PRIMARY PURPOSE TO DISCUSS ACCESSIBILITY COMPLIANCE ISSUES
“FREE” SLIDES ON CHANGES IN NEW GUIDELINES
SLOPE TERMINOLOGY DISCUSSION
INTERSECTIONS, CROSS-WALKS, AND CURB RAMPS
PARKING LOTS AND ACCESSIBLE ROUTES

QUESTION AND ANSWER PERIOD

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009
ADA RULE CHANGES COMING SOON: WE THINK.
PROPOSED ACCESSIBILITY GUIDELINES PUBLISHED IN 2004
PUBLIC COMMENT ENDED AUG. 18, 2008
RULEMAKING IS NOT YET COMPLETE, BUT GETTING CLOSE
NEW GUIDELINES ARE AVAILABLE CURRENTLY AS GUIDANCE
ONLY-NOT OFFICIAL RULES FOR DESIGN AND CONSTRUCTION
EXISTING GUIDELINES (1994)=92 PAGES
PROPOSED GUIDELINES (2004)=310 PAGES (CURRENTLY)

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009

MAJOR SITE DESIGN CHANGES FROM NEW GUIDELINES (2004)
CROSS (TRANSVERSE) SLOPE CHANGES FROM 1:50 TO 1:48
ACCESSIBLE ROUTE BETWEEN BLDGS ON SAME SITE NOT REQUIRED IN ALL CASES
AT LEAST 60% OF BLDG ENTRANCES MUST BE ACCESSIBLE (WAS 50%)
1 IN EVERY 6 ACCESSIBLE SPACES DESIGNED FOR VAN ACCESS (WAS 1 IN 8)
DETECTABLE WARNING STRIPS NOT REQUIRED OUTSIDE R/W LINES—EXCEPT FOR TRANSIT PLATFORM EDGES (PREVIOUSLY REQUIRED AT ALL CURB RAMPS)

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009
KEY TERMINOLOGY

ACCESSIBLE ROUTE=
A CONTINUOUS UNOBRSTUCTED PATH CONNECTING ALL ACCESSIBLE ELEMENTS AND SPACES OF A BUILDING OR FACILITY. INTERIOR ACCESSIBLE ROUTES MAY INCLUDE CORRIDORS, FLOORS, RAMPS, ELEVATORS, LIFTS, AND CLEAR FLOOR SPACE AT FIXTURES. EXTERIOR ACCESSIBLE ROUTES MAY INCLUDE PARKING ACCESS AISLES, CURB RAMPS, CROSSWALKS AT VEHICULAR WAYS, WALKS, RAMPS, AND LIFTS.

SLOPE=
RISE/RUN=VERTICAL CHANGE/HORIZONTAL CHANGE
1:12=ONE FOOT UP:12 FEET FORWARD
1:20=???? % SLOPE

LONGITUDINAL SLOPE=DIRECTION OF TRAVEL
TRANSVERSE (CROSS) SLOPE=PERPENDICULAR TO TRAVEL

INTERSECTION CURB RAMPS
SLOPE DESIGN AND PROBLEM AREAS
INTERSECTION ACCESSIBLE RAMPS ARE ACTUALLY QUITE PROBLEMATIC TO DESIGN AND CONSTRUCT

LESS THAN 1 PAGE OF TEXT ON CURB RAMPS AT CROSSINGS

1) ROADS ENTERING INTERSECTIONS FREQUENTLY HAVE GRADES GREATER THAN 2%
2) INTERSECTIONS ARE ALSO FREQUENTLY LOW POINTS, AND WATER IS NOT ALLOWED TO BE STANDING IN ACCESSIBLE ROUTES
3) RAMPS MUST ALSO LINE UP WITHIN THE STRIPING FOR THE CROSSING
4) CORNER RAMPS MUST HAVE 48” CLEAR TO TRAVEL LANES
INDOT PROVIDES STANDARD CURB RAMP ALIGNMENT DETAILS

THERE IS A LOT OF INFORMATION AVAILABLE IN INDOT’S DESIGN GUIDELINES AND STANDARD DRAWINGS-COMPAred TO 28 CFR Part 36

SOME BASIC INTERSECTION CURB RAMP DESIGN/CONSTRUCTION ADVICE

EVERY QUADRANT OF EVERY INTERSECTION IS UNIQUE AND WILL REQUIRE SPECIAL ATTENTION—THERE IS NO "COOKIE CUTTER" RAMP SOLUTION

ACCOUNT FOR ACCESSIBILITY EARLY IN THE DESIGN PROCESS—DON’T WAIT TO THE END TO TRY TO FIT IT IN.

ALLOWING MORE ROOM FOR ACCESSIBILITY COMPLIANCE WILL FREQUENTLY REDUCE THE COST OF CONSTRUCTION

CONSIDER INCORPORATING LANDSCAPING AMENITIES INTO THE SPACE REQUIRED FOR ACCESSIBILITY COMPLIANCE
TWO CASE STUDIES—LOCAL COURTHOUSE IMPROVEMENTS
LOOK AT THE PICTURES TO EVALUATE ACCESSIBILITY COMPLIANCE

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009
TWO CASE STUDIES—LOCAL COURTHOUSE IMPROVEMENTS

LOOK AT THE PICTURES TO EVALUATE ACCESSIBILITY COMPLIANCE

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009
PARKING LOTS: PARKING SPACES, ROUTES, AND RAMPS

EVERY PUBLIC PARKING AREA (THAT SUPPORTS AN ACCESSIBLE ELEMENT OR SPACE) MUST HAVE ACCESSIBLE SPACES IN THE QUANTITIES SHOWN IN THESE TABLES:

