop

Fals

True

Legend
No : Destination

 44

Figure 3.4 A Parallel Execution of the Time-Dependent Shortest Path Algorithm

Start

Read Network

Read Time-Dependent
Travel Time Data

Read Penalty Data

Set No value for each process

No = No + Ps No = No + Ps No = No + Ps No = No + Ps

No > Number of
Destinations?

Execute SPA for Execute SPA for Execute SPA for Execute SPA for

Print the Shortest Paths to
Output File on Machine 1

Print the Shortest Paths to
Output File on Machine 2

P 0 P 1 P 2 P 3

P 0 P 1 P 2 P 3

P 1 P 2 P 3P 0

No

Yes

Stop

Legend
No : Destination Index
P0 : Process Number 0
P1 : Process Number 1
P2 : Process Number 2
P3 : Process Number 3
Ps : Number of Processes

 45

Figure 3.5 Average Computational Time (Experiment 2)

0

10

20

30

40

50

60

70

80

1 2 3 4

Number of Processors (P)

Ti
m

e
(s

ec
on

ds
)

 46

Figure 3.6 Average Data Input and Output Times (Experiment 2)

0

1

2

3

4

5

6

7

1 2 3 4

Number of Processors (P)

Ti
m

e
(s

ec
on

ds
)

READ
OUTPUT

 47

Figure 3.7 Prediction of Average Total Time (Experiment 2)

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

Number of Processors (P)

Ti
m

e
(s

ec
on

ds
)

Observed
Predicted

 48

Figure 3.8 Marginal Time Savings (Experiment 2)

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of Processors (P)

Ti
m

e
(s

ec
on

ds
)

 49

Figure 3.9. Execution Time by Parts (Sequential)

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

Period of Interest (minutes)

Ti
m

e
(s

ec
on

ds
)

Average Total Time

Average Computational Time

Average I/O Time

 50

Figure 3.10 Execution Time by Parts (Parallel)

0

50

100

150

200

250

300

0 20 40 60 80 100 120

Period of Interest (minutes)

Ti
m

e
(s

ec
on

ds
)

Average Total Time
Average Computational Time
Average I/O Time

 51

Experiment Number Description

1 Execution of sequential SPA on machines with different
architectures and operating systems

2 Execution of parallel SPA on SCORCH-IT using different numbers
of processors

3 Execution of SPA on SCORCH-IT using, (i) single processor and
(ii) four processors for various periods of interest

Table 3.1 Experiments Performed on SCORCH-IT

 52

Processor Speed
Operatin

g
System

Memor
y

READ
*

COMPUT
E*

OUTPU
T* Total*

Intel Pentium

III

500

MHz

Linux 256

MB

5.85 71.99 1.02 78.86

Sun UltraSparc

II

350

MHz

Unix 2 GB 8.67 152.08 1.92 162.6

7
Sun Ultra 2 200

MHz

Unix 512

MB

12.574 217.31 2.65 232.5

3
 * All times are reported in seconds

Table 3.2 Results from Experiment 1

 53

Number of Processors Average Total Time* Speedup Efficiency

1 78.86 1.00 1.00

2 44.52 1.77 0.88

3 33.27 2.37 0.79

4 26.35 2.99 0.75

* All times are reported in seconds

Table 3.3 Speedup and Efficiency Estimates from Experiment 2

 54

4. FAULT TOLERANCE

Chapter 4 discusses a Fourier transform based fault tolerance framework to detect

data errors in real-time. In the context of real-time control of vehicular traffic networks

through route guidance, faults arise due to malfunctioning detectors and/or the failure of

communication links between the detector sites and the processing center. In the context

of an automated on-line control architecture for real-time route guidance, the detection

and correction of faults is essential for uninterrupted and effective operation of the traffic

system. Existing research primarily focuses on the detection of loop detector errors. It

does not address issues of the correction of erroneous data and of communication link

failures. The framework also provides a capability to correct faulty data automatically in

real-time. Fourier transforms are a natural choice because traffic flow data such as

volume, speed, occupancy, and/or density form time sequences. While Fourier transforms

have been sparsely used in the transportation arena, they have been widely and

effectively used in other engineering domains. As illustrated later, the primary advantage

of the proposed Fourier-based approach is that data is analyzed as is, circumventing the

need for complicated models and their inherent error tendencies.

4.1 Fault Tolerance Issues for the On-line Control Architecture

Figure 4.1 illustrates the fault tolerance aspects that arise in the context of the on-

line architecture for an internet-based automated remote real-time traffic system with

route guidance capabilities. As shown in the figure, the data processing involves three

constituent elements: (i) calibration and consistency checking, (ii) virtual system

simulator, and (iii) control models. As part of the methodology to generate routing

 55

strategies, models are used to mimic the evolution of the real system to predict future

system states. However, due to the complexities inherent to the actual traffic system, such

predictions may deviate from the actual field conditions. Consistency-checking models

are used to bridge this gap. The calibration procedures are used to update relevant model

parameter values to enable better prediction. The virtual system simulator is used to

replicate the real-time traffic conditions. It has two objectives: (i) to provide fall-back

support to the control models when real data is unavailable due to

detector/communication link failure, and (ii) to enable the monitoring of the evolving

network conditions for performance analysis. The control models are used to generate the

routing to be provided to the TCC. Dynamic Traffic Assignment (DTA) models are used

for this purpose.

As shown in the figure, the three major computational elements are preceded by a

fault tolerance component. The fault tolerance component addresses two types of

situations: (i) detector malfunction, and (ii) communication link failure. To automate the

real-time operation of the on-line architecture, both these problems should be addressed

within the architecture. If communication links (such as the internet) fail, straightforward

and simple methods that use data stamping can be used to identify and rectify the

problem. The proposed framework focuses on faults that arise due to detector

malfunctions and aims to develop methodologies that automatically detect and rectify

these faults.

4.2 Methodology

The fault tolerance issues addressed here focus on two types of data faults: (i)

incorrect data from the field is transmitted to the processing center either due to detector

 56

failure or malfunction, and (ii) no data is transmitted for short time durations to the

processing center due to a failure in the communication link between the field and the

processing center.

Several previous studies [10] have documented detector malfunctions in the

context of vehicular traffic systems. While the advent of ITS has motivated the

consideration of several new sensor technologies, most are characterized by malfunctions

(Krogmeier et al., 1996) for at least a certain fraction of their operational time.

Additionally, adverse traffic and/or weather conditions may induce temporary and/or

intermittent malfunction of the sensors. Communication links to transmit field data to a

remote processing center can range from satellite links to dedicated phone lines to the

internet, and to a local traffic control center can range from radio towers to wireless

devices to the internet. Under both scenarios, the communication links can temporarily

fail either partially or catastrophically. Addressing communication link failures is outside

the scope of this study since such failures can be detected efficiently using simple and

direct computer communication techniques such as data stamping.

