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Using the trace minimization algorithm, we carried out an exact calculation of entanglement in a 19-site two-
dimensional transverse Ising model. This model consists of a set of localized spin- 1

2 particles in a two-dimensional
triangular lattice coupled through exchange interaction J and subject to an external magnetic field of strength h.
We demonstrate, for such a class of two-dimensional magnetic systems, that entanglement can be controlled
and tuned by varying the parameter λ = h/J in the Hamiltonian and by introducing impurities into the systems.
Examining the derivative of the concurrence as a function of λ shows that the system exhibits a quantum phase
transition at about λc = 3.01, a transition induced by quantum fluctuations at the absolute zero of temperature.

DOI: 10.1103/PhysRevA.81.022324 PACS number(s): 03.67.Mn, 05.30.−d, 03.65.Ud

I. INTRODUCTION

Entanglement, which is a quantum mechanical property that
has no classical analog, has been viewed as a resource of quan-
tum information and computation [1–8]. Intensive researches
of entanglement measurement, entanglement monotone, cri-
teria for distinguishing separable from entangled pure states
and all the extensions from bipartite to multipartite systems
have been carried out both qualitatively and quantitatively [1].
At the interface between quantum information and statistical
mechanics, there has been particular analysis of entanglement
in quantum critical models [9–12].

The critical properties in the entanglement allow for a
screening of the qualitative change of the system and a deeper
characterization of the ground-state wave function undergoing
a phase transition. At T = 0, ground states of many-body
systems contain all correlations concerning phases of mat-
ters. Traditionally, systems have been studied by looking,
for example, at their external perturbations, various order
parameters and excitation spectrum [1]. Methods developed
from quantum information shed light on new ways of studying
many-body systems [13–16], such as providing support for
numerical calculations, like density matrix renormalization or
design of new efficient simulation strategies for many-body
systems.

Entanglement close to quantum phase transitions was
originally analyzed by Osborne and Nielsen [10], and Osterloh
et al. [9] for the Ising model in one dimension. Recently,
we studied a set of localized spins coupled through exchange
interaction and subject to an external magnetic field [17–20].
We demonstrated for such a class of one-dimensional (1D)
magnetic systems, that entanglement can be controlled and
tuned by varying the anisotropy parameter in the Hamiltonian
and by introducing impurities into the systems. In particular,
under certain conditions, the entanglement is zero up to a
critical point λc, where a quantum phase transition occurs, and
is different from zero above λc [21].

In two and higher dimensions nearly all calculations for
spin systems were obtained by means of numerical simulations

*kais@purdue.edu

[22,23]. The concurrence and localizable entanglement in two-
dimensional quantum XY and XXZ models were considered
using quantum Monte Carlo simulations [24,25]. The results
of these calculations were qualitatively similar to the one-
dimensional case, but entanglement is much smaller in magni-
tude. Moreover, the maximum in the concurrence occurs at a
position closer to the critical point than in the one-dimensional
case [1].

The trace minimization algorithm for Hermitian eigenvalue
problems, like those under consideration in this article, was
introduced in 1982 by Sameh and Wisniewski [26]. It was
designed specifically to handle very large problems on parallel
computing platforms for obtaining the smallest eigenpairs.
Later, a similar algorithm (Jacobi-Davidson) for the same
eigenvalue problem was introduced by Sleijpen and Van der
Vorst in 1996. A comparison of the two schemes by Sameh
and Tong in [27] showed that the trace minimization scheme
is more robust and efficient [28].

In this article, we use the trace minimization algorithm
[26,27] to carry out an exact calculation of entanglement in a
19-site two-dimensional (2D) transverse Ising model. We clas-
sify the ground-state properties according to its entanglement
for certain class on two-dimensional magnetic systems and
demonstrate that entanglement can be controlled and tuned
by varying the parameter λ = h/J in the Hamiltonian and
by introducing impurities into the systems. The article is
organized as follows. In Sec. II, we give a brief overview of the
model, entanglement of formation, and the trace minimization
algorithm. Detailed methods are addressed in the appendix.
We then proceed with the results and discussions of 1) the
calculation of exact entanglement of a 19-site spin system,
2) the relationship of entanglement and quantum phase transi-
tion, and 3) the effects of impurities on the entanglement. The
conclusions and the outlook are presented in the concluding
section.

