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Due to the ubiquity of time series with long-range correlation in many areas of science and engineering,
analysis and modeling of such data is an important problem. While the field seems to be mature, three major
issues have not been satisfactorily resolved. �i� Many methods have been proposed to assess long-range
correlation in time series. Under what circumstances do they yield consistent results? �ii� The mathematical
theory of long-range correlation concerns the behavior of the correlation of the time series for very large times.
A measured time series is finite, however. How can we relate the fractal scaling break at a specific time scale
to important parameters of the data? �iii� An important technique in assessing long-range correlation in a time
series is to construct a random walk process from the data, under the assumption that the data are like a
stationary noise process. Due to the difficulty in determining whether a time series is stationary or not,
however, one cannot be 100% sure whether the data should be treated as a noise or a random walk process. Is
there any penalty if the data are interpreted as a noise process while in fact they are a random walk process, and
vice versa? In this paper, we seek to gain important insights into these issues by examining three model
systems, the autoregressive process of order 1, on-off intermittency, and Lévy motions, and considering an
important engineering problem, target detection within sea-clutter radar returns. We also provide a few rules of
thumb to safeguard against misinterpretations of long-range correlation in a time series, and discuss relevance
of this study to pattern recognition.
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I. INTRODUCTION

Of the types of activity that characterize complex sys-
tems, the most ubiquitous and puzzling is perhaps the ap-
pearance of 1 / f� noise, a form of temporal or spatial fluc-
tuation characterized by a power-law decaying power
spectral density. Some of the classical literature on this sub-
ject can be found, for example, in Press �1�, Bak �2�, and
Wornell �3�. Some of the more recently discovered 1/ f� pro-
cesses are in traffic engineering �4–6�, DNA sequences
�7–9�, human cognition �10�, coordination �11�, posture �12�,
dynamic images �13,14�, and the distribution of prime num-
bers �15�. The dimension of such processes usually cannot be
reduced by principal component analysis, since the rank-
ordered eigenvalue spectrum decays as a power law �16�. An
important subclass of the 1/ f� noise is those with long-range
temporal correlation �or long memory�.

Since data with long memory appear quite frequently in
many different areas of science and engineering, many meth-
ods have been proposed to estimate the key scaling param-
eter, the Hurst parameter H. When 1/2�H�1, the process
is said to have persistent correlation; when H=1/2, the pro-
cess is memoryless or only has short-range correlation; when
0�H�1/2, the process is said to have antipersistent corre-
lation �17�. While this field seems to be mature, there still
exist many important issues unresolved. We consider three
here. �i� Often, researchers assume that the methods for es-

timating H should yield consistent results when applied to
model systems. In practice, however, they resort to the de-
trended fluctuation analysis �DFA� �18� more frequently than
other methods. Under what circumstances can the above as-
sumption and practice be justified? Note that this issue was
recently partially examined by Rangarajan and Ding �19�, by
studying two methods, the spectral method and the rescaled
range analysis. �ii� The mathematical theory of long-range
correlation concerns the behavior of the correlation of the
time series for very large time. A measured time series is
finite, however. How can we relate the fractal scaling break
at a specific time scale to important parameters of the data?
�iii� An important technique in assessing long-range correla-
tion in a time series is to construct a random walk process
from the data, under the assumption that the data are like a
stationary noise process. Due to the difficulty in determining
whether a time series is stationary or not �see �20� and many
references therein�, however, one cannot be 100% sure
whether the data should be treated as a noise or a random
walk process. Is there any penalty if the data are interpreted
as a noise process while in fact they form a random walk
process, and vice versa?

In this paper, we seek to gain important insights into these
issues by examining three model systems, the autoregressive
�AR� process of order 1 �21�, on-off intermittency, and Lévy
motions. The first is usually denoted as AR�1�. It is the sim-
plest and most commonly used model for colored noise. We
shall also consider an important engineering problem, target
detection within sea-clutter radar returns.*Electronic address: gao@ece.ufl.edu
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II. THEORETICAL BACKGROUND

Let X= �Xt : t=0,1 ,2 ,…� be a covariance stationary sto-
chastic process with mean �, variance �2, and autocorrela-
tion function r�k�, k�0. The process is said to have long-
range correlation �22� if r�k� is of the form

r�k� � k2H−2 as k → � , �1�

where 0�H�1 is the Hurst parameter. Note that when
1/2�H�1, �kr�k�=�. This justifies the term “long-range
correlation.”