 The data faults can manifest in several ways: (i) no incoming data, (ii)

intermittent reception of data with gaps (with no data) in-between, (iii) erroneous

incoming data, and (iv) intermittent reception of correct data with erroneous data in-

between. Erroneous data can result from malfunctioning detectors (such as missing data

counts and/or underestimation or overestimation of the traffic parameter) or jammed

detectors (which manifests as the repetition of past data). Hence, only (iii) and (iv) are

addressed here since (i) and (ii) correspond to communication link problems.

 57

4.2.1 Fourier Transforms

This section discusses the relevant Fourier transforms theory to develop the

methodologies for fault detection and data correction. It provides a basis for

straightforward data analysis without complicated modeling, thereby circumventing the

potential limitations of modeling assumptions.

Fourier transforms provide the ability to express any periodic function, or

equivalently any function defined on a finite interval, exactly as an infinite sum of

sinusoidal components [11]. If a function f(x) is defined for the interval 0 ≤ x ≤ c, it can

be represented by the Fourier series:

∑ ∑
∞

=

∞

=

⋅+⋅+=
1 1

)2sin()2cos()(
n n

nn c
xnB

c
xnAKxf ππ (4.1)

where K is a constant, An and Bn are the Fourier coefficients of the cosine and sine

components respectively, and c is time interval for which a Fourier transform is to be

determined. The amplitude Cn of this series is equal to (An + Bn) and the phase φn =

n

n

B
A

arctan . All the sinusoidal terms have angular frequencies (multiples of 2π/c) so that

a whole number of wavelengths can be fit into the interval 0 ≤ x ≤ c. To enable

tractability, (4.1) can be re-written as the finite sum of N sinusoidal components where a

large enough N can ensure a sufficiently accurate approximation of f(x):

∑ ∑
= =

⋅+⋅+=
N

n

N

n
nnN c

xnB
c

xnAKxf
1 1

)2sin()2cos()(ππ (4.2)

The truncated Fourier series fN(x) is easier to compute compared to the infinite

one and is hence useful for applications.

A Fourier series has the following useful properties:

 58

1) Multiplication Property

 ∑ ∑
∞

=

∞

=

⋅⋅+⋅⋅+⋅=⋅
1 1

22
n n

nn)
c

xnsin()B()
c

xncos()A(K)x(f πλπλλλ (4.3)

2) Additive Property

If ∑ ∑
∞

=

∞

=

⋅+⋅+Κ=
1 1

11
1

22
n n

nn)
c

xnsin(B)
c

xncos(A)x(f ππ , and

 ∑ ∑
∞

=

∞

=

⋅+⋅+Κ=
1 1

22
2

22
n n

nn)
c

xnsin(B)
c

xncos(A)x(g ππ , then

∑ ∑
∞

=

∞

=

⋅++⋅+++=+
1 1

2121
21

22
n n

nnnn)
c

xnsin()BB()
c

xncos()AA()KK()x(g)x(f ππ (4.4)

The same properties also hold for the truncated series:

1) ∑ ∑
= =

⋅⋅+⋅⋅+⋅=⋅
N

n

N

n
nnN c

xnB
c

xnAKxf
1 1

)2sin()()2cos()()(πλπλλλ (4.5)

2) If ∑ ∑
= =

⋅+⋅+Κ=
N

n

N

n
nnN c

xnB
c

xnAxf
1 1

11
1)2sin()2cos()(ππ , and

∑ ∑
= =

⋅+⋅+Κ=
N

n

N

n
nnN c

xnB
c

xnAxg
1 1

22
2)2sin()2cos()(ππ , then

∑ ∑
= =

⋅++⋅+++=+
N

n

N

n
nnnnNN c

xnBB
c

xnAAxgxf
1 1

2121
21)2sin()()2cos()(KK)()(ππ (4.6)

The Fourier series (4.1) can also be formulated using complex algebra. Using the

definition θθθ sincos ⋅+= iei , where the first term on the RHS corresponds to the real

part and the second term corresponds to the imaginary part, the Fourier series can be

written as follows:

∑
∞

=

⋅−⋅
−

⋅⋅ ⋅+⋅+=
1

/)(2/2
0)()(

n

cxni
n

cxni
n eZeZZxf ππ (4.7)

 59

where, ∫ ⋅= ⋅⋅−
c

cxni
n dxxfecZ

0

/2)]([)/1(π . (4.8)

For n=0, ∫ ==
c

KdxxfcZ
0

0)()/1(. (4.9)

From (8) and (9), we can re-write (7) as:

∑
∞

−∞=

⋅⋅⋅=
n

cxni
n eZxf /2)(π (4.10)

The amplitude Cn is equal to nZ⋅2 and the phase is arg(Zn). The properties

mentioned for the continuous Fourier transforms also hold for the discrete case. In the

study, the following complex algebra based expression of the Fourier series is used:

∑
=

⋅⋅⋅+⋅⋅⋅+=
N

n
xnnxnnKxf

1
])(2sin[)Im(])(2cos[)Re()(νπνπ (4.11)

where, Re(n) and Im(n) are, respectively, the real and imaginary Fourier coefficients, and

ν(n) is the frequency. The frequency is equal to
ι

ν
⋅

−=
N
n)n(1 , where ι is the time interval

between two consecutive data points (in seconds), labeled data acquisition interval. The

amplitude ampl(n) is equal to)n(Im)n(Re 22 + and the phase is

)nIm(
)nRe(arg .

The Fourier spectrum is a representation of the real and imaginary coefficients

with respect to their corresponding frequencies. The following example illustrates a

simple sinusoidal function and its Fourier spectrum.

Example

Consider the function f(t) = 10!sin(10!2πt) + 5!sin(20!2πt). It consists of two

functions: f1(t) = 10!sin(10!2πt) and f2(t) = 5!sin(20!2πt). Figure 4.2 illustrates f(t) in

terms of two sinusoidal functions f1(t) and f2(t). The Fourier spectrum of the time series

 60

f(t) is shown in Figure 4.3. It indicates that the original time series consists of the

functions f1(t) and f2(t). The function f1(t) is represented by the amplitude 10 at a

frequency 10 Hz, and f2(t) is represented by the peak at frequency 20 Hz with an

amplitude 5.

4.2.2 Overview of Methodology

The Fourier theory discussed in Section 4.2.1 is used to analyze real-time

streaming traffic data from field detectors to identify data faults. The commonly available

traffic flow measures from detectors include volume V(t), speed S(t) and occupancy O(t),

as a function of time t. Fourier transforms are used to identify the underlying

characteristics of this data for inferring on any data abnormalities that occasionally arise.

In this section, the main steps of the methodology are briefly discussed. The

methodology has the following steps:

1) Initial Data Processing

The historical data set is first smoothed using an exponential smoothing

technique. Then, time sequences of N data points are constructed (discussed in detail in

Section 4.2.3).

2) Training

The smoothed data sets from the initial processing procedure are used to

determine the necessary threshold parameters for the Fourier-based methodology

(discussed in Section 4.2.4).

