Searches for CP violation and $\pi \pi \pi S$ wave in the Dalitz-plot analysis of $D_0 \rightarrow \pi^+(\pi^-)\pi(0)$

This paper is posted at Purdue e-Pubs.
http://docs.lib.purdue.edu/physics_articles/143
Searches for CP violation and $\pi\pi S$ wave in the Dalitz-plot analysis of $D^0 \rightarrow \pi^+ \pi^- \pi^0$

University of Minnesota, Minneapolis, Minnesota 55455, USA

S. Dobbs, Z. Metreveli, K. K. Seth, A. Tomaradze, and P. Zweber

Northwestern University, Evanston, Illinois 60208, USA

J. Ernst and A. H. Mahmood

State University of New York at Albany, Albany, New York 12222, USA

K. Arms and K. K. Gan

The Ohio State University, Columbus, Ohio 43210, USA

H. Severini

University of Oklahoma, Norman, Oklahoma 73019, USA

University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Z. Li, A. Lopez, H. Mendez, and J. Ramirez

University of Puerto Rico, Mayaguez, Puerto Rico 00681

G. S. Huang, D. H. Miller, V. Pavlunin, B. Sanghi, and I. P. J. Shipsey

Purdue University, West Lafayette, Indiana 47907, USA

G. S. Adams, M. Chasse, M. Cravey, J. P. Cummings, I. Danko, and J. Napolitano

Rensselaer Polytechnic Institute, Troy, New York 12180, USA

Q. He, H. Muramatsu, C. S. Park, W. Park, and E. H. Thorndike

University of Rochester, Rochester, New York 14627, USA

T. E. Coan, Y. S. Gao, F. Liu, and R. Stroynowski

Southern Methodist University, Dallas, Texas 75275, USA

Syracuse University, Syracuse, New York 13244, USA

S. E. Csorna

Vanderbilt University, Nashville, Tennessee 37235, USA

G. Bonvicini, D. Cinabro, and M. Dubrovin

Wayne State University, Detroit, Michigan 48202, USA

A. Bornheim, S. P. Pappas, and A. J. Weinstein

California Institute of Technology, Pasadena, California 91125, USA

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

J. L. Rosner

Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

In e^+e^- collisions recorded using the CLEO II-V detector we have studied the Cabibbo suppressed decay of $D^0 \to \pi^+\pi^-\pi^0$ with the initial flavor of the D^0 tagged by the decay $D^{*+} \to D^0\pi^+$. We use the Dalitz-plot analysis technique to measure the resonant substructure in this final state and observe $\rho\pi$ and nonresonant contributions by fitting for their amplitudes and relative phases. We describe the $\pi\pi S$ wave with a K-matrix formalism and limit this contribution to the rate to be $<2.5\%@95\%$ confidence level, in contrast to the large rate observed in $D^+ \to \pi^+\pi^-\pi^+$ decay. Using the amplitudes and phases from this analysis, we calculate an integrated CP asymmetry of $0.01^{+0.05}_{-0.07} \pm 0.05$.

The light scalar meson sector is an enduring puzzle in QCD [1]. Specifically the isospin zero, $J^{PC} = 0^{++}$ mesons are complex both theoretically and experimentally. The singly Cabibbo suppressed decays of D mesons are an excellent laboratory to test this sector. The final state consists of only u and d quarks and antiquarks so there is sufficient energy to cover most of the range of interest to light quark binding, and the initial state is simple with little impact on the final state. A better understanding of final state interactions in exclusive weak decays is needed in order to model rates, explain interesting phenomena such as mixing [2], and elucidate the origin of CP violation in the B sector [3].