Next we construct a new covariance stationary time series
X�m�= �Xt

�m� : t=1,2 ,3 ,…�, m=1,2 ,3 ,…, obtained by aver-
aging the original series X over nonoverlapping blocks of
size m,

Xt
�m� = �Xtm−m+1 + ¯ + Xtm�/m, t � 1. �2�

Note that the length of �Xt
�m�� is �N /m�, where N is the length

of �Xt�, and � � denotes the greatest integer function.
There are several useful relationships between the auto-

correlation functions of the original process and its averaged
version �23�. Using the stationarity properties of the process,
a general formula for the autocorrelation function r�m��k� of
X�m� can be stated as

r�m��k� =
�k + 1�2V�k+1�m − 2k2Vkm + �k − 1�2V�k−1�m

2Vm
, �3�

where Vm=var�X�m��. Using this relationship, it is straightfor-
ward to verify that the variance of X�m� satisfies

var�X�m�� = �2m2H−2 �4�

if and only if the autocorrelation function of the long-range-
dependent �LRD� process satisfies

r�k� =
1

2
��k + 1�2H − 2k2H + �k − 1�2H� . �5�

Moreover, one can verify that if X satisfies Eq. �4�, then the
autocorrelation function r�m��k� of the process X�m� satisfies

r�m��k� = r�k�, k � 0. �6�

A process X defined by Eq. �4� �or equivalently, Eqs. �1�, �4�,
and �6�� is often referred to as an exactly second-order self-
similar process. On the other hand, if one relaxes Eq. �4� as

lim
k→�

r�k�
k2H−2 = c1,

where 0�c1 is an arbitrary constant, then one can show that

lim
k→�

var�X�m��
m2H−2 = c2 �7�

for some constant c2�0. Such a process is often referred to
as an asymptotically second-order self-similar process.

Equation �4� �or more generally, Eq. �7�� is often called
the variance-time relation. It provides a simple and precise
way of quantifying the “little smoothing” behavior. For ex-
ample, when H=0.5, var�X�m�� drops to 10−2�0

2 when
m=100, where �0

2 is the variance of the original process;

when H=0.75, in order for var�X�m�� to drop as much, m has
to be 10 000.

Note that the power spectral density �PSD� for X is

SX�f� � f−�2H−1�. �8�

Therefore, X is called a 1/ f� process. Its integration, called
the random walk process �see below�, has PSD f−�2H+1�.

The prototypical model for the 1/ f� process is the frac-
tional Brownian motion �FBM� process BH�t�, where H is the
Hurst parameter �17�. It is a Gaussian process with mean 0,
stationary increments, variance

E�„BH�t�…2� = t2H, �9�

and covariance

E�BH�s�BH�t�� =
1

2
�s2H + t2H − 	s − t	2H� . �10�

The increment process of the FBM, Xi=BH��i+1�	t�
−BH�i	t�, i�1, where 	t can be considered a sampling
time, is called fractional Gaussian noise. It is a zero-mean
stationary Gaussian time series, with autocorrelation function


�k� = E�XiXi+k�/E�Xi
2�

=
1

2
��k + 1�2H − 2k2H + 	k − 1	2H�, k � 0. �11�

Since 
�k� is independent of 	t, without loss of
generality, we can take 	t=1. In particular, we have 
�1�
= 1 � 2 �22H−2�. The notions of persistent and antipersistent
correlations come from the fact that 
�1� is positive when
1/2�H�1, but negative when 0�H�1/2.

