New measurement of the masses and widths of the \(\Sigma^{(**++)}(c) \) and \(\Sigma^{(*)0}(c) \) charmed baryons

This paper is posted at Purdue e-Pubs.
http://docs.lib.purdue.edu/physics_articles/114
New measurement of the masses and widths of the Σ_c^{*++} and Σ_c^{*0} charmed baryons

S. B. Athar, P. Avery, L. Breva-Newell, R. Patel, V. Potlia, H. Stoeck, and J. Yelton

University of Florida, Gainesville, Florida 32611, USA

P. Rubin

George Mason University, Fairfax, Virginia 22030, USA

University of Illinois, Urbana-Champaign, Illinois 61801, USA

K. W. Edwards

Carleton University, Ottawa, Ontario, Canada K1S 5B6, and the Institute of Particle Physics, Canada

D. Besson

University of Kansas, Lawrence, Kansas 66045, USA

T. K. Pedlar

Luther College, Decorah, Iowa 52101, USA

University of Minnesota, Minneapolis, Minnesota 55455, USA

S. Dobbs, Z. Metreveli, K. K. Seth, A. Tomaradze, and P. Zweber

Northwestern University, Evanston, Illinois 60208, USA

J. Ernst and A. H. Mahmood

State University of New York at Albany, Albany, New York 12222, USA

K. Arms and K. K. Gan

Ohio State University, Columbus, Ohio 43210, USA

H. Severini

University of Oklahoma, Norman, Oklahoma 73019, USA

University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Z. Li, A. Lopez, H. Mendez, and J. Ramirez

University of Puerto Rico, Mayaguez, Puerto Rico 00681

Purdue University, West Lafayette, Indiana 47907, USA

G. S. Adams, M. Chasse, M. Cravey, J. P. Cummings, I. Danko, and J. Napolitano

Rensselaer Polytechnic Institute, Troy, New York 12180

D. Cronin-Hennessy, C. S. Park, W. Park, J. B. Thayer, and E. H. Thorndike

University of Rochester, Rochester, New York 14627, USA

T. E. Coan, Y. S. Gao, and F. Liu

Southern Methodist University, Dallas, Texas 75275, USA

Syracuse University, Syracuse, New York 13244, USA
In 1997 [1], the CLEO Collaboration reported the observation of two states, decaying into \(\Lambda_c^+ \pi^+ \) and \(\Lambda_c^+ \pi^- \). These states were identified as the \(\Sigma_c^{++} \) and \(\Sigma_c^0 \), which is a spin-0, isospin triplet, the \(\Sigma_c^+ \), which is a spin-1, isospin triplet. Although the large background and low efficiency associated with the detection of a \(\pi^0 \), had a lower signal to noise ratio. In 2001 [2] CLEO showed the first evidence of the \(\Lambda_c^+ \) mass. Here we present new measurements of the natural widths of the \(\Sigma_c^{++} \) and \(\Sigma_c^0 \) baryons, together with measurements of their masses with respect to the \(\Lambda_c^+ \) mass. These measurements are used to check the predictions of heavy quark symmetry. The data presented here were taken at the Cornell electron storage ring (CESR), corresponding to an integrated luminosity of 14 fb\(^{-1}\) in the energy range 9.4 to 11.5 GeV. This data set was acquired to study the decay products of the \(Y(1S) \), \(Y(2S) \), \(Y(3S) \), and \(Y(4S) \) resonances as well as the \(e^+e^- \rightarrow q\bar{q} \) continuum data in this energy range. The production mechanism of the \(\Lambda_c^+ \) baryons is not under study here, but we note that our kinematic cuts exclude the