Weak decays of D mesons are expected to be dominated by resonant two body decays [4–8]. The well-established Dalitz-plot analysis technique can be used to explore the resonant substructure which should be rich in isospin zero mesons. Previously the E791 Collaboration studied the Dalitz plot $D^+ \to K^-\pi^+\pi^+$ [9] and observed a large $K\pi$ S-wave contribution following the Breit-Wigner formalism. Recently the FOCUS Collaboration studied the Dalitz plot $D^+ \to \pi^+\pi^-\pi^+$ [10] and observed a large $\pi\pi S$-wave contribution using a K-matrix formulation to describe 0^{++} resonance structures. This letter describes a similar Dalitz-plot analysis of $D^0 \to \pi^+\pi^-\pi^0$ at CLEO in which $\pi\pi S$-wave contributions are also expected. We have searched for such contributions using the K-matrix formulation following what has been done by FOCUS and alternatively for resonance contributions from the scalar $\sigma(500)$ and $f_0(980)$ mesons. We see no evidence for any $\pi\pi S$-wave contribution in $D^0 \to \pi^+\pi^-\pi^0$, and fully describe the Dalitz plot with contributions from ρ resonances. This observation is consistent with the analogous Cabibbo favored decay, $D^0 \to K^-\pi^+\pi^0$ [11] but inconsistent with the decay $D^0 \to K^0_S\pi^+\pi^-$ [12] in which a significant $\pi\pi S$-wave contribution is observed. Poor modeling of the $\pi\pi S$ wave leads to a large systematic error on γ/ϕ_3 measured with $B^+ \to DK^+$, $D \to K^0_S\pi^+\pi^-$. The lack of a significant $\pi\pi S$ wave in $D^0 \to \pi^+\pi^-\pi^0$ will lead to a smaller modeling systematic error on γ/ϕ_3 determined with $B^+ \to DK^+$, $D \to \pi^+\pi^-\pi^0$.

Standard model (SM) predictions for the rate of CP violation in almost all charm meson decay modes is $O(10^{-6})$. However, for some singly Cabibbo suppressed
We select 1917 candidates within 650 keV of the nominal value of Q taken with the CLEO II.V detector [15,16]. The data were strained to the known charged pion mass. The addition of the requirement that the trajectory intersect the barrel region of our detector. The two photon invariant mass is required to be $120 < M_{\gamma\gamma} < 150$ MeV/c^2. To improve the mass resolution, the invariant mass is constrained to the known π^0 mass and we require the χ^2 of this fit to be <100. We exploit the precision tracking of the silicon vertex detector [16] by refitting the π^\pm tracks with a requirement that they form a common vertex in three dimensions. We use the trajectory of the $\pi^+\pi^-\pi^0$ system and the position of the CESR luminous region to obtain the D^0 production point. We then refit the π^+_s track with a requirement that the trajectory intersect the D^0 production point.

We reconstruct the energy released in the $D^{*+} \rightarrow \pi^+_s D^0$ decay as $Q = M^* - M - m_{\pi^+}$, where M^* is the reconstructed mass of the $\pi^+_s\pi^-\pi^0$ system, M is the reconstructed mass of the $\pi^+\pi^-\pi^0$ system, and m_{π^+} is the charged pion mass. The addition of the D^0 production point to the π^+_s trajectory improves the resolution on Q by a factor of 2. The distributions of Q and M for our data are shown in Fig. 1. We fit the M and Q distributions separately to a double Gaussian plus a background shape and find an average background fraction of $(18.6 \pm 3.6)\%$. We select 1917 candidates within 650 keV of the nominal value of Q, denoted as \hat{Q}, and within 44 MeV/c^2 of the nominal value of M, both as measured in this analysis.

The efficiency for the selection described above is not uniform across the Dalitz-plot distribution ($m_{\pi^+\pi^-}$, $m_{\pi^+\pi^0}$). We study the efficiency with a GEANT [17] based simulation of the detector with a luminosity corresponding to more than 20 times our data sample. To measure the variation in efficiency over the Dalitz plot, we generate signal Monte Carlo uniformly populating the allowed phase space. We observe deviations from the uniform distribution due to momentum dependent π^0 reconstruction efficiency and inefficiencies near the edge of phase space. The average reconstruction efficiency is $\sim 3.7\%$ but increases (decreases) to $\sim 4.5\%$ ($\sim 0.5\%$) for decays with high (low) momentum π^0 mesons. We fit the efficiency to a two dimensional cubic polynomial in $(m_{\pi^+\pi^-}, m_{\pi^+\pi^0})$.