3) Detection of Data Faults

Streaming data is analyzed in order to detect data faults. Data smoothing is

performed for newly arriving data (discussed in Section 4.2.5).

 61

5) Data Correction

A Fourier-based heuristic is used to correct the erroneous data. The heuristic

isolates the erroneous part of the data and predicts their likely correct values (discussed in

Section 4.2.6).

4.2.3 Initial Data Processing

The historical abnormality-free data for a road cross-section is first smoothed to

reduce the inherent volatility of real traffic data. Figure 4.4 shows the raw and smoothed

data for a link on the Athens network. The raw data is characterized by temporary traffic

flow fluctuations that represent noise in the acquired data. The smoothing is performed

using an exponential smoothing technique. Suppose d(t) is a data point for time t. The

smoothed data value)t(d of this data point is obtained using the P preceding data points.

The number of preceding data points used in the smoothing procedure is dependent on

the desired smoothing level. The smoothing increases with increasing P. The exponential

smoothing technique is described by the following equation:

∑

∑

=

−

=

− +−⋅
= P

i

i

P

i

i

e

itde
td

1

1
)1(

)(
α

α

 (4.12)

where α is a smoothing parameter. Reducing α increases smoothing as it implies an

increased contribution from past data points.

The smoothed historical abnormality-free data for time t = t0,�.. te, where t0 is the

first data point and te is the last data point of the historical data set, is grouped into N-

point time sequences. The first sequence starts at t0 and ends at t0 + (N-1). The next time

sequence is obtained by shifting the current time sequence by one (starts at t0 + 1 and

 62

ends at t0 + N). Each data set contains N data points which is also equal to the number of

Fourier points. The number of Fourier points is set equal to N so that the transformation

of the time sequence to its Fourier series has the minimum approximation error.

4.2.4 Training

The first step of the training is performed by computing the Fourier transform and

the Total Fourier Area (TFA) for each N-point time sequence of the historical

abnormality-free data set. For each time sequence the TFA is defined as the sum of all

Fourier coefficients:

 ∑
=

+=
N

n
nntTFA

1
)Im()Re()((4.13)

After computing the Fourier transform and TFA for all time sequences in the

training set, the relative difference of successive TFAs, called the DTFA, is computed for

each t:

−

−−
⋅=

)1(
)1()(

100)(
tTFA

tTFAtTFAtDTFA (4.14)

The DTFA(t) is an indicator of the magnitude of change in traffic conditions from

interval t-1 to t. The DTFAs are used to determine the maximum absolute DTFA for

abnormality-free conditions. It is used in the next section to detect data abnormalities.

Figure 4..5 shows the DTFAs for one day on a link on the Athens, Greece, network for ι

= 90 seconds and N = 256.

The minimum and maximum real and imaginary Fourier coefficients over all N-

point time sequences of the historical data set are used to define the Feasible Fourier

Zone (FFZ) for abnormality-free data. The FFZ represents the region in which the

coefficients of the Fourier transforms of an abnormality-free time sequence reside with

 63

high likelihood. It implies that if the Fourier coefficients of a time sequence lie outside

the zone, the associated data is likely to possess an abnormality. Hence, the minimum and

maximum coefficient values are used to determine the boundaries of the FFZ as shown in

Figure 4.6. Here, the FFZ of the imaginary coefficients for one day of abnormality-free

data from a road cross-section on the Athens network is depicted. The FFZ will be used

by the data correction heuristic in Section 4.2.6.

4.2.5 Detection of Data Faults

The DTFAs computed for real-time streaming data are used to identify a data

abnormality. The Fourier transform for the sequence of N data points at time t is

computed. If λ>)t(DTFA , where λ is a threshold value, a data abnormality is detected

by the Fourier-based methodology. λ is the maximum absolute DTFA observed in the

training phase discussed in Section 4.2.4. This approach can adapt to demand changes

over a period of time through a retraining step. During the retraining, a new value of λ

that reflects the changed demand conditions is computed using recent data and becomes

the basis for the abnormality detection criterion. Four criteria identify data faults:

Criterion 1: Volume, speed, and occupancy cannot be higher than their maximum

possible values in a traffic system. If this criterion is violated, the abnormality is

identified as a data fault.

Criterion 2: If volume (V), occupancy (O), and speed (S) in successive intervals are

equal, the abnormality is identified as a data fault. This criterion implies a jammed

detector that leads to the repetition of past data. It can be checked even before computing

the DTFAs.

 64

Criterion 3: Speed and density (D) cannot be simultaneously equal to zero. If S → 0, then

D ≠ 0 as D tends to the jam density. If D → 0, then S ≠ 0 as it tends to the free flow

speed. If this criterion is not satisfied, the abnormality is classified as a data fault. If it is

satisfied, a possible incident is indicated.

Criterion 4: The Fault Identification Ratio (FIR) cannot be significantly different from 1:

DS
VFIR
⋅

= (4.15)

This is due to the traffic flow identity V = S × D. Hence, if the FIR is significantly

different from 1, the abnormality is classified as a data fault. While ideally the traffic

flow identity should be conserved, in reality the FIR may differ from 1 due to the

mechanism to measure density based on occupancy. Density is inferred from the

occupancy as follows:

)(100 lv LL
OD

+⋅
= (4.16)

where O is the occupancy in percent, vL is the typical vehicle length, and lL the loop

length. While lL is a constant, vehicles have varying lengths requiring vL to be an

average measure, introducing some approximation in inferring D. Hence, the FIR may

not be exactly equal to 1 for a traffic system. Fault-free conditions are likely to exist

when the FIR = 1 ± ε , where ε is a threshold value whose magnitude, while small,

depends on the particular traffic network being analyzed (based on the vehicle mix).

When this criterion is violated, the abnormality is classified as a data fault.

4.2.6 Correction of Data Faults

When a data abnormality is identified as a fault, a data correction heuristic is

activated to correct the erroneous data. The primary objective of this heuristic is to

 65

predict the likely correct data. Consequently, it could also be used to predict data values

for the near-term or medium-term future. Such a capability is significant when detectors

malfunction in a traffic system with automated operational control.

The procedure begins with the last data point added to a time sequence being

identified as an abnormality due to a data fault. The resulting N-point time sequence with

the last data point deliberately set equal to zero is called a faulty time sequence. Figure

4.7 illustrates such a time sequence for N = 256. The faulty time sequence is updated

using the �correct� data point predicted by the heuristic. This is done by using a fault time

sequence, which has the first (N-1) points equal to zero and the last data point predicted

by the heuristic. The faulty time sequence is added to the fault time sequence to obtain

the corrected time sequence. Figure 4.8 illustrates a fault time sequence for N = 256. As

discussed in Section 4.2.1, the addition of two transforms is equivalent to the transform

of the addition of the two sequences (see 4.6). Hence, if the Fourier transforms of the

faulty and fault time sequences are added and reversed to a time sequence, the resulting

time sequence will have its first N - 1 data points equal to the original ones and the last

one (Nth) equal to the predicted value. This is the mechanism by which the corrected time

sequence is obtained.