We now consider estimation of H. A convenient frame-
work is based on the random walk process y, defined as

yk = �
i=1

k

�Xi − X̄� , �12�

where X̄ is the mean of X. We then examine whether the
following scaling law holds or not:

F�m� = 
	y�i + m� − y�i�	2�1/2 � mH, �13�

where the average is taken over all possible pairs of
(y�i+m� ,y�i�). This method is often called fluctuation analy-
sis �FA�. As will be explained in the Appendix, FA is a spe-
cial case of q=2 in the structure-function-based multifractal
formalism. For this reason, H may also be denoted as H�2�.
In the Appendix, we shall also explain how one can readily
prove that in the light of multifractal formalism, many meth-
ods for estimating H are equivalent to FA.

Next we explain DFA �18�. It works as follows. First di-
vide a given random walk of length N into �N /m� nonover-
lapping segments �where the notation �x� denotes the largest
integer that is not greater than x�; then define the local trend
in each segment to be the ordinate of a linear least-squares fit
for the random walk in that segment; finally compute the
“detrended walk,” denoted by ym�n�, as the difference be-
tween the original walk y�n� and the local trend. Then one
examines
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Fd�m� =��
i=1

m

ym�i�21/2

� mH �14�

where the angular brackets denote the ensemble average of
all the segments and Fd�m� is the average variance over all
segments.

Finally, we discuss the wavelet-based H estimator �24�.
The method directly works on the original data instead of the
random walk process. Denote a scaling function by �0 and a
mother wavelet by 0. Let the maximum scale level be J. A
discrete wavelet transform is a mapping from x�t� to the
wavelet coefficients �ax ,dx�:

x�t� → �ax�J,k�, dx�j,k�, j � �1,J�, k � Z� ,

where the ax�J ,k�’s are called approximation coefficients and
the dx�j ,k�’s detailed coefficients, defined by

ax�J,k� = 
x,�J,k�, dx�j,k� = 
x,� j,k� ,

� j,k = 2−j/2�0�2−j/2 − k�,  j,k = 2−j/20�2−j/2 − k�, k � Z ,

x�t� = �
k

ax�J,k��J,k�t� + �
j=1

J

�
k

dx�j,k� j,k�t� .

Let

� j =
1

nj
�
k=1

nj

	dx�j,k�	2, �15�

where nj is the number of coefficients at level j; then the
Hurst parameter is given by

log2 � j = �2H − 1�j + c0, �16�

where c0 is some constant.

III. ANALYSIS OF MODEL SYSTEMS

To better appreciate the notion of finite fractal scaling and
consistency of H estimators, we consider three model sys-

tems, the AR�1� model, on-off intermittency, and Levy mo-
tions.

A. AR(1) model

We first consider the AR�1� model zn+1− z̄=a�zn− z̄�+�n,
where z̄ is the mean of zn ,�n is a white Gaussian noise of
mean 0 and variance ��

2 , and a is a coefficient satisfying the
condition 	a	�1. We may rewrite xn=zn− z̄ and have

xn+1 = axn + �n. �17�

It is well known that the autocorrelation for �xn� decays ex-
ponentially, C�m�= ���

2 / �1−a2��a	m	. When the time lag m is
large, the correlation is essentially zero; we can expect H to
be 1/2. However, when the coefficient a is only slightly
smaller than 1, C�m� will be close to ��

2 / �1−a2� for a con-
siderable range of m. In this case, we have almost perfect
correlation. One thus might expect H�1 for a not too large
time scale. This seems to be verified when one applies the
variance-time relation to analyze the generated time series,
or equivalently applies FA to the random walk process con-
structed from the data. The latter is shown in Fig. 1�a�, where
we observe that H �as the slopes of the lines� is close to 1
when m is not too large, and close to 0.5 for large m. How-
ever, there is a problem here—if we employ DFA, then we
obtain H�1.5 for a not too large time scale, as shown in Fig.
1�b�. How shall we understand this difference?

To find an answer, let us examine which one is consistent
with the PSD of the AR�1� process. Using the Wiener-
Khintchine theorem, we can readily find the PSD Sx��� of
the AR�1� process by taking the Fourier transform of the
autocorrelation function,

Sx��� = �
m=−�

�
��

2

1 − a2a	m	e−j�m =
��

2

1 + a2 − 2a cos �
,

0 � � � � , �18�

where j2=−1. Alternatively, we may take the Fourier trans-
form of both sides of Eq. �17� to obtain

FIG. 1. H parameter for AR�1�
model. �a� is for FA and �b� for
DFA. The Hurst parameters are
obtained as the slopes of the lines.
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X��� = ae−j�X��� + ��,

where X��� denotes the Fourier transform of the left side of
Eq. �17�, and the coefficient ae−j� is due to delay by one unit
of time. Then,

Sx��� = 	X���	2.