II. METHOD

A. Model

We consider a set of localized spin- 1
2 particles in a

two-dimensional triangular lattice coupled through exchange
interaction J and subject to an external magnetic field of
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strength h. The Hamiltonian for such a system is given by

H = −
∑
〈i,j〉

Ji,j σ
x
i σ x

j − h
∑

i

σ z
i , (1)

where 〈i, j 〉 is a pair of nearest-neighbor sites on the lattice,
Ji,j = J for all sites except the sites nearest to the impurity site
im, while around the impurity site Ji,j = (1 + α)J , α measures
the strength of the impurity that is located at site im, and σx

i

and σ z
i are the Pauli matrices. For this model it is convenient

to define a dimensionless coupling constant λ = h/J .

B. Entanglement of formation

We confine our interest to the entanglement of two spins,
at any position i and j [9]. We adopt the entanglement of
formation, a well-known measure of entanglement [29], to
quantify our entanglement [21]. All the information needed
in this case is contained in the reduced density matrix ρi,j .
Wootters [29] has shown, for a pair of binary qubits, that the
concurrence C, which goes from 0 to 1, can be taken as a
measure of entanglement. The concurrence between sites i

and j is defined as [29]

C(ρ) = max{0, ε1 − ε2 − ε3 − ε4}, (2)

where the εi’s are the eigenvalues of the Hermitian matrix
R ≡ √√

ρρ̃
√

ρ with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) and σy is
the Pauli matrix of the spin in y direction. For a pair of qubits
the entanglement can be written as,

E(ρ) = ε(C(ρ)), (3)

where ε is a function of the “concurrence” C,

ε(C) = h

(
1 − √

1 − C2

2

)
, (4)

where h is the binary entropy function,

h(x) = −x log2 x − (1 − x) log2(1 − x). (5)

In this case, the entanglement of formation is given in terms
of another entanglement measure, the concurrence C. The
entanglement of formation varies monotonically with the
concurrence.

The matrix elements of the reduced density matrix needed
for calculating the concurrence are obtained numerically using
the formalism developed in the following section.

C. Trace minimization algorithm

Diagonalizing a 219 by 219 Hamiltonian matrix and partially
tracing its density matrix is a numerically difficult task.
We propose to compute the entanglement of formation, first
by applying the trace minimization algorithm (Tracemin)
[26,27] to obtain the eigenvalues and eigenvectors of the
constructed Hamiltonian. Then, we use these eigenpairs and
new techniques detailed in the appendix to build partially
traced density matrix.

The trace minimization algorithm was developed for com-
puting a few of the smallest eigenvalues and the correspond-
ing eigenvectors of the large sparse generalized eigenvalue
problem

AU = BU�, (6)

where matrices A,B ∈ Cn×n are Hermitian positive definite,
U = [u1, . . . , up] ∈ Cn×p, and � ∈ Rp×p is a diagonal ma-
trix. The main idea of Tracemin is that minimizing Tr(X∗AX),
subject to the constraints X∗BX = I , is equivalent to finding
the eigenvectors U corresponding to the p smallest eigenval-
ues. This consequence of the Courant-Fischer theorem can be
restated as

min
X∗BX=I

Tr(X∗AX) = Tr(U ∗AU ) =
p∑

i=1

λi, (7)

where I is the identity matrix. The following steps constitute
a single iteration of the Tracemin algorithm:

G = X∗
kBXk (compute G)

G = V �V ∗ (compute the spectral decomposition of G)
H = Q̃∗AQ̃ (compute H , where Q̃ = XkV �−1/2)
H = W�W ∗ (compute the spectral decomposition of H )
X̄k = Q̃W (now X̄∗

kAX̄k = � and X̄∗
kBX̄k = I )

X̄k+1 = X̄k − D [D is determined Tr(X∗
k+1AXk+1) <

Tr(X∗
kAXk)].

In order to find the optimal update D in the last step, we
enforce the natural constraint X̄∗

kBD = 0, and obtain(
A BX̄k

X∗
kB 0

)(
D

L

)
=

(
AX̄k

0

)
. (8)

Considering the orthogonal projector P =
BX̄k(X∗

kB
2Xk)−1X̄∗

kB and letting D = (I − P )D̄, the
linear system Eq. (8) can be rewritten in the following form

(I − P )A(I − P )D̄ = (I − P )AX̄k. (9)

Notice that the conjugate gradient method can be used to
solve Eq. (9), since it can be shown that the residual and
search directions r, p ∈ Range(P )⊥. Also, notice that the linear
system Eq. (9) need to be solved only to a fixed relative
precision at every iteration of Tracemin.