A key advantage of the proposed approach is that the effect of adding just one

data point to generate the corrected time sequence influences the coefficients of all

frequencies. Thereby, if the proposed data point is incorrect, then its Fourier coefficients

lie outside the FFZ. This provides a simple and direct interpretation for the proposed

Fourier-based heuristic.

 66

4.3 Fault Detection Experiments

4.3.1 Description of the Experiments

The fault detection methodology was analyzed by deliberately introducing data

faults to the volume, occupancy, and speed time sequence every 4 minutes. Introducing

faults independently and periodically ensured that a fault could not be correlated or

amplified by a previous one. Twenty data fault scenarios were explored as shown in

Table 4.1. Each scenario was tested on a minute-by-minute basis for the 24 days to

replicate continuous monitoring. Hence, each fault scenario had 15,240 experiments out

of which 3,792 were faulty conditions.

The fault scenarios described in Table 4.1 represent different levels of fault

likelihood and severity. There are 7 scenarios each for fault and speed, and six for

occupancy. The most severe and likely are scenarios are 1, 2, 3, 8, 9, 14 and 15. Scenario

1 represents the case of a jammed detector that repeats the same data over and over again.

The others (2, 3, 8, 9, 14, and 15) represent malfunctioning detectors from which

erroneous data of small magnitude is received. These scenarios are the most likely ones

based on an analysis of field data from Berkeley, Athens (Greece), and West Lafayette.

 The other scenarios (4-7, 10-13, and 16-20) are more conservative and are

primarily explored to investigate the limits of the methodology. Most of these scenarios

relate primarily to detector hardware imprecision that generate faulty and/or

systematically biased data, requiring hardware fault diagnosis and repair. Examples of

these scenarios are 11-13 and 17-20. Most detector accuracies range from 85 to 90%.

Faults that were not detected when they occurred were not detected at all. Another issue

to be noted is that sometimes the methodology recognizes a fault, but is unable to specify

 67

whether it lies with volume, occupancy, or speed data. The methodology identifies such

faults as �fault-in-all� time sequences. Scenario 1 is a good example of this possibility.

The implications of identifying faults in all (volume, speed, occupancy) sequences is that

the associated data correction heuristic attempts to correct all of them raising issues of

computational efficiency in addition to small losses in accuracy. However, these issues

are insignificant.

4.3.2 Discussion of Results

The detection rate (DR) for the most likely fault scenarios (1, 2, 3,8, 9, 14, and

15) was found to be 100% in all cases, and there were no false alarms. Due to the 100%

DR rates, no figures have been generated for these scenarios. However, the results are

presented for the less realistic cases. They also have a 0% false alarm rate (FAR).

Figure 4.9 illustrates the DR for scenario 4. It has a value 97.60% for faults in

volume, and 98.23% when faults classified as fault-in-all are also included (this is

denoted by the black fault-in-all symbol in the figure). This scenario represents the case

that due to some detector malfunction, volume has significantly lower values (0 to 500

vph, randomly allotted) than under the actual conditions (800 to 1,500 vph) that are

observed over 24 days of the Berkeley data. The DR for scenario 5 is lower than that of

scenario 4, as illustrated in Figure 4.10. It averages 84.49% and 85.47% under

fault-in-all. This is because the 0 to 800 vph range of scenario 5 is closer to the actual

field data compared to the 0 to 500 vph range of scenario 4. Hence, scenario 4 exhibits

better DR. It should be noted that both these scenarios are not likely in practice.

Scenarios 6 and 7 are unlikely in practice, and point to a hardware problem

because of the systematic bias rather than a data fault issue. As illustrated in Figure 4.11

 68

scenario 6 has DRs of 75.42%, and 78.32% (fault-in-all). It is difficult to detect data

faults which are systematically underestimated. It also led to more faults being classified

as fault-in-all. Scenario 7 has DRs of 81.33% and 95.26% (fault-in-all), as illustrated in

Figure 4.12. Here, the volume is systematically overestimated by 50%, and for this

reason more faults are likely to be detected but classified under fault-in-all. This implies

that the methodology can detect overestimated volume better than underestimated

volume. If the volume is overestimated or underestimated by less than 50%, the

methodology is not effective as the DR drops dramatically to less than 50%. Hence, 50%

underestimation or overestimation represent the limit of the effectiveness of the approach.

The methodology can be made more sensitive, but would introduce trade-offs in terms of

increased FARs. Scenario 10 represents detector malfunction vis-à-vis occupancy

whereby it generates higher occupancies than normal (in the range 15 to 30% randomly).

The average DR values are 86.58% and 88.13% (fault-in-all) as illustrated in Figure 4.13.

As per the Berkeley data, occupancy rarely goes beyond 15% for the 24-day period.

Scenario 11 (Figure 4.14) represents another case which is likely to occur due to

hardware problems rather than data faults as illustrated by the systematic underestimation

of occupancy by 30%. Assuming a data fault, the average DR is only 4.35%, and the

fault-in-all class has DR 69.07%. The methodology incorrectly interprets that only a

small fraction of the faults identified are due to occupancy data faults. However, if

occupancy is underestimated by a higher margin, as in scenario 12, the methodology is

better able to detect the faults, though it also points to a hardware problem. Thereby,

almost all faults are detected, 98.71% (fault-in-all), though those correctly attributed to

occupancy average 49.82% (see Figure 4.15). As before, when the quantity is

 69

overestimated, the ability to attribute them to occupancy data faults is much better. As

illustrated in Figure 4.16, the average is 80.30%, and for fault-in-all is 81.62%, for

scenario 13. Further analysis suggests that occupancy systematically overestimated or

underestimated by less than 30% cannot be effectively detected by the methodology as

the DR drops to less than 40%. Here, almost all faults are classified as fault-in-all. Hence,

30% overestimation or underestimation is limit of effectiveness of the methodology vis-

à-vis occupancy. While the methodology can be made more sensitive, trade-offs with

FAR arise as discussed for volume.

Scenario 16 represents a relatively realistic case of detector malfunction whereby

speeds take significantly lower values (in a range of 0 to 30 mph randomly) than the

actual ones. As per the Berkeley data, speed dropped to less than 30 mph only under very

severe incidents over the 24-day period. As illustrated in Figure 4.17, the associated DRs

are high, 98.95% and 99.34% (fault-in-all). The DR for scenario 17 is significantly lower

than for scenario 16, averaging 74.87% and 76.16% (fault-in-all), as shown in Figure

4.18. The systematic underestimation of speed by 25% is more representative of

hardware problems. It is interesting to note that even in this case a high percentage of

faults are detected and correctly classified.

Scenario 18 is also primarily a case of hardware problems rather than data faults.