Figure 1 shows that the background is significant. To construct a model of the background shape, we consider events in the data in sidebands $3 < \hat{Q} - Q < 0$ MeV and $3 < Q - \hat{Q} < 15$ MeV within the M signal region defined above. There are 2711 events in this selection, about 8 times the amount of background we estimate in the signal region. The background is dominated by random combinations of unrelated tracks and showers. Although the background includes ρ and K^{0}_{S} mesons combined with random tracks and/or showers, these events will not interfere with each other or with resonances in the signal as they are not from a true D^0. Additionally, $K^{0}_{S}\pi^0$ events populate a narrow region on the Dalitz plot in both signal and background. The corresponding amplitudes do not interfere with the other amplitudes that contribute to $D^0 \rightarrow \pi^+\pi^-\pi^0$ due to the long lifetime of the K^{0}_{S}. Therefore, the normalization of the K^{0}_{S} contribution component floats in the fit, but has no further role. The background shape is parametrized by a two dimensional cubic polynomial in $(m_{\pi^+\pi^-}, m_{\pi^+\pi^0})$ with terms representing ρ and K^{0}_{S} mesons.

Figure 2 shows the Dalitz-plot distribution for the $D^0 \rightarrow \pi^+\pi^-\pi^0$ candidates. Only contributions from $\rho^+\pi^-$, $\rho^0\pi\pi$, and $K^{0}_{S}\pi^0$ are readily apparent. Modeling the background shape and correcting for efficiency as described above, we then parametrize the $\pi^+\pi^-\pi^0$ Dalitz-plot distribution following the Breit-Wigner formalism using the unbinned likelihood method as described in Refs. [11,12]. In a separate fit, we also parametrize the $\pi\pi$ S wave with the K-matrix formalism as described in Ref. [10] for the analysis of $D^+ \rightarrow \pi^+\pi^-\pi^+$. We allow the normalization of the background contribution to float unconstrained in
our fits. We consider 17 resonant components, $\sigma \pi^0, \rho^0 \pi^0, \rho^+ \pi^-, \omega \pi^0, f_0(980)\pi^0, f_2(1270)\pi^0, f_0(1370)\pi^0, \rho(1450)^0 \pi^0, \rho(1450)^- \pi^+, \rho(1500)^0 \pi^0, \rho(1690)^0 \pi^0, \rho(1700)^0 \pi^0, \rho(1700)^- \pi^+, \rho(1710)^0 \pi^0$, as well as a nonresonant contribution. All interfere coherently and we fit for a complex coefficient (amplitude and relative phase) for each resonance as well as for the nonresonant contribution. We describe the resonances with the standard parameters [18]. Lacking theoretical guidance, the nonresonant contribution is modeled as a uniform distribution across the allowed phase space.

This study is sensitive only to relative phases and amplitudes. The largest mode, $\rho^+ \pi^-$, is assigned a zero phase and an amplitude of one. Since the choice of normalization, phase convention, and amplitude formalism may not always be identical for different experiments, fit fractions are reported in addition to amplitudes. The fit fraction is defined as the integral of a single component (resonant or nonresonant) over the Dalitz plot divided by the integral of the coherent sum of all components over the Dalitz plot [11]. The sum of the fit fractions for all components will in general not be unity because of interference.

We use the full covariance matrix from the fits to determine the statistical errors on fit fractions to properly include the correlated components of the uncertainty on the amplitudes and phases. After each fit, the covariance matrix and final parameter values are used to generate sample parameter sets. The distributions of fit fractions from these parameter sets are then used to determine the Gaussian width and 95% confidence level (C.L.) upper limits.