A reduced density matrix, built from the ground state,
which is obtained by Tracemin, is usually constructed as
follows: diagonalize the system Hamiltonian H (λ), retrieve
the ground state |	〉 as a function of λ = h/J , build the
density matrix ρ = |	〉〈	|, and trace out contributions of all
the other spins in density matrix to get reduced density matrix
by ρ(i, j ) = ∑

p〈ui(A)|〈vp(B)|ρ|uj (A)〉|vp(B)〉, where ui(A)
and vp(B) are bases of subspaces ε(A) and ε(B). That includes
creating a 219 × 219 density matrix ρ followed by permutations
of rows, columns, and some basic arithmetic operations on the
elements of ρ. Instead of operating on a huge matrix, we pick
up only certain elements from |	〉, performing basic algebra
to build a reduced density matrix directly. Details are in the
appendix.

III. RESULTS AND DISCUSSIONS

A. Exact entanglement of a 19-site spin system

We examine the change of concurrence in Eq. (2) between
the center spin and its nearest neighbor as a function of
λ = h/J for both the 7-site and 19-site systems. In Fig. 1, the
concurrence of the 7-site system reaches its maximum 0.15275
when λ = 2.61. In the 19-site system, the concurrence reaches
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FIG. 1. (Color online) Concur-
rence of center spin and its nearest
neighbor as a function of λ for both
the 7-site and 19-site systems. In the
7-site system, concurrence reaches
the maximum 0.15275 when λ =
2.61. In the 19-site system, concur-
rence reaches the maximum 0.0960
when λ = 3.95.

0.0960 when λ = 3.95. The maximum value of concurrence in
the 19-site model, where each site interacts with six neighbors,
is roughly one-third of the maximum concurrence in the one-
dimensional transverse Ising model with size N = 201 [17],
where it has only two neighbors for each site. It is the
monogamy [30,31] that limits the entanglement shared among
the number of neighboring sites.

However, entanglement between other nearest neighbors
are slightly different than those between the pairs involving the
center. Figure 2 shows that the fewer the number of neighbors
of a pair the larger the entanglement. The concurrence between
the first and second spins is greater than that between the first
and fourth in the 7-site system. For the 19-site system, the
concurrence between the first and second spins is greater than
that between the second and fifth. The same rule applies to the
others, therefore C2,5 > C5,6 > C5,10. Although 5 and 6, and
5 and 10, have the same number of neighbors, the number of
neighbors of neighbors of 5 and 6 is less than that of 5 and 10.
Consequently, C5,6 is slightly larger than C5,10.

Our numerical calculation shows that the maximum con-
currence of next-nearest neighbor (say the 1st and 10th spins)
is less than 10−8. The truly nonlocal quantum part of the two-
point correlations is nonetheless very short ranged [9]. It shows
that the entanglement is short ranged, though global. These
results are similar to those obtained for Ising one-dimensional
spin systems in a transverse magnetic field [9]. The range
of entanglement, that is, the maximum distance between two
spins at which the concurrence is different from zero, is short.
The concurrence vanishes unless the two sites are at most next
neighbors.

B. Entanglement and quantum phase transition

As we mentioned in Sec. II B, all the information needed for
quantifying the entanglement of two spins is contained in the
reduced density matrix obtained from density matrix. In other
words, entanglement is coded by the information of ground
state, while the quantum phase transition is characterized by
the change of ground state. In order to quantify the change
of the many-body wave function when the system crosses
the critical point, we calculate the change of concurrence
dC/dλ between the center and its nearest neighbor as a
function of parameter λ for both 7- and 19-site systems,
as shown in Fig. 3. It is known that an infinite system—a
system at the thermodynamic limit—is supposed to have a
singularity at the critical point of quantum phase transition;
for a finite system one still has to take finite-size effect
into consideration. However, in Fig. 3 both systems show
strong tendency of being singular at λc = 1.64 and λc = 3.01,

respectively. Renormalization group method for an infinite
triangular system predicts critical point at λc = 4.75784; the
same method for a square lattice system at λc = 2.62975 [33],
while finite-size scaling has λc = 3.044 for square lattice [34].
Our results show that the tendency to be singular is moving
toward the infinite critical point as the size increases. For
one-dimensional systems, since the calculations can be done
for a large number of spins, finite-size scaling calculations for
N ranging from 41 to 401 spins indicate that the derivative
of the concurrence diverges logarithmically with increasing
system size [9]. In our study we cannot perform finite-size
scaling analyses since we do not have enough data points
to perform data collapse [35]. Optimization methods [36] and

FIG. 2. (Color online) The nearest neighbor concurrence as a function of λ for different pairs. In the 7-site system, there are two distinct
pairs 1 and 2, and 1 and 4. In the 19-site system, they are 1 and 2, 2 and 5, 5 and 6, and 5 and 10.
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FIG. 3. (Color online) The
change of concurrence between the
center and its nearest neighbor as
a function of parameter λ for the
7-site and 19-site systems, respec-
tively. They both show the strong
tendency of singularity at λ = 1.54
and λ = 3.01.

parallel Tracemin code is under development, which will allow
us to obtain exact results for larger systems.