However, since speed is underestimated by a larger value than in the previous case, it is

more likely to occur in practice. Figure 4.19 illustrates the higher DR of 95.81% and

96.78% (fault-in-all) for Scenario 18. The DR for scenario 19 is relatively lower,

averaging 77.08% and 77.27% (fault-in-all), as depicted in Figure 4.20. The methodology

performs worse for a 30% overestimation compared to a 30% underestimation. This

 70

again highlights the strength of the methodology as 30% speed underestimation is much

more likely than a 30% overestimation. When speed is overestimated by 60% (scenario

20), the methodology performs robustly as illustrated by the DR of 90.98% and 99.17%

(fault-in-all) in Figure 4.21.

Based on further experiments not discussed here, overestimation by less than 25%

or underestimation by less than 30% cannot be robustly detected by the methodology as

the DR drops to less than 50%. Also, the fraction of faults classified as �fault-in-all�

increases dramatically. These bounds provide the limits for the methodology vis-à-vis

speed detection. Greater sensitivity can be generated, but with trade-offs in terms of FAR.

4.4 Insights

The performance of the Fourier-based methodology for fault detection is robust

for the most likely scenarios, with DR of 100% and FAR of 0%. However, other

scenarios were analyzed to derive insights on the limits of the methodology. For less

severe and less likely faults, the DR averages 76.14% and 87.14% (fault-in-all). The

methodology is more sensitive to speed-related faults but less sensitive to occupancy-

related faults, and even less to volume-related ones. The time-to-detection (TTD) was

always 0 seconds implying that a fault which is detected, is identified at the time it is

introduced.

Fourier-based methodologies are used for fault detection and correction. Fourier

transforms analyze data directly without need for predictive and/or complicated

modeling, thereby circumventing likely modeling errors. The proposed Fourier-based

methodologies require little training, and use little data for training. Hence, the training is

 71

simple and straightforward. Thereby, the Fourier-related parameters used in the

methodology are simple to compute. However, the parameters need to be re-computed if

significant demand/supply changes occur over time. Also, the parameters are not

transferable to new sites, but can be computed easily with the availability of data.

Another issue vis-à-vis data is the requirement of abnormality-free data for training

purposes.

 72

Figure 4.1 Fault tolerance aspects of the on-line control architecture for real-time
route guidance

Data from the
On-line Network

Virtual System
Simulator

Calibration
&

Consistency
Checking

Control
Models

Suggested Control
Strategies Traffic Control

Center

Information
Dissemination

Strategies

Database

Internet

Internet

Fault
Tolerance

Fa
ilu

re
 M

od
e

(D
ed

ic
at

ed
 C

om
m

un
ic

at
io

n
C

ha
nn

el
)

Beowulf
Cluster

Normal Mode Comm. Failure Mode Detector Failure Mode

Data Errors?

Yes

No

 73

Figure 4.2 Function f(t) illustrated as consisting of two sinusoidal functions f1(t) and f2(t)

Figure 4.3 The Fourier spectrum of f(t)

-15

-10

-5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5

Time t

Fu
nc

tio
n

f(t
)

f1(t)
f2(t)
f(t)

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50

Frequency (Hz)

Am
pl

itu
de

 a
nd

 C
oe

ffi
ci

en
ts

Real
Imag
Amplitude

 74

 Figure 4.4 Raw and smoothed volume data for a link on the Athens
network

 Figure 4.5 DFTAs for one day on a link on the Athens network

0

400

800

1200

1600

1500 1550 1600 1650 1700

Time (minutes)

Vo
lu

m
e

(v
ph

)

Raw
Smoothed

-6

-4

-2

0

2

4

6

8

0 100 200 300 400 500 600 700

Time Intervals

D
TF

A
(%

)

maximum
absolute DTFA

 75

Figure 4.6 FFZ of the imaginary coefficients for one-day data from the Athens
network

Figure 4.7 A faulty time sequence for N = 256

Imaginary Part

-3

-2

-1

0

1

2

3

4

5

6

0 0.001 0.002 0.003 0.004 0.005 0.006

Frequency (Hz)

Va
lu

e
of

 C
oe

ffi
ci

en
ts

Max

Min

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

Time Points

D
at

a
Va

lu
es

 76

Figure 4.8 A fault time sequence for N = 256

Figure 4.9 DR for scenario 4 (volume = 0 to 500 vph randomly)

0

5

10

15

20

25

30

0 50 100 150 200 250 300

Time Points

D
at

a
Va

lu
es

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Volume
Fault-in-All

 77

Figure 4.10 DR for scenario 5 (volume = 0 to 800 vph randomly)

Figure 4.11 DR for scenario 6 (volume = 50% underestimated)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Volume
Fault-in-All

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Volume
Fault-in-All

 78

Figure 4.12 DR for scenario 7 (volume = 50% overestimated)

Figure 4.13 DR for scenario 10 (occupancy = 15 to 30% randomly)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Volume
Fault-in-All

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Occupancy
Fault-in-All

 79

Figure 4.14 DR for scenario 11 (occupancy = 30% underestimated)

Figure 4.15 DR for scenario 12 (occupancy = 40% underestimated)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Occupancy
Fault-in-All

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Occupancy
Fault-in-All

 80

Figure 4.16 DR for scenario 13 (occupancy = 40% overestimated)

Figure 4.17 DR for scenario 16 (speed = 0 to 30 mph randomly)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Occupancy
Fault-in-All

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Day

D
R

 (%
)

Fault in Speed
Fault-in-All

 81

 Figure 4.18 DR for scenario 17 (speed = 25% underestimated)

 Figure 4.19 DR for scenario 18 (speed = 30% underestimated)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Day

D
R

 (%
)

Fault in Speed
Fault-in-All

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Speed
Fault-in-All

 82

Figure 4.20 DR for scenario 19 (speed = 30% overestimated)

Figure 4.21 DR for scenario 20 (speed = 60% overestimated)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Day

D
R

 (%
)

Fault in Speed
Fault-in-All

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Day

D
R

 (%
)

Fault in Speed
Fault-in-All

83

Scenario
Number Volume (vph) Occupancy (%) Speed (mph)

Specific
value

Randomly
in a Range

Under-
estimated

Over-
estimated

Specific
value

Randomly
in a Range

Under-
estimated

Over-
estimated

Specific
value

Randomly
in a Range

Under-
estimated

Over-
estimated

1

Previous
Interval
Volume

Previous
Interval

Occupancy

Previous
Interval
Speed

2 0
3 0 – 10
4 0 – 500
5 0 – 800
6 50 %
7 50 %
8 0
9 0 – 1

10 15 – 30
11 30 %
12 40 %
13 40 %
14 0
15 0 – 5
16 0 – 30
17 25 %
18 30 %
19 30 %
20 60 %

Table 4.1 The experimental scenarios

84

5. OFF-LINE SIMULATION EXPERIMENTS

The off-line test involves the evaluation and benchmarking of various components

of the Internet-based traffic control architecture in an off-line mode. Because of the non-

availability of traffic-related data from the real network, a traffic simulation algorithm,

namely DYNASMART, is used as a proxy for the real world traffic system to generate

traffic data as input to the on-line control architecture. Both sequential and parallel

experiments were conducted on SCORCH-IT as part of the off-line tests.