Let us now simplify Eq. �18�. Expanding cos �
=1−�2 /2+¯ and noticing �=2�f , we have

Sx�f� �
��

2

�1 − a�2 + a�2��2f2 , 0 � f � 1/2.

At the low-frequency end, the term a�2��2f2 can be dropped,
and we have a flat spectrum, consistent with H=1/2. At the
high-frequency �f →1/2� end, since a is close to 1, the term
�1−a�2 can be dropped, and we have

Sx�f� � f−2.

The transition frequency f� is found by equating the two
terms,

�1 − a�2 = a�2��2f�
2,

from which, we get

T* = 1/f� =
2��a

1 − a
.

To more precisely find the frequency ranges where the PSD
is flat or decays as f−2, we may require �1−a�2�a�2��2f2

when f � f1, and �1−a�2�a�2��2f2 when f2� f �1/2.
Quantitatively, f1,2 may be defined by the following condi-
tions:

�1 − a�2 = �a�2��2f1
2

and

��1 − a�2 = a�2��2f2
2,

where the parameter � is on the order of 10. The two time
scales defined by f1,2 are T1,2=1/ f1,2, with

T1 = T*/��, T2 = T*�� .

Let us now examine Fig. 1 again. From either FA or DFA
plots, we indeed observe that around T*, the scaling changes
from a large H �1 for FA and 1.5 for DFA� to H=1/2. More
precisely, when m�T1 ,H is close to 1 for FA and 1.5 for
DFA; when m�T2 , H is close to 0.5 for both FA and DFA.
For a 1/ f� noise, �=2H−1. Now that �=2, we have to
conclude H=1.5 for m�T1. Therefore, DFA is consistent
with the spectrum, but FA is not.

At this point, it is important to note that the AR�1� model
with coefficient a very close to 1 has been proposed as a
�pseudo�model for LRD traffic with H=1 �25�, and a conve-
nient model for exact 1 / f noise �26�. The former misinter-
pretation is indeed due to misuse of FA �or the variance-time
relation� with the data. One cause of the latter misinterpreta-
tion may be the following: the magnitude response of the
Fourier transform of the process 	X���	 scales with f as f−1

when f →1/2. When 	X���	 is mistaken for the PSD, then

one would claim that the model generates an exact 1 / f spec-
trum. While this error might not be relevant in �26�,1 it is a
major cause of controversy around the development of self-
organized criticality �27–32�.

The discrepancy between FA and DFA is due to the fact
that the Hurst parameter estimated by FA and related meth-
ods saturates at 1. See the Appendix for a proof.

B. On-off intermittency

On/off intermittency is a ubiquitous and important phe-
nomenon. For example, a queueing system or a network can
alternate between idle and busy periods; a fluid flow can
switch from a turbulent motion to a regular �called laminar�
one. Let us denote an on period by 1 and an off period by 0.
We study three types of on-off trains where on and off peri-
ods are independent and both have the same �i� exponential
distribution, �ii� Pareto distribution, and �iii� truncated Pareto
distribution. The Pareto distribution is defined as

P�X � x� = �b

x
��

, x � b � 0, � � 0 �19�

where � and b are called the shape and the location param-
eters, respectively. For Pareto distributions, we choose two
�: 1.6 and 0.6. Truncation is achieved by simply requiring
x�L, where L is a parameter. When 1���2, it can be
proven �33� that