The results of our fits are presented in Table I. Fit A includes the three $\rho(770)$ resonances and a nonresonant (NR) contribution. We fit the D^0 and \bar{D}^0 samples separately in fits B1 and B2, respectively. Fits C1 and C2 allow a $\sigma(500)$ and $f_0(980)$ contribution, respectively, parametrized as a Breit-Wigner resonance [11]. The $\pi\pi$ S-wave contribution in fit D is parametrized following the K-matrix formalism [10].

![FIG. 2. (a) The Dalitz-plot distribution for $D^0 \to \pi^+ \pi^- \pi^0$ candidates. (b)–(d) Projections of the results of the fit described in the text to the $\pi^+ \pi^- \pi^0$ Dalitz plot showing both fit D (line) and the data (points). The results of fits A, C1, and C2 are indistinguishable from fit D. See text for details of the fits.](image-url)

<table>
<thead>
<tr>
<th>Fit</th>
<th>Amplitude</th>
<th>Phase (°)</th>
<th>Fit fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(\rho^+) 1.0 (fixed)</td>
<td>0.0 (fixed)</td>
<td>76.5 ± 1.8 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>(\rho^0) 0.56 ± 0.02 ± 0.03</td>
<td>10 ± 3 ± 2</td>
<td>23.9 ± 1.8 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>(\rho^-) 0.65 ± 0.03 ± 0.02</td>
<td>176 ± 3 ± 2</td>
<td>32.3 ± 2.1 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>NR 1.03 ± 0.17 ± 0.12</td>
<td>77 ± 8 ± 5</td>
<td>2.7 ± 0.9 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><6.4%95% C.L.</td>
</tr>
<tr>
<td>B1</td>
<td>(\rho^+) 1.0 (fixed)</td>
<td>0.0 (fixed)</td>
<td>76.6 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>(\rho^0) 0.57 ± 0.03</td>
<td>10 ± 4</td>
<td>24.9 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>(\rho^-) 0.64 ± 0.03</td>
<td>176 ± 4</td>
<td>31.0 ± 2.8</td>
</tr>
<tr>
<td></td>
<td>NR 1.03 ± 0.24</td>
<td>72 ± 11</td>
<td>2.8 ± 1.4</td>
</tr>
<tr>
<td>B2</td>
<td>(\rho^+) 1.0 (fixed)</td>
<td>0.0 (fixed)</td>
<td>76.0 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>(\rho^0) 0.55 ± 0.04</td>
<td>9 ± 4</td>
<td>22.5 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>(\rho^-) 0.67 ± 0.04</td>
<td>177 ± 4</td>
<td>34.0 ± 3.02</td>
</tr>
<tr>
<td></td>
<td>NR 1.03 ± 0.24</td>
<td>84 ± 11</td>
<td>2.7 ± 1.4</td>
</tr>
<tr>
<td>C1</td>
<td>(\rho^+) 1.0 (fixed)</td>
<td>0.0 (fixed)</td>
<td>78.0 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>(\rho^0) 0.56 ± 0.02</td>
<td>9 ± 3</td>
<td>24.4 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>(\rho^-) 0.66 ± 0.03</td>
<td>176 ± 3</td>
<td>33.9 ± 2.3</td>
</tr>
<tr>
<td></td>
<td>(\sigma(500)) 0.22 ± 0.06</td>
<td>355 ± 24</td>
<td>0.08 ± 0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><0.21%95% C.L.</td>
</tr>
<tr>
<td>C2</td>
<td>(\rho^+) 1.0 (fixed)</td>
<td>0.0 (fixed)</td>
<td>78.3 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>(\rho^0) 0.56 ± 0.02</td>
<td>10 ± 3</td>
<td>24.9 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>(\rho^-) 0.66 ± 0.03</td>
<td>178 ± 3</td>
<td>33.4 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>(f_0(980)) 0.074 ± 0.025</td>
<td>325 ± 23</td>
<td>0.010 ± 0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><0.026%95% C.L.</td>
</tr>
<tr>
<td>D</td>
<td>(\rho^+) 1.0 (fixed)</td>
<td>0.0 (fixed)</td>
<td>76.3 ± 1.9 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>(\rho^0) 0.57 ± 0.03 ± 0.03</td>
<td>10 ± 3 ± 2</td>
<td>24.4 ± 2.0 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>(\rho^-) 0.67 ± 0.03 ± 0.02</td>
<td>178 ± 3 ± 2</td>
<td>34.5 ± 2.4 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>(K) matrix 0.70 ± 0.20 ± 0.12</td>
<td>2 ± 14 ± 5</td>
<td>0.9 ± 0.7 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><1.9%95% C.L.</td>
</tr>
</tbody>
</table>
meson and glueball of mass ~1.5 GeV/c^2, each of which are beyond the qg̅ quark model [19]. A recent paper [20] highlights D decay as a preferred way to focus on these states because of the preponderance of S waves in the initial and final state. Charged D mesons are observed to decay preferentially to the \(\pi \pi \) S wave in the decay \(D^+ \rightarrow \pi^+ \pi^- \pi^+ \) studied by FOCUS [10] and E791 [21]. We considered several possible contributions of a \(\pi \pi \) S-wave component shown in Fig. 3. In fit C1 we replace the flat nonresonant amplitude with a \(\sigma(500) \) [21] contribution parametrized as a Breit-Wigner resonance. The contribution of \(\sigma \) is very small in our fit.

