Communications: Entanglement switch for dipole arrays

Qi Wei
Purdue University - Main Campus

Sabre Kais
Birck Nanotechnology Center and Department of Chemistry, Purdue University, kais@purdue.edu

Yong P. Chen
Purdue University - Main Campus, yongchen@purdue.edu
Communications: Entanglement switch for dipole arrays

Qi Wei,1 Sabre Kais,1,a and Yong P. Chen2
1Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
2Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA

(Received 25 January 2010; accepted 25 February 2010; published online 29 March 2010)

We propose a new entanglement switch of qubits consisting of electric dipoles oriented along or against an external electric field and coupled by the electric dipole-dipole interaction. The pairwise entanglement can be tuned and controlled by the ratio of the Rabi frequency and the dipole-dipole coupling strength. Tuning the entanglement can be achieved for one, two, and three-dimensional arrangements of the qubits. The feasibility of building such an entanglement switch is also discussed. © 2010 American Institute of Physics. [doi:10.1063/1.3366522]

Entanglement is a quantum mechanical property that describes a correlation between quantum mechanical systems. It has no classical analog and has been lying in the heart of the foundation of quantum mechanics. The desire to understand, tune, and manipulate quantum entanglement is of fundamental importance in the field of quantum information and computation.1–4 Recently, we studied a set of localized spins coupled through exchange interaction and subject to an external magnetic field.5–8 We demonstrated for such a class of one-dimensional magnetic systems, that entanglement can be controlled and tuned by varying the anisotropy parameter in the Hamiltonian and by introducing impurities into the systems.9 In this letter, we propose a new entanglement switch of qubits consisting of the electric dipole moment of diatomic polar molecules, oriented along or against an external electric field and coupled by the electric dipole-dipole interaction.

Recent progress in methods for producing, trapping, and controlling cold polar molecules make them an excellent candidate for quantum computation.9–12 Trapped polar molecules, oriented along or against an external electric field and coupled by the electric dipole-dipole interaction.

The Hamiltonian of N-trapped dipoles in an external electric field reads21

$$
\hat{H} = \hbar \sum_{i=1}^{N} \omega_{i} \hat{S}_{i}^{+} \hat{S}_{i} + \hbar \sum_{i \neq j}^{N} \Omega_{ij} \hat{S}_{i}^{+} \hat{S}_{j}^{+} \hat{S}_{j} \hat{S}_{j},
$$

where \hat{S}_{i}^{+} and \hat{S}_{j}^{+} are the dipole operators and related to Pauli matrices, \hat{S}_{i} and \hat{S}_{j} represent dipole excitation and de-excitation, respectively. ω_{i} is the transition frequency of the dipole on site i, which is a function of dipole moment and external electric fields at site i.

$$
\hbar \omega_{i} = |\vec{d} \cdot \vec{E}|,
$$

where \vec{d} is the electric dipole moment which we assume the same for each site. Ω_{ij} is the dipole-dipole coupling constant between sites i and j, which is determined by the strength of dipole moment, the direction of the external electric field and the lattice constant of the dipole array.

$$
\hbar \Omega_{ij} = \frac{|\vec{d}|^{2}(1 - 3 \cos^{2} \theta)}{|\vec{r}_{ij}|^{3}},
$$

where θ is the angle between \vec{r}_{ij} and external electric field.

We will expand the Hamiltonian in pure standard basis, \{00, 01, 10, 11\}, and all the eigenstates will be obtained by diagonalizing the Hamiltonian matrix. For example, for $N=2$, we obtained the following four eigenvectors: $\Psi_{1} = |00\rangle$, $\Psi_{2} = (1/\sqrt{2})(|01\rangle - |10\rangle)$, $\Psi_{3} = (1/\sqrt{2}) \times (|01\rangle + |10\rangle)$, $\Psi_{4} = |11\rangle$ with corresponding eigenvalues: $E_{1} = 0$, $E_{2} = \omega - \Omega$, $E_{3} = \omega + \Omega$, $E_{4} = 2\omega$. For the ratio $\omega/\Omega < 1$, Ψ_{2} is fully entangled ground state. However, for $\omega/\Omega > 1$ the nonentangled state Ψ_{1} is the ground state. Thus, we have a curve crossing at $\omega/\Omega=1$.

The concept of entanglement of formation is related to the amount of entanglement needed to prepare the state ρ_{22} where ρ is the density matrix. It was shown by Wootters that concurrence is a good measure of entanglement.23 The concurrence C is given by

$$
C(\rho) = \max\{0, \lambda_{1} - \lambda_{2} - \lambda_{3} - \lambda_{4}\}.
$$

For a general state of two qubits, λ_{i}'s are the eigenvalues, in decreasing order, of the Hermitian matrix $R = \sqrt{\rho \rho^{*} \rho}$ where ρ is the density matrix and ρ^{*} is the complex conjugate of ρ and is taken in the standard basis, which for a pair of two level particles is \{00, 01, 10, 11\}.

aAuthor to whom correspondence should be addressed. Electronic mail: kais@purdue.edu.
In order to calculate thermal entanglement, we need the temperature dependent density matrix and the density matrix for a system in equilibrium at a temperature \(T \) reads:

\[
\rho = e^{-\beta \hat{H}}
\]

with \(\beta = \frac{1}{kT} \) and \(Z = \text{Tr}(e^{-\beta \hat{H}}) \). In this case, the partition function is

\[
Z(T) = \sum_i g_i e^{-\beta \lambda_i},
\]

(6)

where \(\lambda_i \) is the \(i \)th eigenvalue and \(g_i \) is the degeneracy. And the corresponding density matrix can be written

\[
\rho(T) = \frac{1}{Z} \sum_i e^{-\beta \lambda_i} |\Phi_i\rangle \langle \Phi_i|,
\]

(7)

where \(|\Phi_i\rangle \) is the \(i \)th eigenfunction. For pairwise thermal entanglement, we can get reduced density matrix as a function of temperature in the same way, which leads to temperature dependent entanglement.