H = �3 − ��/2. �20�

One of our purposes here is to check whether Eq. �20� can be
numerically verified. For this purpose, we apply FA and DFA
to the integrated data of an on-off train. The on-off train is
sampled in such a way that in a total of about 1000 on-off
periods, on average a few tens of points of an on or off
period are sampled. The results for FA and DFA are shown in
Figs. 2�a�–2�d�, respectively. We observe that for all these
three cases, for small time scale �determined by the average
length of an on or off period�, H �as the slopes of the lines�
are close to 1 by FA and 1.5 by DFA. By simple analytical
analysis or numerical simulation, one can readily find that
for high frequency, the PSD for an on-off train scales with
the frequency as f−2, just as at the high-frequency end of an
AR�1� model. Therefore, for time scales not longer than the
average on or off period, DFA is consistent with the PSD, but
FA is not. For larger scales, for case �i�, we observe H from
both FA and DFA is 0.5 �with regard to Eq. �20�, this
amounts to taking �=2�; while for cases �ii� and �iii�, we
observe that Eq. �20� is correct with FA, when 1���2, and
correct with DFA for the entire range of admissible
�: 0���2. When 0���1, due to saturation, FA always
gives H=1. When the power-law distribution is truncated, H
eventually becomes 1/2, by both FA and DFA.

1The transition frequencies reported in �26� depend on the vari-
ance of the process. This is incorrect, since in a log-log plot of the
PSD, the variance can only cause the PSD curve to shift upward or
downward.
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This case study again shows that FA and DFA are consis-
tent when H�1. Otherwise, the results by FA cannot be
trusted.

C. Lévy motions

A Lévy motion is a stochastic process defined through
stable laws �34�. A stable law can be conveniently defined
through a characteristic function. For our purpose, it
suffices to note that the tail of a stable law is a power law
P�X�x��x−� when x→�. There are two types of Lévy
motions. One is Lévy flights, which are random processes
consisting of many independent steps, each step being char-
acterized by a stable law, and consuming a unit time regard-
less of its length. The other is Lévy walkers, where each step
takes a time proportional to its length. A Lévy walker can be
viewed as sampled from a Lévy flight with a uniform speed.

Intuitively, we expect Lévy flights to be memoryless, sim-
ply characterized by H=1/2, irrespective of the value of the
exponent � characterizing the stable laws. This is indeed the
case, as is shown in Fig. 3. The correlation structure of a
Lévy walker, however, is more complicated. We observe
from Fig. 4 that when the scale is small, corresponding to
“walking” along a single step of a Lévy flight, H is close to
1 by FA, and close to 1.5 by DFA. Analysis by Fourier trans-
form shows that the PSD at the high-frequency end again
decays as f−2. Therefore, for time scales not longer than the
average on or off period, DFA is consistent with the PSD, but
FA is not. On larger scales, corresponding to constantly
“switching” from one step of a Lévy flight to another, H is
given by Eq. �20� for FA when 1���2, and for DFA when
0���2. Again due to saturation, FA always yields H=1

when 0���1. While these observations are similar to those
found for the on-off trains discussed above, we note a differ-
ence between Figs. 2 and 4. That is, for a Lévy walker, the
transition from a larger H at small scale to a smaller H at
large scale is more gradual. This difference is due to the
difference between a stable law and a Pareto distribution.

IV. APPLICATION: TARGET DETECTION
WITHIN SEA-CLUTTER RADAR RETURNS

Sea clutter is the backscattered returns from a patch of the
sea surface illuminated by a radar pulse. Robust detection of

FIG. 2. H parameter for on-off
model. The � parameter is 1.6 for
�a�,�b� and 0.6 for �c�,�d�. �a�,�c�
are for FA, and �b�,�d� for DFA.
The Hurst parameters are obtained
as the slopes of the lines.

FIG. 3. H parameter for Lévy flights. H, as the slopes of the
lines, are independent of the parameter �.
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targets from sea-clutter radar returns is an important problem
in remote sensing and radar signal processing applications.
This is a difficult problem, because of the turbulent wave
motions on the sea surface as well as multipath propagation
of radar pulses massively reflected from the sea surface. In
the past several decades, tremendous effort has been made to
understand the nature of sea clutter as well as to detect tar-
gets within sea clutter �35–43�. However, novel, simple, and
reliable methods for target detection are yet to be developed.
In this section, we show that the H parameter together with
the notion of the finite fractal scaling range offer a very
simple and effective method to detect low-observable targets
within sea clutter. This case study also vividly illustrates
what kind of penalty may result if one misinterprets a noise
process as a random walk process and vice versa.