In fit C2, we replace the \(\sigma(500) \) with the \(f_0(980) \) where we use the mass and width determined from the single Breit-Wigner parametrization of E791 [22]. There are predictions [8] for \(D^+ \rightarrow f_0(980)\pi^+ \) (BF = 2.8%) and \(D^0 \rightarrow f_0(980)\pi^0 \) (BF = 0.06%). The prediction for the latter decay is extremely small because of the non-\(qg \) nature of \(f_0(980) \) and strong final state interactions. We find a fit fraction of \((0.010 \pm 0.008)\% \) for \(D^0 \rightarrow f_0(980)\pi^0 \). Although statistical errors limit the precision of our result, it is clear that this decay is highly suppressed in agreement with the model.

The \(\pi \pi \) S wave has contributions from a number of overlapping resonances and there are several models which parametrize this wave from other reactions [10,23,24]. The complicated structure is much more amenable to a coupled channel formulation than Breit-Wigner models. In fit D we consider a \(\pi \pi \) S-wave contribution following the \(K \)-matrix formalism of Au, Morgan, and Pennington [23] in addition to the resonant components of fit A. As in fit C1 and fit C2, we exclude the nonresonant amplitude. Figures 2(b)–2(d) shows the three projections of fit D. These fits are very similar to those of FOCUS [10] for \(D^+ \rightarrow \pi^+ \pi^- \pi^+ \). The fit fraction of the \(\pi \pi \) S-wave component in fit C1 is much less than that of E791 for the analogous fit to \(D^+ \rightarrow \pi^+ \pi^- \pi^+ \). For fit D, our fit fraction, \((0.9 \pm 0.7)\% \), was very small when compared to the FOCUS value for \(D^+ \) decay, \((56.00 \pm 3.24 \pm 0.08)\% \). The observed ratio of \(\pi \pi \) S-wave fit fractions in \(D^+ \) relative to \(D^0 \) is \(60^{+51}_{-70} \) or \(>36@95\% \) C.L.—somewhat larger than the tree-level estimate of \((3\sqrt{2})^2 = 18 \). The factors in the relative amplitudes of 3 and \(\sqrt{2} \) are due to color suppression and isospin, respectively.