To understand this model better, a discussion about the
degeneracy in the system and an explanation of the energy
spectrum is necessary. It is known that the ground-state
degeneracy of the Heisenberg spin model depends on whether
the total number of spins is even (singlet) or odd (doublet).
For the Ising model with transverse field on an infinite 1D
chain, the ground state in the ferromagnetic (FM) phase is
doubly degenerate and is gaped from the excitation spectrum
by 2J (1 − h/J ) [37]. (Note, however, that this degeneracy is
never achieved unless one goes to the thermaldynamic limit,
regardless of the number of spins being even or odd.) In
our model, the Ising coupling is ferromagnetic, as opposed
to the spin liquid case with antiferromagnetic coupling, and
the system is expected to break the Z2 symmetry and develop
the (Ising) FM order under the small transverse field. Further,
due to the construction of the lattice, it is impossible to have
a system that has an even number of sites while conserving
all the lattice group symmetries. So we expect that the same
doublet degeneracy remains 2D as the system goes to the
thermaldynamic limit. The energy gaps from our numerical
results of finite systems are less than 10−8 (Fig. 4), which
are well consistent with the expectation. The strict doublets
in finite systems only happen at h/J = 0 exactly, when
entanglements naturally are zero, not entangled at all; no matter
which one of the doublet ground state is chosen, it gives the
same value of entanglement. Otherwise even a very small h
helps distinguish the ground state. Technically, we do not have
to worry that a different superposition of the ground states
gives different values of entanglement.

The energy separation between the ground state and the
first excited state in terms of λ clarifies the spectrum of the
system. Figure 4 presents the doublet degeneracy of the ground
state and they separate around λ = 1.5 for the 7-site and
λ = 2.5 for the 19-site system. While in the dC/dλ versus

λ graph, both systems show strong tendency of being singular
at λc = 1.64 and λc = 3.01, respectively. Both “separation
position” and “singular position” are used as an indicator of
“critical point.” And we believe using the finite-size scaling
method will also give the same “critical point” of the infinite
system. But it seems dC/dλ versus λ is a better indicator
because for the same size system it points out a value closer to
the expected critical point. This property benefits the finite-size
scaling method, since fewer and/or smaller systems may be
needed.

C. Introducing impurities to tune the entanglement

We introduce one impurity in the center of the 19-site spin
system. The impurity only interacts with nearest neighbors
in strength J ′ = (1 + α)J . When the strength increases, the
concurrence of any two spins decreases. Then we move the
impurity to site 5. The concurrence shows the same trend of
decreasing, as the impurity strengths go up. Details are shown
in Fig. 5 for the concurrence of different pairs with various
strength of impurity in the center of the 7-site system, while
Fig. 6 shows the results for 19-site system. Figure 7 shows the
results with various strength of impurity at site 1 of a 7-site
system and Fig. 8 for various strength of impurity at site 5 of
a 19-site system.

The maximum of entanglement is shifted with the increas-
ing of the parameter α. The shift is the result of the competition
between the spin-spin interaction J and the external transverse
magnetic field h. Consider the ideal situation of pure infinite
system. Without the coupling interaction, all the spins will
point along the direction of transverse field. While with the
absence of a transverse field, the ground state is supposed to
be twofold degenerated, either along the positive x direction
or the negative x direction. Every spin has six neighbors, so
averagely is affected by three J and one h. When the two
forces are well matched in strength, the phase transition occurs.
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FIG. 4. (Color online) The energy sep-
aration between the ground state and the
first excited state as a function of λ.
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FIG. 8. (Color online) Concurrence of different pairs with various strength of impurity at site 5 of a 19-site system.
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FIG. 9. (Color online) Overview of the change of concurrence in
the 7-site system. The large yellow dot stands for the impurity and
silver dots denote regular spins. Lines connecting two sites represent
the entanglement. If the line is green, it means the entanglement
between two sites increases as the impurity gets “stronger”; otherwise
the yellow line indicates that the entanglement decreases when the
impurity increases.

Figure 3 indicates the 19-site system has a strong tendency of
singularity at λ = 3.01, which is consistent and very close with
the above statement. When the system is finite, the boundary
effect (less than six neighbors) will affect the position of the
maximum of entanglement a little bit as Fig. 2 shows for
different pairs. After we introduce the impurity, the balance of
3 : 1 is destroyed, so the maximum of entanglement is shifted
quite a bit for a different strength of J ′ = (1 + α)J .