First we briefly describe the data. Fourteen sea-clutter
data sets were obtained from a website maintained by
Haykin �44,45�. The measurement was made using the Mc-
Master IPIX radar at the east coast of Canada, from a clifftop
near Dartmouth, Nova Scotia. The operating �or carrier� fre-
quency of the radar is 9.39 GHz �and hence a wavelength of
about 3 cm�. Data of two polarizations, HH �horizontal trans-
mission, horizontal reception� and VV �vertical transmission,
vertical reception�, were analyzed here. The grazing angle
varied from less than 1° to a few degrees. The wave height in
the ocean varied from 0.8 to 3.8 m �with peak height up to
5.5 m�. The wind conditions varied from still to 60 km/h

�with gusts up to 90 km/h�. Each data set contains 14 spatial
range bins of HH as well as 14 range bins of VV data sets.
Therefore, there are a total of 392 sea-clutter time series. A
few of the range bins hit a target, which was made of a
spherical block of styrofoam of diameter 1 m, wrapped with
wire mesh. This is a very small target, more difficult to detect
than, say, a ship. Each range bin of data contains 217 complex
numbers, with a sampling frequency of 1000 Hz. We analyze
the amplitude data. Figure 5 shows two examples of the sea-
clutter amplitude data without and with the target. Note that
similar signals have been observed in many different fields.
Therefore, the analysis below may also be applicable to
those fields.

Let us denote the sea clutter amplitude data by u1 ,u2 ,…,
the integrated data by v1 ,v2 ,…, and the differenced data by
w1 ,w2 ,… . First we apply DFA to v1 ,v2 ,… . A typical result
for a measurement �which contains 14 range bins� is shown
in Fig. 6�a�. From it, one would conclude that the data have
excellent fractal scaling behavior. However, this is an illu-
sion due to the large y-axis range in the figure. If one reduces
the y-axis range by plotting log2�Fd�m� /m� vs log2 m �which
can be viewed as detrended Fano factor analysis; see the
Appendix�, then one finds that the curves for sea-clutter data
without target change abruptly around m1=24 and m2=212.
Since the sampling frequency is 1000 Hz, they correspond to
time scales of about 0.01 and 4 s. It turns out that if one fits
a straight line to the log2�Fd�m� /m� vs log2 m curves in this

FIG. 4. H parameter for Lévy
walks. �a� is for FA and �b� for
DFA. The Hurst parameters are
obtained as the slopes of the lines.

FIG. 5. Examples of the sea-clutter amplitude
data �a� without and �b� with target.

GAO et al. PHYSICAL REVIEW E 73, 016117 �2006�

016117-6



m range, then the H parameter can completely separate data
with and without the target, as shown in Fig. 7. The last
statement simply says that the H-based method achieves very
high accuracy in detecting targets within sea clutter.

Let us now make a few comments. �i� The time scales of
0.01 and a few seconds have specific physical meanings:
below 0.01 s, the data are fairly smooth and hence cannot be
fractal; above a few seconds, the wave pattern on the sea
surface may change, and hence the data may change to a
different behavior �possibly another type of fractal�. With the
available length of the data �which is about 2 min�, the latter
cannot be resolved, however. �ii� If one tries to estimate H
from other intervals of time �which would be the case when
one tries to apply, say, maximum likelihood estimation�, then
H fails to detect targets within sea clutter. �iii� The fractal
scaling in the identified time scale range is actually not ex-
cellently defined, especially for data without a target. This
implies that sea-clutter data are more complicated than what
fractal scaling can characterize. �iv� If one applies DFA to
the ui process, the original sea-clutter amplitude data, then
the estimated Hu is about Hv−1, and the H-based method for
target detection still works �the result is not shown here,
since it is similar to that obtained by FA, which is shown in
Fig. 8�a��. �v� When FA is applied to the ui process, the
obtained H are similar to those by DFA. See Fig. 8�a�.
Hence, FA is consistent with DFA. However, FA fails to
work when it is applied to the integrated data, the vi process,
since all the estimated Hv cannot be larger than 1 �Fig. 8�b��.
�vi� The wavelet H estimator is the most versatile. The H