The lack of evidence for a \(\pi \pi \) S wave in this analysis is interesting. The measured rates for the comparable reactions \(D^+ \rightarrow \pi^+ \pi^0 \), \((0.26 \pm 0.07)\% \), and \(D^0 \rightarrow \pi^0 \pi^0 \), \((0.084 \pm 0.022)\% \), are both given qualitatively by model calculations [8] which provide values of 0.19% and 0.11%. A quark model with final state interactions is used to fit parameters to a few charm decays and then predict many others. The same model predicts a ratio of branching fractions (BF) for \(D^+ \rightarrow f_0(980)\pi^+ \) and \(D^0 \rightarrow f_0(980)\pi^0 \) of 46.7. Comparing the results from Ref. [22] and our fit C2 we measure this ratio to be \(620^{+620}_{-70} \) or \(>340@95\% \) C.L. The absence of \(\pi \pi \) S wave in \(D^0 \rightarrow \pi^+ \pi^- \pi^0 \) is relevant for the determination of \(\gamma/\phi_3 \) with \(B^+ \rightarrow DK^+ \) where uncertainties in the \(\pi \pi \) S wave from \(D \) decay lead to large systematic uncertainties on \(\gamma/\phi_3 \) [25,26].

We calculate an integrated \(CP \) asymmetry across the Dalitz plot as described in Ref. [27] as the difference between the integral of the coherent sum of all amplitudes across the Dalitz plot for \(D^0 \) and \(\bar{D}^0 \), respectively, divided by the sum of the integral of the coherent sum of all amplitudes across the Dalitz plot for \(D^0 \) and \(\bar{D}^0 \), respectively, divided by the area of the Dalitz plot. We obtain \(A_{CP} = 0.01^{+0.09}_{-0.07} \pm 0.05 \), where the errors are statistical and systematic, respectively.

We consider systematic uncertainties from experimental sources and from the decay model separately. Contributions to the experimental systematic uncertainties arise from our model of the background, the efficiency, the signal fraction, and the event selection. Our general procedure is to change some aspect of fit A or fit D and interpret the change in the values of the amplitudes, phases, and fit fractions as an estimate of the systematic uncertainty. In fits A and D, we fix the coefficients of the background determined from a sideband region. To estimate the systematic uncertainty on this background shape we perform a fit with the coefficients allowed to float constrained by the covariance matrix of the background.
fit. We use the covariance matrix of the efficiency fit to estimate the systematic uncertainty due to the efficiency parametrization. We generate samples of efficiency parameters based on the covariance matrix and rerun the Dalitz-plot fit for each sample. We change selection criteria in the analysis to test whether our simulation properly models the efficiency. We vary the minimum π^0 daughter energy criteria, the cuts on Q and M, and the D^{*+} minimum momentum fraction. We take the square root of the sample variance of the amplitudes, phases, and fit fractions from the nominal result compared to the results in this series of fits as a measure of the experimental systematic uncertainty.

We consider the uncertainty arising from the choice of the $\pi\pi S$-wave model included in the fit. We interpret the variation in the ρ amplitudes, phases, and fit fractions in fits A, C1, C2, and D as a modeling systematic uncertainty. We add the experimental and model systematic uncertainty in quadrature to obtain the total systematic uncertainty reported in Table I.

In conclusion, we have analyzed the resonant substructure of the decay $D^0 \rightarrow \pi^+\pi^-\pi^0$ using the Dalitz-plot analysis technique. We observe the three $\rho(770)\pi$ resonant contributions and a small nonresonant contribution. We find no evidence for a $\pi\pi S$-wave contribution with either the Breit-Wigner or K-matrix parametrization. The lack of significant $\pi\pi S$ wave in $D^0 \rightarrow \pi^+\pi^-\pi^0$ will lead to a smaller modeling systematic error on γ/ϕ_3 determined with $B^+ \rightarrow DK^+$, $D \rightarrow \pi^+\pi^-\pi^0$. We find A_{CP} which is the asymmetry between the D^0 and \bar{D}^0 distributions integrated over the entire Dalitz plot to be $0.01^{+0.09}_{-0.07} \pm 0.05$.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation and the U.S. Department of Energy.