The value of the maximum changes with α is because of
the monogamy that limits the entanglement shared among
neighbors. For example, in Fig. 4, the stronger the interactions
between 1 and 4, and 2 and 4 (i.e., the larger α, the less 1 and 2
entangle). Therefore, the value of maximum decreases for the
larger α.

Figure 9 gives a good overview of the change of concurrence
for the 7-site system. The large yellow dot stands for the
impurity and silver dots denote regular spins. Lines connecting
two sites represent the entanglement. If the line is green, it
means the entanglement between two sites increases as the
impurity gets “stronger,” and the yellow line indicates that the
entanglement decreases when the impurity increases. We can
explain these phenomena of the 7-site system as follows. When
the impurity interacts more with the neighbor, the pair also
entangles more. Since some spins are more involved with the
impurity, they themselves entangle less. The only exceptions
are the next-nearest neighbors. Thus, entanglement close to the
impurity tends to get bigger when J′ is greater than J. However,
the behavior of entanglement between sites 5 and 10 in the
19-site system surprisingly goes down as the strength of the
impurity coupling increases. It is not clear why the behavior is
different for the one in the 7-site system and whether increasing
the system size has any effect. We are planning to increase the
size of the system to include the next layer, which will bring
the system to 37 sites, in order to analyze this phenomena.

All the results above are obtained through sequential
computing. In the future, to increase the object size under
consideration, we plan to take advantage of parallel computing.
We already have a parallel Tracemin algorithm and we are
developing a parallel code for computation of the partial trace.
This will be useful as we expand our 2D systems to a larger
number of spins in order to perform finite-size scaling for
quantum critical parameters.

In summary, the Tracemin algorithm allowed us to carry
out an exact calculation of entanglement in a 19-site two-
dimensional transverse Ising model. We demonstrated for such
a class of two-dimensional magnetic systems that entangle-
ment can be controlled and tuned by varying the parameter
λ in the Hamiltonian and by introducing impurities into the
systems.
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APPENDIX A: APPLICATIONS OF TRACE MINIMIZATION
ALGORITHM

1. General forms of matrix representation of the Hamiltonian

By studying the patterns of
∑

〈i,j〉 I ⊗ · · · σx
i ⊗ · · · σx

j ⊗
· · · I and

∑
i I ⊗ · · · σ z

i ⊗ · · · I , one finds the following rules.

a.
∑

i σ z
i for N spins

The matrix is 2N by 2N ; it has only 2N diagonal elements.
Elements follow the rules shown in Fig. 10.

If one stores these numbers in a vector, and initializes v =
(N ), then the new v is the concatenation of the original v and
the original v with 2 subtracted from each of its elements. We
repeat this N times, that is,

v =
(

v

v − 2

)
; (A1)

v = (N ) , (A2)

⇒ v =
(

N

N − 2

)
, (A3)

⇒ v =

⎛⎜⎝ N

N − 2
N − 2
N − 4

⎞⎟⎠ . (A4)

b.
∑

〈i, j〉 I ⊗ · · · σ x
i ⊗ · · · σ x

j ⊗ · · · I for N spins

Since
(1 0

0 1

)
and

(0 1
1 0

)
exclude each other, for matrix I ⊗

· · · σx
i ⊗ · · · σx

j ⊗ · · · I , every row or column contains only

Scheme Rule Example 

N N 3

Scheme Rule p
N=3

N N 3

N-2 N-2 1

N -2 N-2 1N 2 N 2 1

N-2 -2 N-4 -1

N 2 N 2 1N -2 N-2 1

N-2 -2 N-4 -1

N 2 2 N 4 1N-2 -2 N-4 -1

N-4 -2 N-6 -3

and so on and so on

FIG. 10. Diagonal elements of
∑

i σ
z
i for N spins.
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one “1,” then the matrix owns 2N “1”s and only “1” in it.
If we know the position of “1”s, it turns out that we can set
a 2N by 1 array “col” to store the column position of “1”s
corresponding to the 1st → 2N th rows. In fact, the nonzero
elements can be located by the properties stated below. For
clarity, let us number N spins in the reverse order as: N-1,
N-2, . . . , 0, instead of 1, 2, . . . , N. The string of nonzero
elements starts from the first row at: 1 + 2i + 2j ; with string
length 2j ; and number of such strings 2N−j−1. For example,
Fig. 11 shows these rules for a scheme of I ⊗ σx

3 ⊗ σx
2 ⊗

I ⊗ I .
Again, because of the exclusion, the positions of nonzero

element “1” of I ⊗ · · · σx
i ⊗ · · · σx

j ⊗ · · · I are different from
those of I ⊗ · · · σx

l ⊗ · · · σx
m ⊗ · · · I . So

∑
〈i,j〉 I ⊗ · · · σx

i ⊗
· · · σx

j ⊗ · · · I is a 2N by 2N matrix with only 1 and 0.
After storing array “col,” we repeat the algorithm for all the

nearest pairs 〈i, j 〉, and concatenate “col”s to position matrix

“c” of
∑

〈i,j〉 I ⊗ · · · σx
i ⊗ · · · σx

j ⊗ · · · I . In the next section
we apply these rules to our problem.