values obtained by applying the method to the ui and vi
process as well as the wi process can all be used to detect the
target, as shown in Fig. 9. From the figure, in fact, H is
increased by 1, progressing from wi to ui, and from ui to vi.
Neither FA nor DFA gives useful result when applied to the
wi process, because of saturation of H at 0 �see the Appen-
dix�. �vii� H for some data sets with targets is close to 1/3,
the very H corresponding to the famous Kolmogorov energy
spectrum of turbulence. This may be due to the development
of wave-turbulence interactions around the target, under fa-
vorable weather and sea conditions.

V. CONCLUDING REMARKS

In this paper, we have shown that methods for assessing
long-range correlation in a time series can be grouped into
four classes: the spectral method, FA and related methods,
DFA, and the wavelet method. Furthermore, we have shown
that H estimated by FA and related methods has to lie in the
unit interval, H estimated by DFA lies in between 0 and 2
�see the Appendix�, while H estimated by the spectral
method and the wavelet method can assume any value. For
model systems, so long as the estimated H lies in between 0
and 1, all the methods are consistent. However, when H is
close to 1 by FA and related methods, or close to 0 by FA and
related methods, as well as by DFA, then the result might be
incorrect. When inconsistency arises, it is desirable to adopt
the following rules of thumb.

Rule of thumb 1. When a time series is treated as a noise

FIG. 6. Target detection within sea clutter us-
ing DFA. Open circles designate data with target,
while crosses are for data without target.

FIG. 7. �a� H parameter estimated by DFA of the vi process of
the 14 range bins of a measurement; �b� histogram �equivalent to
probability density function� for the H parameter for all the mea-
surements. Black boxes are for data with target, while open boxes
are for data without target.

FIG. 8. Histogram for the H parameter estimated by FA from the
original sea-clutter data �a� and their integration �b�. Black boxes
are for data with target, while open boxes are for data without
target.
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process and the estimated H parameter is close to 1, question
your result; redo the analysis by treating the data as a random
walk process.

Rule of thumb 2. When a time series is treated as a ran-
dom walk process and the estimated H parameter is close to
0, do not trust your result; redo the analysis by integrating
the data.

Rule of thumb 3. To be safe, perform DFA or the wavelet-
based analysis on your data, along with FA �or other equiva-
lent methods�, and check the consistency of the results based
on different methods.

We have paid particular attention to the relation between
the parameter of a fractal process and the time scale where
the fractal scaling breaks. By considering an important engi-
neering problem, target detection within sea-clutter radar re-
turns, we have shown that for pattern recognition purposes,
sometimes the fractal scaling break is at least as important as
the behavior of fractal scaling. This feature is particularly
important in practice, since experimental data are always fi-
nite, and therefore may not conform to the ideal mathemati-
cal definition of fractal processes with long-range correla-
tions.

We should emphasize that while theoretically the spectral
method is a reliable method, there are pitfalls associated with
it. Besides the error that the magnitude response is mistaken
as the PSD, when the data are short and noisy, it may be

difficult to identify a suitable scaling region to estimate H.
Therefore, the spectral method is most useful when used for
cross checking, but may not be as useful as one might hope
when it is used alone.

APPENDIX: STRUCTURE-FUNCTION-BASED
MULTIFRACTAL ANALYSIS AND ESTIMATION

OF THE HURST PARAMETER

After the random walk process is constructed, it is
straightforward to extend FA to a multifractal formalism
�46�. That is, for each real q, we examine whether the fol-
lowing scaling relation holds or not:

F�q��m� = 
	y�i + m� − y�i�	q�1/q � mH�q�, �A1�

where the average is taken over all possible pairs of
(y�i+m� ,y�i�). Negative and positive q values emphasize
small and large absolute increments of y�n�, respectively.
When the power-law scaling for some q exists, we say the
process under study is a fractal process. Furthermore, if H�q�
is not a constant function of q, we say the process is a mul-
tifractal.