5.1 Off-line Test Experiment Description

To test the validation and performance of the Internet-based on-line traffic control

architecture, a simulation environment, shown in Figure 5.1, was constructed.

In the off-line test architecture, two main components are involved. A traffic

simulation model is embedded on a PC or workstation as a proxy for the Borman

network. The network structure and the real-time O-D demand data for the Borman

network are fed to the simulation model. It generates data such as time-dependent link

travel time, vehicle position information, and link traffic volume. This data is transmitted

to SCORCH-IT located in the Traffic Operations Laboratory at Purdue University

through an intranet connection with 10Mbps bandwidth. A virtual simulator and a route

guidance algorithm are embedded on SCORCH-IT, which uses the virtual real-time

traffic information data as input, and generates traffic control strategies for network

control. These strategies are implemented using the same connection on the proxy

network.

85

The test network is located in northern Indiana and includes the Borman

Expressway and the surrounding arterials and street network. The Borman Expressway

network is represented as a grid structure containing 197 nodes and 458 links, and is

divided into 14 zones. With real-time information, drivers are assumed to obtain en-route

updates on the best route to their destinations at every decision point. The traffic network

link characteristics data (such as number of lanes, length, capacity, and free flow speed)

were collected from relevant state and local transportation agencies. The maximum

bumper-to-bumper and jam densities for all links are assumed to be 260 vehicles/mile

and 160 vehicles/mile, respectively. Since a significant amount of the Borman

Expressway traffic are large trucks, local arterials serve as detours for passenger cars and

vans. Hence, it is reasonable to include all roads in the vicinity of the Borman

Expressway in the simulation network to test the system performance.

5.2 Data Communication Tests

Though the virtual network and SCORCH-IT are connected by a 10Mbps intranet,

the actual transmission speed is subject to some randomness caused by communication

and local-area network (LAN) related issues. In order to get a robust estimate of the

performance of the architecture, the associated experiment was conducted at different

times of the day and on different days. Figure 5.2 shows the results of a 10MB-file

transmitting experiment between the virtual network and SCORCH-IT. The experiment

was conducted continuously every half-hour at different times of the day during a 3-day

period. Data shows that the actual communication speed varies from about 0.5Mbps to

4Mbps.

86

In the off-line test of the online control architecture, the size of data (input data)

transmitted from and to SCORCH-IT is usually about 2MB. Thus the communication

time of the online control architecture varies from 5 seconds to 30 seconds in each

direction depending upon the prevailing communication conditions.

5.3 Sequential Algorithm Tests

Inside the computational unit (SCORCH-IT), the performance of the integrated

control strategy algorithm was tested. The tested components include the traffic

simulation model, DYNASMART, which is combined with a Dynamic Traffic

Assignment (DTA) algorithm called the Multiple User Classes Time-Dependent Traffic

Assignment (MUCTDTA). They are embedded on SCORCH-IT, which works as a

computational unit to determine the real-time traffic control strategies for the virtual

network.

 MUCTDTA, illustrated using a flowchart in Figure 5.3, provides optimization

solution strategies to the on-line architecture. In a future ATIS/ATMS scenario, in order

to optimize the performance of a network through the provision of real-time routing

information to different motorists, some factors such as information availability,

information supply strategy and driver response behavior must be taken into

consideration for different user classes [8]. In particular, two user classes are incorporated

into the formulation of the tested algorithm: (i) equipped drivers, who follow prescribed

system optimal paths (called user class 1 or SO class) and (ii) equipped drivers who

follow user optimum routes (called user class 2 or UE class). Other driver classes may be

considered without substantial influence on the computational burden of the algorithm.

87

The MUCTDTA algorithm uses information about every trip maker in terms of his/her

origin, destination, start time and user class for the entire assignment horizon, to develop

an integrated scheme that assigns to each user a path to his/her destination so as to

achieve some system-wide objective. DYNASMART is a fixed time-step mesoscopic

simulation model and provides link, path and vehicle information to the MUCTDTA

algorithm.

The simulation period used in the tests is set to 60 minutes, and the traffic demand

is generated over 30 minutes. The total number of vehicles generated during the period of

interest is 14153 vehicles. The time-dependent origin-destination demand data on the

Borman Expressway is used to simulate the traffic network.

The CPU time of each part of the algorithm is observed. As illustrated in Figure

5.4, the simulation component (PARTCO) of the model takes the maximum amount of

computational time.

5.4 Parallel Algorithm Tests

According to the benchmark for the sequential tests, the MUCTDTA algorithm

(excluding the traffic simulation model) can be split into three major parts. After

inputting the basic data such as network information and travel demand information

between all origin-destination pairs, the path strategies for SO and UE users are

computed separately. Then, all vehicles in both user classes are sorted together according

to the time and the link on which they are generated. There is no communication between

the SO and UE parts; so their execution is independent of each other. The sorting

algorithm is executed after the SO and UE components. There are two main subtasks in

88

the SO algorithm: a module called SOMARGINAL, which computes the marginal travel

time on each link; and a module called SOPATH, which computes the time-dependent

shortest paths for the SO class vehicles. These two components are executed sequentially

and account for over 80% of the total CPU time of SO.

In terms of the parallelization of the traffic simulation model, we focus on two

key subroutines. The first module called NODETRAN is used to update information on

vehicles that need to cross an intersection during the current simulation interval. It

considers all the vehicles reaching their downstream nodes and updates the relevant

network and vehicle related parameters. The second main subroutine called LINKTRAN

updates the prevailing vehicle information on each link. It determines the number of

vehicles that enter the network at the current simulation interval, updates the vehicle

positions and checks if vehicles arrive at destinations.

5.4.1 Parallelization Paradigms

Different programs and subroutines are integrated together to execute the

MUCTDTA algorithm and the simulation model. The integrated algorithm contains both

parallelized and sequential subroutines. Two basic parallel paradigms were employed to

integrate the algorithm.

In Flynn�s hardware taxonomy, computer hardware is classified as SISD (Single-

Instruction-Single-Data, which is the traditional sequential computer), SIMD (Single-

Instruction-Multiple-Data) and MIMD (Multiple-Instruction-Multiple-Data). Because of

the flexibility and variety of modern parallel computer structures and the powerful

functions provided by parallel software tools, this classification is no longer restricted to

89

the hardware classification, but can also be applied to the parallel programming

paradigms and parallelization methodologies.