<table>
<thead>
<tr>
<th>Total Parking Lot Size</th>
<th>Required Minimum Number of Accessible Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 25</td>
<td>1</td>
</tr>
<tr>
<td>26 to 50</td>
<td>2</td>
</tr>
<tr>
<td>51 to 100</td>
<td>3</td>
</tr>
<tr>
<td>101 to 250</td>
<td>4</td>
</tr>
<tr>
<td>251 to 500</td>
<td>5</td>
</tr>
<tr>
<td>501 to 1000</td>
<td>6</td>
</tr>
<tr>
<td>1001 to 2000</td>
<td>7</td>
</tr>
<tr>
<td>2001 to 4000</td>
<td>8</td>
</tr>
<tr>
<td>4001 to 10000</td>
<td>9</td>
</tr>
<tr>
<td>Over 10000</td>
<td>2 percent of total</td>
</tr>
</tbody>
</table>

(Parking lots over 10,000 spaces shall be designed and located so that accessible spaces shall be distributed to avoid an accumulation of accessible spaces on any one level of a parking structure.

SAMPLE PROBLEM:

LOCAL ORDINANCE REQUIRES 215 PRKG SPACES

UNDER 1994 RULES:
HOW MANY ACCESSIBLE SPACES ARE REQUIRED?

HOW MANY VAN ACCESSIBLE SPACES ARE REQUIRED?

HOW MANY VAN ACCESSIBLE SPACES ARE REQUIRED WITH 2004 UPDATE?

PARKING SPACES, ROUTES, AND RAMPS

LOCATING ACCESSIBLE PARKING SPACES (ROUTES):

1) KEEP ACCESSIBLE PARKING SPACES AS CLOSE TO ACCESSIBLE ENTRANCES/EXITS AS POSSIBLE

2) IF YOU HAVE MULTIPLE ACCESSIBLE ENTRANCES, SPREAD OUT THE ACCESSIBLE SPACES TO MATCH THE ENTRANCES

EXCEPTIONS:
- All van accessible spaces shall be permitted to be located on one level within a multi-story parking facility.

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009
PARKING LOTS:
PARKING SPACES, ROUTES, AND RAMPS
CURB RAMPS AND PARKING LOTS

GENERALLY, TWO TYPES OF PARKING LOT RAMPS:

DEPRESSED WALK CURB RAMPS
BUILT-UP CURB RAMPS

QUESTION:
HOW MANY OF THESE FOUR RAMPS ARE LEGAL BASED ON THE CURRENT DEFINITION OF CURB RAMPS IN THE GUIDELINES?

ANSWER:
NONE.
1-AISLE WIDTH
2-CROSS SLOPE
3-AISLE SLOPE
4-AISLE SLOPE

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009
CURB RAMPS
SAMPLE PROBLEM

EXISTING CONDITIONS:
6" HIGH CURB-FACE WALK
NEED TO ADD BUILT-UP CURB RAMP TO PROVIDE
ACCESSIBILITY TO WALK AND ENTRANCE

QUESTION:
WHAT IS THE MINIMUM LENGTH RAMP
THAT WILL MEET GUIDELINE
REQUIREMENTS?

ANSWER:
THIS IS A TRICK QUESTION.
IT COULD BE AS SHORT AS 3'-3/4".

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009

CURB RAMPS
SLOPE DESIGN AND PROBLEM AREAS
KEY POINT TO REMEMBER IS THAT ALL RAMP SLOPES ARE
MEASURED FROM THE HORIZONTAL PLANE

WATCH OUT FOR TRANSVERSE SLOPES
1) BUILT-UP RAMPS CANNOT BE IN ACCESSIBLE
AISLES FOR PARKING
2) WALK AND PARKING SLOPES AT CURB CAN ADD
TO THE OVERALL LENGTH OF RAMPS
3) REMEMBER-ALMOST EVERYTHING IS SLOPED

PURDUE ROAD SCHOOL
PURDUE UNIVERSITY-MARCH 11, 2009
ON-SITE ACCESSIBLE ROUTE DESIGN

WHERE DO YOU NEED TO HAVE AN ACCESSIBLE ROUTE?

1) FROM ACCESSIBLE PARKING SPACES, LOADING ZONES, BUS STOPS, AND PUBLIC SIDEWALKS TO THE ACCESSIBLE BUILDING ENTRANCE THEY SERVE—CONNECTIVITY IS KEY
2) EVERY BUILDING ENTRANCE DOES NOT HAVE TO BE ACCESSIBLE (60% MIN-NEW)
3) EVERY BUILDING ON SITE DOES NOT HAVE TO BE CONNECTED BY ACCESSIBLE ROUTES (NEW)
4) ACCESSIBLE ROUTES SHOULD COINCIDE WITH THE ROUTE FOR THE GENERAL PUBLIC
5) EVERY SIDEWALK ON SITE DOES NOT HAVE TO BE ACCESSIBLE—CIRCUMSTANCES DICTATE

ON-SITE ACCESSIBLE ROUTE DESIGN

KEY PROBLEM AREAS FREQUENTLY OVERLOOKED

1) ANY PLACE ON AN ACCESSIBLE ROUTE THAT HAS A LONGITUDINAL GRADE OVER 5% (1:20) IS A RAMP AND MUST BE DESIGNED ACCORDINGLY
2) ANY PLACE ON AN ACCESSIBLE ROUTE THAT HAS A TRANSVERSE SLOPE GREATER THAN 1:50 (CURRENT) OR 1:48 (FUTURE) WILL NOT MEET GUIDELINES
3) EVERY PUBLIC PARKING AREA MUST HAVE AT LEAST ONE ACCESSIBLE PARKING SPACE—AND THAT MEANS AN ACCESSIBLE ROUTE, ALSO.
4) LOADING AND UNLOADING ZONES MUST MEET SLOPE REQUIREMENTS IN BOTH DIRECTIONS