\[n \text{ of the } \Lambda_c^+ \text{ baryons to check the predictions of heavy quark symmetry.} \]
We observe the Σ_c^+ candidates by their decay $\Sigma_c^{++}/0 \to \Lambda_c^+ \pi^+$. Charge conjugate modes are implicit throughout. For this measurement we use the two Λ_c^+ decay modes $\Lambda_c^+ \to pK^-\pi^+$ and $\Lambda_c^+ \to p\bar{K}^0$. The CLEO III detector configuration detects charged particles using a cylindrical drift chamber system inside a solenoidal magnet. Particle identification of p, K, and π candidates is performed using specific ionization (dE/dx) measurements in the drift chamber, combined with information, when present, from the RICH counters. The technique for combining the two identification systems follows the method that was used to find the decay $\Xi^0 \to pK^-K^+\pi^+$, and is described elsewhere [5]. $K^0\bar{S}$ candidates are identified with reconstructed 2-track vertices displaced by more than 5 mm along the direction of the resultant momentum. Assuming the two tracks are pions, those candidates with an invariant mass within 8 MeV of the nominal K_S^0 mass are mass-constrained and retained for further analysis.

To illustrate the good statistics and signal to noise ratio of the Λ_c^+ signals, we reduce the combinatorial background, which is worse for Λ_c^+ candidates with low momentum, by applying a cut on the scaled momentum, x_p.

We define

$$x_p \equiv p_{\text{baryon}}/p_{\text{max}},$$

where $p_{\text{max}} = \sqrt{E_{\text{beam}}^2 - M_{\text{baryon}}^2}$. We fit the invariant mass distributions for these modes to a sum of a Gaussian signal and a second-order polynomial background. Figure 1 shows the plot for the $\Lambda_c^+ \to pK^-\pi^+$ signal; the signal yield is approximately 45,000. The decay mode $\Lambda_c^+ \to p\bar{K}^0$, which has superior signal to noise ratio, augments the number of candidates by 15%.

Releasing the $x_p(\Lambda_c^+)$ cut, Λ_c^+ candidates within 2.0σ of the peak mass in each decay mode were combined with each remaining charged π track in the event. A cut of $x_p > 0.5$ was made on the $\Lambda_c^+\pi$ combination, and the mass difference $\Delta(M) = M(\Lambda_c^+\pi) - M(\Lambda_c^+)$ was calculated.

The mass difference spectra, shown in Fig. 2, are plotted in the mass range 178–298 MeV. The lower bound of this plot is chosen to avoid the contribution of $\Sigma_c^{++}/0 \to \Lambda_c^+ \pi^+\pi^-$ decays. The upper bound is chosen to approximately center the Σ_c^+ peaks.

The fits to the signal spectra in Fig. 2 each have three components as follows. Firstly, the excesses in the region below 204 MeV due to $\Lambda_c^+(2625)$ production are accommodated by functions found using the $\Lambda_c^+\pi$ spectrum from reconstructed $\Lambda_c^+(2625)$ decays found in this same dataset. The normalization of this spectrum was then corrected for the inefficiency in detecting both transition pions by use of a Monte Carlo program. Secondly, we use a background shape of a second-order polynomial. Lastly, we use signal functions of spin-1 Breit-Wigners convolved with a Gaussian resolution function of standard deviation,
S. B. ATHAR

technique, and the different fits produce a maximum range due to the fitting technique.

In the case of \(\Lambda^+ \pi^+ \) we obtain a signal of \(1330 \pm 110 \) events, with a width of \(\Gamma = 14.4^{+1.6}_{-1.5} \) MeV, and a mass difference of \(\Delta(M) = 231.5 \pm 0.4 \) MeV. For the \(\Lambda^+ \pi^- \), we obtain a signal of \(1350 \pm 120 \) events, with a width of \(\Gamma = 16.6^{+1.9}_{-1.7} \) MeV, and a mass difference of \(\Delta(M) = 231.4 \pm 0.5 \) MeV.

We have checked that consistent widths and mass differences are extracted if the data are restricted to particles or antiparticles, and if the data are restricted to data taken at the Y(1S), Y(2S) and Y(3S) (resonances where the signal to background ratio is not as high), or in the Y(4S) and nonresonant regions.