To ensure the correctness of results, parallel programs must effectively coordinate

more than one process. Different processes may contain identical or different instructions

and commands. When more than one flow of control is supported at the same time by the

parallel program, the program is referred as a control-flow program. In a message-passing

paradigm, it is also referred as the MIMD model, which means that many processors can

simultaneously execute different instructions on different data. MIMD is the most general

form of parallel programs. Each processor runs under the control of its own instruction

sequence, but they are not totally independent because they may access or modify the

same copy of data. In MIMD, synchronization is enforced by certain synchronization

mechanisms, usually a lock, which permits only one process to access any piece of data

at an instant. MIMD is best suited to medium or large-grained parallel problems.

In a data flow program, the data is partitioned into separate subsets and then

identical operations are performed on the different sets concurrently. Therefore, each

process executes exactly the same instruction at the same time but on different data. This

model is also called SIMD. In a SIMD paradigm, data is usually distributed using a

message passing paradigm. The execution of all processes is tightly controlled by lock-

step unison so that synchronization is guaranteed.

In many cases, processes do not necessarily execute exactly the same instructions

at every time step after the particular pieces of data are distributed. Thus, a model called

SPMD (Single-Program-Multiple-Data) is also useful. The major difference between

SPMD and SIMD is the degree of synchronization. SIMD is an example of synchronous

90

data parallel computing and SPMD is its related asynchronous version. In SPMD the

same program is run but with different data and unlike the MIMD paradigm, the

instructions are not synchronized at every time step.

Two parallel programming paradigms, namely MIMD and SPMD were

implemented in the parallelization of the MUCTDTA algorithm. Because the

computation of the SO marginal times and the two path processing algorithms decide the

overall performance of the problem, the parallelization methodologies employed will be

classified by the way SO and UE components are arranged.

When MUCTDTA is implemented according to the SPMD paradigm, the

algorithm is run in the same order as the sequential algorithm. SO, UE and the sorting

algorithms are executed one after another. The parallelized parts are computed using the

16 processors available on SCORCH-IT. At any instant, the processors run the same

program, even though they may not be synchronized for every instruction in the program.

The data is exchanged by a message passing paradigm realized by calling MPI operations

in the programs. The flow chart of the SPMD paradigm for MUCTDTA algorithm is

shown in Figure 5.5 (a).

When the MIMD paradigm is implemented, the SO and UE algorithms are

executed at the same time but on different processors. This is a large-grained

parallelization and is efficient because the two parts are completely independent. SO and

UE modules are further parallelized and the available processors are assigned according

to the expected time of execution. In the flow chart of the MIMD paradigm for the

MUCTDTA algorithm shown in Figure 5.5 (b), m processors are used to execute the SO

algorithm and n-m processors are used for the UE algorithm, where n is the total number

91

of processors available. After the completion of data input, the processors are divided

into two groups to be assigned for the UE and SO algorithms.

5.4.2 Parallel Test Results

Both SPMD and MIMD paradigms are implemented for the parallel MUCTDTA

algorithm using 16 processors on SCORCH-IT. From Figures 5.6(a) and 5.6(b), it can be

seen that although MIMD has lower execution times, SPMD is more efficient due to its

higher speedup values for both parameter sets. This is primarily due to the increased

number of processors used in the MIMD paradigm. In the MIMD paradigm, when all 16

processors are used for a single algorithm, some processors will be idle due to the

heterogeneity in assigned tasks and the processor capability. In the SPMD paradigm,

processors will be much busier because lesser number of processors used for each

algorithm ensures that efficiency is enhanced. Figure 5.7 shows the CPU time of the main

parallel programs (marginal time algorithm, SO and UE path processing algorithms and

vehicle sorting) executed on different numbers of processors. It can be seen that beyond

10 processors, the benefits due to additional processors becomes marginal. Therefore,

depending on the trade-off between the execution time and efficiency, an optimal number

and an appropriate paradigm should be used.

5.5 Future Real-time Tests

Upon availability of the field data from the Borman network, real-time tests for

the online traffic control architecture will be conducted. One of the main differences

between off-line tests and real-time tests is that the test network in the off-line tests will

be replaced by the real traffic network. Traffic data from the field will be transmitted

92

from the TCC to SCORCH-IT. Another important difference is the data communication.

In addition, the connection between the TCC and SCORCH-IT will take place via the

much slower internet as compared to the high-speed network that was used in the off-line

tests. There are various internet connection technologies that are currently available in the

internet service provider (ISP) market. These connections have different characteristics

with respect to speed, cost, and reliability. A judicious choice of the connections is

critical to the efficient functioning of the on-line architecture. Table 5.1 shows some

possible choices and their important attributes.

93

Figure 5.1 Off-line Test Architecture

Intranet (Ethernet)

Intranet (Ethernet)

Traffic Simulator

Real-time Data

Virtual Network Proxy
Solution Algorithm

Control Strategy

 SCORCH-IT

Purdue University Transportation Study Computer Lab

0
20
40

60
80

100
120
140

160
180
200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time of Day

C
om

m
un

ic
at

io
n

Ti
m

e
(S

ec
)

Day 1
Day 2
Day 3

Figure 5.2 Data Communication Tests

94

UEPAS

UEUPDM

UETDPATH

 VEH SORT

DTA_SAM

UE and SO
Converge?

STOP

Iterative

Data:

Link,

Path

and

Vehicle

Information

Input Data

 SOPATHINIT

SOUPDINIT

 SO USERS

UEUPDINIT

UEPATHINIT

 UE USERS

NO NO

YES

SOTDQPEN

SOMARGINAL

SOTDPATH

SOUPDM

SOPAS

Figure 5.3 Flow Chart for MUCTDTA Algorithm

DYNASMART

95

Figure 5.4 CPU Time for Sequential MUCTDTA Algorithm

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

Simulation
Misc.

Partco SO UE Sort veh TOTAL

Program Subroutine

C
PU

 T
im

e
pe

r I
te

ra
tio

n
(s

ec
)

96

Vehicle Sorting

P(1)
SO

Initialization

Marginal
Time

SO
Shortest

Paths

P(m)
SO

Initialization

Marginal
Time

SO
Shortest

Paths

P(m+1) UE
Initialization

UE
Shortest

Paths

P(n) UE
Initialization

UE
Shortest

Paths

Input Data

Figure 5.5(b) MIMD Parallel Programming

Figure 5.5(a) SPMD Parallel Programming

�

Input Data

SO Initialization

UE Initialization

UE
Shortest

Paths

UE
Shortest

Paths

UE
Shortest

Paths

SO
Shortest

Paths

SO
Shortest

Paths

SO
Shortest

Paths

Vehicle Sorting

� � P(n) P(2)Marginal
Time P(1) Marginal

Time
Marginal

Time

� �

Figure 5.5 Flow Chart of MUCTDTA Algorithm for SPMD and MIMD Paradigms

97

0

200

400

600

800

1000

1200

15 35 65

Planning Horizon (minutes)

C
PU

 T
im

e
(s

ec
)

Sequential
SPMD
MIMD

(a) The Computation Burden for Different Planning Horizons

0

1

2

3

4

5

6

7

8

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

P la n n in g H o r iz o n (m in u t e s)