2. Specialized matrix multiplication

Using the diagonal elements array “v” of
∑

i σ
z
i and po-

sition matrix of nonzero elements “c” for
∑

〈i,j〉 I ⊗ · · · σx
i ⊗

· · · σx
j ⊗ · · · I , we can generate matrix H , representing the

Hamiltonian. However, we only need to compute the result
of the matrix-vector multiplication H × Y in order to run
Tracemin, which is the advantage of Tracemin, and conse-
quently do not need to explicitly obtain H. Since matrix-vector
multiplication is repeated many times throughout iterations,
we propose an efficient implementation to speed up its
computation specifically for Hamiltonian of Ising model (and
XY by adding one term).

For simplicity, first let Y in H × Y be a vector and J =
h = 1 (in general Y is a tall matrix and J �= h �= 1). Then

H × Y =
∑
〈i,j〉

σx
i σ x

j × Y +
∑

i

σ z
i × Y

=

⎛⎜⎜⎜⎜⎜⎝
1 1 1

1 1 1
. . . . . .

. . . . . .

1 1 1

⎞⎟⎟⎟⎟⎟⎠ ×

⎛⎜⎜⎜⎜⎜⎜⎝
Y (1)
Y (2)

...

...
Y (2N )

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝
v(1)

v(2)
. . .

. . .
v(2N )

⎞⎟⎟⎟⎟⎟⎟⎠ ×

⎛⎜⎜⎜⎜⎜⎜⎝
Y (1)
Y (2)

...

...
Y (2N )

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
Y (c(1, 1)) + Y (c(1, 2)) + · · · + Y (c(1, p#))

...
Y (c(k, 1)) + Y (c(k, 2)) + · · · + Y (c(k, p#))

...
Y (c(2N, 1)) + Y (c(2N, 2)) + · · · + Y (c(2N, p#))

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝
v(1) × Y (1)
v(2) × Y (2)

...

...
v(2N ) × Y (2N )

⎞⎟⎟⎟⎟⎟⎟⎠ , (A5)

where p# stands for the number of pairs.

FIG. 11. Scheme of matrix I ⊗ σ x
3 ⊗ σ x

2 ⊗ I ⊗ I .

When Y is a matrix, we can treat (Y2N by p) column by
column for

∑
〈i,j〉 I ⊗ · · · σx

i ⊗ · · · σx
j ⊗ · · · I . Also, we can

accelerate the computation by treating every row of Y as a
vector and adding these vectors at once. Figure 12 visualized
the process.

Notice that the result of the multiplication of the xth row of∑
〈i,j〉 σ

x
i σ x

j (delineated by the left box in figure 12 below) and
Y, is equivalent to the sum of rows of Y, whose row numbers
are the column indices of nonzero elements of the xth row,
such that we transform a matrix operation to straightforward
summation and multiplication of numbers.

APPENDIX B: PARTIAL TRACE

All the information needed for quantifying the entangle-
ment of two spins i and j is contained in the reduced density
matrix ρ(i, j ), which can be obtained from global density
matrix ρ = |ψ〉〈ψ |, where |ψ〉 is the ground state of the
system, via partial trace. Now let us show how we can obtain
the reduced density matrix from the ground state calculated by
Tracemin.
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FIG. 12. (Color online) Illustration of H × Y .

1. Density operator in the pure case and partial trace

Consider a system whose state vector at the instant t is

|ψ(t)〉 =
∑

n

cn(t)|un〉,
∑

n

|cn(t)|2 = 1. (B1)

The density operator ρ(t) is defined as

ρ(t) = |ψ(t)〉〈ψ(t)|. (B2)

It enables us to obtain all the physical predictions of an
observable A(t) by

〈A(t)〉 = Tr{ρ(t)A}. (B3)

Let us consider two different systems (1) and (2) and
the global system (1) + (2), whose state space is the tensor
product: ε = ε(1) ⊗ ε(2). Let |un(1)〉 be a basis of ε(1) and
|vp(2)〉, a basis of ε(2), the kets |un(1)〉|vp(2)〉 from a basis of ε.