In Fig. 1 we show the tuning of the pairwise entanglement, measured by concurrence, of one-dimensional arrangements of the dipoles as one varies the ratio \(\omega/\Omega \) at \(kT = 10^{-4}, 10^{-2}, \) and \(10^{-1} \hat{\Omega} \), respectively, for \(N=9 \) dipoles.

In order to calculate thermal entanglement, we need the temperature dependent density matrix and the density matrix for a system in equilibrium at a temperature \(T \) reads:

\[
\rho = e^{-\beta \hat{H}}
\]

with \(\beta = \frac{1}{kT} \) and \(Z = \text{Tr}(e^{-\beta \hat{H}}) \). In this case, the partition function is

\[
Z(T) = \sum_i g_i e^{-\beta \lambda_i},
\]

(6)

where \(\lambda_i \) is the \(i \)th eigenvalue and \(g_i \) is the degeneracy. And the corresponding density matrix can be written

\[
\rho(T) = \frac{1}{Z} \sum_i e^{-\beta \lambda_i} |\Phi_i\rangle \langle \Phi_i|,
\]

(7)

where \(|\Phi_i\rangle \) is the \(i \)th eigenfunction. For pairwise thermal entanglement, we can get reduced density matrix as a function of temperature in the same way, which leads to temperature dependent entanglement.

In Fig. 1 we show the tuning of the pairwise entanglement, measured by concurrence, of one-dimensional arrangements of the dipoles as one varies the ratio \(\omega/\Omega \) at \(kT = 10^{-4}, 10^{-2}, \) and \(10^{-1} \hat{\Omega} \), respectively, for \(N=9 \) dipoles.

In Fig. 2, we present the coefficients of the wave function for \(N=4 \) dipoles. For \(0.634 < \omega/\Omega < 1.14 \), dipole one becomes entangled also with dipole 3 and with other dipoles until we reach \(\omega/\Omega > 1.74 \), above this value the concurrence is zero between all sites. As one increases the temperature, the curve becomes smoother as mixing occurs with higher states. Calculations for \(N=3,4, \ldots,8 \) gave similar behavior of tuning and controlling entanglement as for the case \(N=9 \). To show how the populations change at the transition point, we present in Fig. 2 the coefficients of the wave function for \(N=4 \) before and after the transition point \(\omega/\Omega = 0.64 \). When \(\omega/\Omega < 0.64 \), the ground state wave function changes.

FIG. 1. Pairwise concurrence [Eq. (4)] of one-dimensional arrangements of the dipoles as one varies the ratio \(\omega/\Omega \) at \(kT = 10^{-4}, 10^{-2}, \) and \(10^{-1} \hat{\Omega} \), respectively, for \(N=9 \) dipoles.

FIG. 2. Pairwise concurrence [Eq. (4)] and coefficients of the wave function of one-dimensional arrangements of the dipoles as one varies the ratio \(\omega/\Omega \) at \(kT = 10^{-4} \hat{\Omega} \) for \(N=4 \) dipoles.
function is $|\Psi\rangle = 0.19|\uparrow\uparrow\uparrow\rangle - 0.51|\downarrow\uparrow\uparrow\rangle + 0.45|\downarrow\downarrow\downarrow\rangle - 0.51|\downarrow\downarrow\uparrow\rangle + 0.19|\downarrow\uparrow\downarrow\rangle$, however, when $\omega/\Omega > 0.64$, the ground state wave function becomes $|\Psi\rangle = 0.36|\uparrow\uparrow\downarrow\rangle - 0.61|\downarrow\uparrow\downarrow\rangle + 0.61|\downarrow\uparrow\uparrow\rangle - 0.36|\uparrow\downarrow\downarrow\rangle$. Figures 3 and 4 show a similar phenomena for two and three-dimensional arrangements of the dipoles. The pairwise entanglement decreases as one increases the dimensionality of the system and the temperature.

There have been rapid advances made recently in cooling, trapping and manipulating atomic (Rydberg) and molecular dipoles. For example, a wide variety of ground state polar molecules with large electric dipole moments (several debyes, where $1 \text{ D} \sim 3.3 \times 10^{-30} \text{ C m}$) have been cooled to ultracold ($\sim \text{mK}$ or below) regime, some even near quantum degeneracy. These developments provide exciting opportunities to experimentally realize the entanglement switch described above, which requires tuning ω/Ω.

We would like to thank the ARO for financial support. Y.P.C. acknowledges partial support from National Science Foundation (Grant CCF No. 0829918).