To understand various methods of estimating H, we first
note that FA is given by q=2. Also note that FA is equivalent
to the variance-time relation described by Eq. �4�, noticing
that 
	y�i+m�−y�i�	2�=m2 Var�X�m��.

Closely related to the variance-time relation is the Fano
factor analysis, which is quite popular in neuroscience
�47–49�. In the context of analysis of the interspike interval
of neuronal firings, the Fano factor is defined as

F�T� =
Var�Ni�T��

Mean�Ni�T��
�A2�

where Ni�T� is the number of spikes in the ith window of
duration T. For a Poisson process, F�T� is 1, independent of
T. For a fractal process, one expects Var�Ni�T���T2H, while
Mean�Ni�T���T. Therefore, F�T��T2H−1. In other words,
Fano factor can be viewed as examining the relation between
�
	y�i+m�−y�i�	2� /m� and m instead of the relation between
�
	y�i+m�−y�i�	2�� and m. This is why the relation between
log2�Fd�m� /m� and log2 m can be viewed as a detrended
Fano factor analysis.

We now discuss methods that employ H�1� to estimate H.
Two such approaches are reviewed by Taqqu et al. �50�,
namely, the absolute values of the aggregated series ap-
proach and Higuchi’s method. In the former, one examines if
the following scaling law holds:

1

�N/m� �
k=1

�N/m�

	X�m��k�	 � mH−1,

where N is the length of the time series, X�m� is the nonover-
lapping running mean of X of block size m, as defined by Eq.
�2�, and � � denotes the greatest integer function. Higuchi’s
method, on the other hand, examines if the following scaling
law is true:

FIG. 9. Wavelet H estimator on �a�,�b� the ui process, �c�,�d� the
vi process, and �e�,�f� the wi process.
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L�m� =
N − 1

m3 �
i=1

m

��N − i�/m�−1

� �
k=1

��N−i�/m�

	y�i + km� − y„i + �k − 1�m…	 � mH−2,

where N again is the length of the time series, m is essen-
tially a block size, and y�i�=� j=1

i Xj. Note that the two meth-
ods are quite similar. In fact, the first summation of Higu-
chi’s method �divided by m� is equivalent to the absolute
values of the aggregated series approach. The second sum-
mation �i=1

m is another moving average, equivalent to taking
overlapping running means of the original time series X. By
now, it should be clear that both methods estimate the H�1�
parameter instead of the H�2� parameter, when the time se-
ries X has mean zero. The reason that H�1� can be used to
estimate H�2� is that typically they are quite close, even if
the time series X is a multifractal. When the time series X is
very much like a monofractal, or only weakly multifractal,
then we see that any H�q�, q�2, can be used to estimate
H�2�. In this case, the structure-function-based technique
provides infinitely many ways of estimating the Hurst pa-
rameter.

We note that if the mean of the time series X is not zero,
then neither the absolute values of the aggregated series ap-
proach nor Higuchi’s method estimates H�1�. When this is
the case, one should remove the mean from the X time series
first.

We have pointed out that Higuchi’s method is equivalent
to take overlapping running means when constructing X�m�.
We thus see that the condition of “nonoverlapping” for con-
structing X�m� when defining long memory is not essential.

We now prove why the Hurst parameter estimated by FA
saturates at 1. The idea lies in that if the process x has PSD
1/ f�x, then its integration �i.e., the random walk process� y
has PSD 1/ f�y, with �y =2+�x. If we further integrate y to
obtain z, then the PSD for z is 1 / f�z, with �z=2+�y. The
process of integration suggests that we may, without loss of
generality, assume y�n��n�, ��1. Then 
	y�n+m�−y�n�	2�
= 
��n+m��−n��2� is dominated by terms with large n. When
this is the case, �n+m��= �n�1+m /n����n��1+�m /n�. One
then sees that 
	y�n+m�−y�n�	2��m2, i.e., H�2�=1.

Similarly, one can prove that �i� H estimated by FA and
related methods as well as by DFA has to be non-negative,
and �ii� H estimated by DFA cannot be larger than 2 �51�.
The wavelet H estimator is most flexible in the sense that
there is no constraint on the value of H to be estimated.
However, for practical purposes, DFA can be considered suf-
ficient.
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