The density operator ρ of the global system is an operator
that acts in ε. We construct from ρ an operator ρ(1) [or ρ(2)]
acting only in ε(1) [or ε(2)], which will enable us to make
all the physical predictions about measurements bearing only
on system (1) or system (2). This operation will be called a
partial trace with respect to (2) [or (1)]. Matrix elements of the
operator ρ(1) are

〈un(1)|ρ(1)|un′(1)〉 =
∑

p

(〈un(1)|〈vp(2)|)ρ(|un′(1)〉|vp(2)〉).
(B4)

Now let A(1) be an observable acting in ε(1) and Ã(1) =
A(1) ⊗ I (2), its extension in ε. We obtain, using the definition
of the trace and closure relation,

Ã(1)〉 = Tr{ρ(1)A(1)}. (B5)

As it is designed, the partial trace ρ(1) enables us to calculate
all the mean values 〈Ã(1)〉 as if the system(1) were isolated
and had ρ(1) for a density operator [32].

2. Properties of the reduced density matrix

As we calculate the entanglement of formation, we trace
out all spins but two (bipartite). Their reduced density matrix
is, therefore, four by four. Reality and parity conservation of H
together with translational invariance already fix the structure
of ρ to be symmetric with ρ11, ρ22, ρ33, ρ44, ρ14, ρ23 as the
only nonzero entries. It follows from the symmetry properties
of the Hamiltonian, the ρ must be real and symmetrical, plus
the global phase flip symmetry of Hamiltonian, which implies

that [σ z
i σ z

j , ρij ] = 0, so⎛⎜⎝ 1
−1

−1
1

⎞⎟⎠
⎛⎜⎝ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞⎟⎠

−

⎛⎜⎝ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎞⎟⎠
⎛⎜⎝ 1

−1
−1

1

⎞⎟⎠ = 0, (B6)

⎛⎜⎝ ρ11 ρ12 ρ13 ρ14

−ρ21 −ρ22 −ρ23 −ρ24

−ρ31 −ρ32 −ρ33 −ρ34

ρ41 ρ42 ρ43 ρ44

⎞⎟⎠ −

⎛⎜⎝ρ11 −ρ12 −ρ13 ρ14

ρ21 −ρ22 −ρ23 ρ24

ρ31 −ρ32 −ρ33 ρ34

ρ41 −ρ42 −ρ43 ρ44

⎞⎟⎠ = 0,

(B7)

2

⎛⎜⎝ 0 ρ12 ρ13 0
−ρ21 0 0 −ρ24

−ρ31 0 0 −ρ34

0 ρ42 ρ43 0

⎞⎟⎠ = 0, (B8)

ρ12 = ρ13 = ρ21 = ρ24 = ρ31 = ρ34 = 0. (B9)

Because ρij is symmetric,

ρ14 = ρ41, ρ23 = ρ32, (B10)

therefore,

ρij =

⎛⎜⎝ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞⎟⎠ . (B11)

3. Building the reduced density matrix

The available code of partial trace involves permutating
rows or columns of the density matrix ρ. On one hand, we
need to avoid generating the huge matrix ρ (219 by 219). On
the other hand, even if we have ρ, permutations are too costly
to be computed. Fortunately, we are able to convert “generate a
global density matrix, then partial trace” into “get six elements
then build a reduced density matrix.” These six elements are
closely related to the ground state, which we have already
obtained after the application of Tracemin. In fact, the structure
of the system (the Hamiltonian) guarantees that our ground
state is a real vector and implicit of time. That makes the
calculation neater, with no worry about the complex conjugate
and time evolution.
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Here is how to retreat the six elements. For example, we
are intent on tracing three spins: first, third, and fifth, out of a
total five, provided a ground state with the above properties.
We start from the definition of partial trace [Eq. (B4)],

〈un(2)|〈vp(4)|ρ(2, 4)|un′ (2)〉|vp′ (4)〉
=

∑
α,β,γ

〈aα(1)|〈un(2)|〈bβ(3)|〈vp(4)|〈cγ (5)|ψ〉

× 〈ψ |aα(1)〉|un′(2)〉|bβ(3)〉|vp′ (4)〉|cγ (5)〉, (B12)

and carry it out for a specific matrix element

ρ11(2, 4)

= 〈00|ρ(2, 4)|00〉
=

∑
α,β,γ

〈aα(1) 0 bβ(3) 0 cγ (5)|ψ〉〈ψ |aα(1) 0 bβ(3) 0 cγ (5)〉

. .
. |ψ〉 is real

=
∑
α,β,γ

〈aα(1) 0 bβ(3) 0 cγ (5)|ψ〉2. (B13)

Since

|ψ〉 =
∑

α,n,β,p,γ

ψm|aα(1)un(2)bβ(3)vp(4)cγ (5)〉, (B14)

〈aα(1)un(2)bβ(3)vp(4)cγ (5)|ψ〉 = ψm, (B15)

〈aα(1) 0 bβ(3) 0 cγ (5)|ψ〉 is the coefficient in front of base
|aα(1) 0 bβ(3) 0 cγ (5)〉 at |ψ〉 expansion. When we write |ψ〉
as a column vector ⎛⎜⎜⎝

ψ1

ψ2
...