Sp
ee

du
p

S PM D

M IM D

(b) Speedup for Different Planning Horizons Using 16 Processors

Figure 5.6 Parallel Performance for MUCTDTA Algorithm

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18

Num ber of Proce s sors

C
PU

 T
im

e
(s

ec
)

Somarginal
Sopath
Uepath
Sorting

Figure 5.7 CPU Time for Main Parts of Parallel MUCTDTA Algorithm

98

Internet
Connections

Services

Satellite

ISDN

ADSL

Cable Modem

Approximate

Installation and
Hardware

$1200

$400

$100 - $500

$100

Approximate

Recurring Cost
(monthly payment)

$330

$300

$60-$100

$50

Speed

256Kbps
downstream,

128Kbps
upstream

128Kbps

downstream
and upstream

640Kbps or
1.6Mbps

downstream,
90Kbps

upstream

10Mbps
downstream,

768Kbps
upstream

Mobility

Good No No No

Table 5.1 Comparison of Some Internet Connection Services

99

6. CONCLUSIONS

An internet-based on-line architecture for real-time traffic systems was presented.

The proposed architecture incorporates the internet and the Beowulf computing paradigm

to efficiently address issues arising in the evaluation and control of real-time traffic

systems equipped with ITS technologies. It explicitly accounts for the calibration and

consistency checking needs of the models being used within the architecture. The

architecture incorporates fault tolerance methods for errors encountered at the

architecture level and due to the malfunctioning of the sensors collecting field data. The

architecture is also designed to be remote in that it can serve multiple spatially separated

traffic control centers by allowing the models and the databases to be distributed.

Furthermore, the framework is not model-specific implying that the route guidance,

calibration and fault tolerance models can be upgraded as newer models become

available.

The Beowulf Cluster is proposed as the computing paradigm within the on-line

architecture. Beowulf Clusters serve as a viable alternative to expensive customized

architectures in satisfying the heavy computational needs of real-time traffic systems.

Recently, there has been an enormous amount of interest amongst researchers and

practitioners from various fields in the concept of the Beowulf Cluster as a cheap means

of achieving high performance computing. The idea has been applied successfully in a

wide variety of areas including Earth and Space Sciences, Molecular Dynamics

Simulation in Metals and Computational Fluid Dynamics. While typical supercomputers

100

cost between $ 500,000 and $ 1,000,000, a Beowulf Cluster of comparable performance

can be built for less than $ 15,000. Besides providing super-computing power at

affordable costs, the Beowulf Cluster provides the flexibility to design asymmetric

architectures optimized to the problem being solved. This report discussed the

architecture and components that comprise a typical Beowulf Cluster along with the

detailed specifications of an implementation called SCORCH-IT.

A judicious investment of resources is critical to the success of the Beowulf

Cluster. The hardware used in the Cluster is optimized for the problem being addressed,

and a thorough understanding of the application will ensure efficient investment of

available resources. For instance, the experiments on the mini version of SCORCH-IT

had indicated that gains in execution times of SPA can be expected with an increase in

the number of processors. In addition, the need for the simultaneous execution of other

tasks such as data retrieval and fault tolerance as part of the on-line architecture led to the

expansion of SCORCH-IT into a 16-processor Beowulf Cluster. Recent experiments have

shown that increased memory in some nodes may facilitate a more optimal I/O

scheduling potentially leading to further gains in overall execution times. Multi-threading

is the next step in order to facilitate communication between processors in a machine

through shared memory. This may result in additional speed-ups especially for longer

periods of interest and/or larger networks where the data files can be substantially larger.

Future work will focus on carrying out similar experiments for other modules in

MUCTDTA in order to gain insights into how resources can be optimally invested in the

expansion of SCORCH-IT.

101

Off-line simulation tests revealed the effectiveness of the on-line architecture and

the computing paradigm that has been proposed. The tests showed that the framework

can effectively address medium-sized networks such as the Borman expressway.

Depending on the specific problem being addressed the architecture of the Beowulf

Cluster and the functions performed by the nodes within the cluster may have to be

altered. However, the off-line tests used fast Ethernet connections for data transmission

thereby avoiding a number of important communication related impediments that would

arise in a real-world scenario. Carefully designed on-line experiments using actual sensor

data and field connections may be critical to identify all the communication and

computational issues that are likely to arise if the framework is to be deployed.

102

LIST OF REFERENCES

[1] Sterling, T. L., Salmon, J., Becker, D. J. and Savarese, D. F. (1999), How to Build

A Beowulf: A Guide to the Implementation and Application of PC Clusters, MIT

Press, Cambridge, MA.

[2] Snir, M., Otto, S., Huss, S., Walker, D. and Dongarra, J. (1999), MPI – The

Complete Reference: Volume 1, The MPI core, 2nd Edition, MIT Press,

Cambridge, MA

[3] Kirch, O. (1995), LINUX – Network Administrator’s Guide, O�Reilly

[4] Ziliaskopoulos, A. and Mahmassani, H. S. (1994). �A Time-dependent Shortest

Path Algorithm for Real-time Intelligent Vehicle/Highway Systems

Applications�, Transportation Research Record 1408, Washington, D.C., pp. 58-

64

[5] Peeta, S. and Chen, S. C. (1999). �A Distributed Computing Environment for

Dynamic Traffic Operations�, Computer-Aided Civil and Infrastructure

Engineering, No. 14, pp. 239-253

[6] Kuck, D. J. (1996). High Performance Computing, Oxford University Press, New

York

[7] Ramsden, E., Data Acquisition System Architecture, Machine, Plant & System

Monitor, pp. 10-13, May/June 1999

[8] Lewis, T.G. Foundations of Parallel Programming, a Machine-Independent

Approach. IEEE Computer Society Press, Los Alamitos, 1994.

103

[9] Mahmassani, H.S., Y. Hawas, K. Abdelghany, Y. Chiu, A. Abdelfatah, N.

Huyhn, and Y. Kang, DYNASMART-X: System Implementation and Software

Design, Technical Report ST067-085-Volume III, 1998.

[10] Krogmeier, J.V., Sinha, K.C., Fitz, M.P., Peeta, S., Nof, S.Y. (1996), �Borman

Expressway ATMS Equipment Evaluation�, JTRP Final Report FHWA/IN/JHRP-

96/15, West Lafayette, IN.

[11] Cartwright, M. (1990), �Fourier Methods for Mathematics, Scientists and

Engineers�, E.Horwood, New York., NY.

	Purdue University
	Purdue e-Pubs
	2002

	Validation, Calibration, and Evaluation of ITS Technologies on the Borman Corridor
	Srinivas Peeta
	Pengchang Zhang
	Raghubhushan K. Pasupathy
	Recommended Citation

	Outside Cover
	Inside Cover
	Acknowledgements
	Technical Summary
	Form 1700
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	List of References