The parameters of the extracted signals depend on the exact method of fitting used. We have tried many variations of the background functions and fitting range. These include using a second-order Chebychev polynomial for the background function, allowing the \(\Lambda_c(2625) \) contribution to float, and extending the fitting range to much higher values of \(\Delta(M) \). The systematic uncertainties in the measurements due to the fitting procedures are taken as being the maximum range of parameters obtained using different reasonable fits of these types. This is the dominating systematic uncertainty for the width measurements. The results of the Monte Carlo simulation program that predicts the detector resolution have been checked using a series of narrow states in our data. Based on the agreement of the simulation and the results of analyzing these peaks, we assign a systematic uncertainty of \(\pm 0.13 \) MeV to the value of the detector resolution for the \(\Sigma_c^* \) states. As the resolution is an order of magnitude less than the intrinsic widths that we measure, this uncertainty produces a modest uncertainty \(\pm 0.14 \) MeV in the measurements of the widths, which is negligible compared with the uncertainty due to the fitting technique.

The masses of the signals are insensitive to the fitting technique, and the different fits produce a maximum range of \(\pm 0.2 \) MeV for the measurements. We allow for a systematic uncertainty of \(0.2 \) MeV from possible analysis biases. An uncertainty in the CLEO magnetic field strength of 0.1%, which is bounded by measurements of particles of known mass, corresponds to an uncertainty of 0.13 MeV in the mass difference measurements. These three sources of uncertainty add in quadrature to give a total systematic uncertainty in the mass difference measurements of 0.3 MeV. These last two uncertainties do not contribute to the systematic uncertainty in the isospin mass splitting between the two states.

Our measurements of the \(\Sigma_c^* \) masses and widths are consistent with the previously published CLEO numbers [1]. However, the splitting between the two states \(M(\Sigma_c^{*-*}) - M(\Sigma_c^{*0}) \), is now measured to be \(-0.1 \pm 0.8 \pm 0.3 \) MeV, whereas previously it was \(+1.9 \pm 2.0 \) MeV. This isospin splitting is expected to be small and negative [7]. The difference in the widths of the two states is expected to be negligible. By heavy quark symmetry [8] the ratio \(\Gamma(\Sigma_c^{*+})/\Gamma(\Sigma_c^*) \) should equal \((M_{\Sigma_c^{*+}}/M_{\Sigma_c^*}) \times [p_\pi(\Sigma_c^{*+})/p_\pi(\Sigma_c^*)]^3 \), where \(p_\pi \) is the momentum of the \(\pi \) in the parent’s rest frame. The isospin mass splitting of the states is very small, and for both the doubly charged and neutral states this latter quantity equals 7.5 \pm 0.1. Using our new values of the \(\Sigma_c^* \) widths, and world average values of the widths of the \(\Sigma_c^* \) states [9], we obtain \(\Gamma(\Sigma_c^{*+})/\Gamma(\Sigma_c^*) = 6.5 \pm 1.3 \) and \(\Gamma(\Sigma_c^{*0})/\Gamma(\Sigma_c^*) = 7.5 \pm 1.7 \), in excellent agreement with expectation.

In conclusion, we present new measurements of the properties of the \(\Sigma_c^{*+} \) and \(\Sigma_c^{*0} \) baryons. For the doubly charged state \(M(\Sigma_c^{*+}) - M(\Lambda_c^+) \) is measured to be \(231.5 \pm 0.4 \pm 0.3 \) MeV and \(\Gamma = 14.4^{+1.6}_{-1.5} \pm 1.4 \) MeV, and for the neutral state \(M(\Sigma_c^{*0}) - M(\Lambda_c^0) \) is measured to be \(231.4 \pm 0.5 \pm 0.3 \) MeV and \(\Gamma = 16.6^{+1.9}_{-1.7} \pm 1.4 \) MeV.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation and the U.S. Department of Energy.