ψ2N

⎞⎟⎟⎠ ,

its elements are the coefficients corresponding to the basis

|00000〉
|00001〉

...
|11111〉

.

Then if we can locate |aα(1) 0 bβ(3) 0 cγ (5)〉 as the mth base
among all bases, we know that 〈aα(1) 0 bβ(3) 0 cγ (5)|ψ〉 =
ψm. Our task is to locate all the bases with the second and
fourth spins being at state |0〉, then pick out corresponding
ψm’s, and square and sum them together.

Before we continue onto the details, let us construct a
basis matrix of five spins illustrated in Fig. 13 and define
the following.

Period. We say the pattern like

0
...
0
1
...
1

is a period.

01000

10000

00000

4th2nd

LS4

LP

01100

10100

00100

11000

L

11010

01010

10010

00010

11100

11110

01110

10110

00110

11010

11001

01001

10001

00001

11110

11101

01101

10101

00101

00110

11010

01011

10011

00011

11110

01110

10110

00110

01000

10000

00000

4th2nd

01100

10100

00100

11000 LS2

11010

01010

10010

00010

11100

LS4

11110

01110

10110

00110

11010

11001

01001

10001

00001

11110

11101

01101

10101

00101

00110

11010

01011

10011

00011

11110

01110

10110

00110

2P

4

FIG. 13. (Color online) Illustration of the five-spins basis.

Segment.

0 1
... or

...
0 1

is a segment.
Length. The number of elements in a period or a segment.
Lp ith. Length of a period of the ith spin.
Ls ith. Length of a segment of the ith spin.

The ith spin out of total N spins has

ith/N 2nd/5 4th/5

LP 2N−i+1 25−2+1 = 16 25−4+1 = 4
LS 2N−i 25−2 = 8 25−4 = 2
No. of periods 2i−1 22−1 = 2 24−1 = 8
No. of segments 2i 22 = 4 24 = 16

Using these definitions, we can in general easily locate
bases such as | . . . 0 . . . 0 . . .〉, and within five steps obtain
element ρ11(i, j ), by applying the following algorithm.

1. First 0 in every period for ith spin is located at “p”=
1, 1 + Lp ith, 1 + 2Lp ith, . . . � 2N
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2. First 0 in every period for j th spin, when the ith is
0, is located at “q” = p, p + Lp j th, 1 + 2Lp ith, . . . � p +
Lp ith − 1, ( . .

. i < j .
. . Lp jth < Lp ith + Ls jth < Lp ith).

3. Ls j th decides the length of continued | . . . 0 . . . 0 . . .〉
basis.

4. After locating “q,” we naturally have ψ(q) ⇒ ψ2(q) ⇒
ψ2(q) + ψ2(q + 1) + . . . ψ2(q + Ls j th − 1), then locate
the next “q.”

5. When we add them altogether, it is ρ11(i, j ).
Similarly, we can locate “01” “10” “11” for

ρ22(i, j ) = 〈01|ρ(i, j )|01〉, (B16)

ρ33(i, j ) = 〈10|ρ(i, j )|10〉, (B17)

ρ44(i, j ) = 〈11|ρ(i, j )|11〉. (B18)

ρ14(i, j ) and ρ23(i, j ) are a bit different.

ρ14(i, j ) = 〈00|ρ(i, j )|11〉
= 〈. . . 0 . . . 0 . . . |ψ〉〈ψ | . . . 1 . . . 1 . . .〉. (B19)

In this case we do not have to locate | . . . 0 . . . 0 . . .〉 &
. . . 1 . . . 1 . . .〉, respectively. Letting q be the position of
. . . 0 . . . 0 . . . and the corresponding q ′ of . . . 1 . . . 1 . . . (i.e.,
other bases are the same); they are related by q ′ = q +
Ls ith + Ls j th. That enables us to obtain ρ11 and ρ14 at the
same time:

ρ11(i, j ) =
∑

ψ2(q), (B20)

ρ14(i, j ) =
∑

ψ(q)ψ (q + Ls ith + Ls ith) . (B21)
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