Pavement Design Approval

Kumar P. Dave
Pavement Design Engineer
INDOT
03-11-2004

Rubblization

Rubblization

Rubblization

Rubblization
Underdrain

Crack & Seat at I-74

I-74

Crack & Seat at I-74

Underdrain Trench at I-74

SR 37 Rubblization
Chapter 52 of IDM

- Pavement and Underdrain Design Elements
- Recently revised (2004)

Chapter 52 Revisions

- Pay items
- Milling
- Chapter 56 & 52 compatibility
- Typical Sections/Standard Drawings
- Widening with HMA
- Subgrade Treatment (Type A,B,C,D)
Chapter 52 of IDM

• Introduction
• History
• Pavement Development Process
• Pavement Types
• Pavement Surface Distresses
• Pavement Scoping

Chapter 52

• Milling of Pavements
• Pavement Design Procedural Guidelines
• Pavement Cross Section Design
• Underdrains
• Preventive Maintenance
• Life Cycle Costs
• Typical Pavement Sections
• Pavement Design Requests and Instructions

Pavement and Underdrain Design Elements

• Introduction: Guidelines for design of pavements
• Pavement Design Considerations:
 – Pavement Performance
 – Traffic
 – Roadbed Soil
 – Materials of construction
 – Environment
 – Drainage
 – Reliability
 – Life-Cycle cost

History

• Indiana Pavements:
 – Flexible: HMA
 – Rigid: PCCP
 – Aggregate
 – Brick
• Underdrains since 1950s.
• Mid 1990 study showed poor performance
 of underdrain system

Pavement Development process

• Scope: Preliminary Pavement Design
• Design: Final Pavement Design
• District Resurface Design
• Pavement Design Section prepares pavement design for all INDOT Projects
• Approves LPA

Pavement Types

• Aggregate Pavement
• HMA
• PCCP
• Composite Pavement
Pavement Surface Distresses
- Asphalt Pavement
 - Rutting, raveling, cracking, stripping etc
- Concrete Pavement
 - ASR, D-cracking, faulting, joint failure etc
- Asphalt over Concrete Pavement:
 - Reflective cracking

Pavement Scoping
- PM Treatment: Surface milling and thin HMA inlay etc for asphalt pavement
 - Sawing and sealing, CPR etc for PCCP
- Functional Treatment: Restore pavement smoothness. Surface and Intermediate for asphalt
 - CPR and HMA overlay for PCCP

Pavement Scoping
- Structural Treatment:
 - HMA: Base, Intermediate and Surface
 - PCCP: Slab reduction (crack & seat, Rubblization)
 - Need Geotech recommendations for rubblization & reconstruction

Milling is used to
- Remove distressed layers
- Make crown corrections
- Maintain Curb heights or vertical clearance
- Scarify existing surfaces
- Surface profiling
- Removal of asphalt overlays
- Pavement transition

Milling
- Asphalt Scarification/Profile
- Asphalt Milling
- Asphalt Removal
- PCCP Milling
- Transition Milling

Pavement Design Procedural Guidelines
- Pavement Design Engineer
 - INDOT
 - LPA
 - District
- Pavement Design Requests
 - INDOT
 - LPA
 - District
Pavement Design Procedural Guidelines

INDOT

Pavement Design Engineer has the responsibility for
INDOT, LPA, District Designs

Pavement Steering Committee

1. Chief, Mat & Tests (Chairman)
2. Materials Engineer, M & T
3. Pavement Design Engineer, M & T
4. Chief, Geotech, M & T
5. District Operation Engineer
6. Construction Field Engineer
7. Section Manager, Research
8. Pavement Management Engineer
9. District Development Engineer
10. Standard Manager

DARWin INPUTS

Simple ESAL’s Calculations(HMA &PCCP)

- Performance Period
- Two-Way Traffic (ADT)
- Number of Lanes in Design Direction
- Percent of All Trucks in Design Direction
- Percent Heavy Trucks (of ADT) FHWA Class 5 or Greater
- Average Initial Truck Factor (ESAL’s/Truck)
- Annual Truck Factor Growth Rate
- Annual Truck Volume Growth Rate

DARWIN will compute/calculate ESAL’s

ESAL’s and PG Binder

- ESAL’s has effects on:
 - Thickness
 - HMA mix design
 - CA Angularity
 - FA Angularity
 - Surface Aggregates types
 - PG binder selection

<table>
<thead>
<tr>
<th>ESAL’s Category</th>
<th>ESAL’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><300,000</td>
</tr>
<tr>
<td>2</td>
<td><3,000,000</td>
</tr>
<tr>
<td>3</td>
<td><10,000,000</td>
</tr>
<tr>
<td>4</td>
<td><30,000,000</td>
</tr>
<tr>
<td>5</td>
<td>>30,000,000</td>
</tr>
</tbody>
</table>

Type A	< 300,000
Type B	300,000 < 3,000,000
Type C	3,000,000 to <10,000,000
Type D	>10,000,000
ESAL’s

80,000 lb Truck

= 6,000

ESAL’s

67 kN
15,000 lb
0.48 ESAL

+ 27 kN
6,000 lb
0.01 ESAL

= 0.49 ESAL’s

ESAL’s

151 kN
34,000 lb
1.10

+ 151 kN
34,000 lb
1.10

+ 54 kN
12,000 lb
0.19

= 2.39 ESAL’s

QC/QA HMA Mixtures

• Sublot as 600 Mg (700 tons) for surface courses and 1000 Mg (1000 tons) for base or intermediate courses.
• Urban intersection projects with ESAL’s > 3,000,000

PG Binder

Performance Graded (PG) Binders for QC/QA are designed based on:

• 1. Project’s climate (temperature)
• 2. Speed of traffic
• 3. Esal

PG Binder

• PG 70-22

Performance Graded
High temperature
Low temperature

• LTPPBIND version 2.1 be downloaded at

http://www.tfhrc.gov/pavement/ltpp/ltppbind.htm
PG Binder

- We may not need higher PG Binder grade in lower layers
- Example: If project requires PG 70-22, use 70-22 for Surface and Intermediate.
- For Base layer we can use PG 64-22

HMA Pay item

- QC/QA-HMA, ___ , __ , __ , __ mm
 (ESAL) (PG) (Type) (Mix)
- EXAMPLE:
 QC/QA-HMA, 4, 76, Surface, 9.5 mm
- EXAMPLE:
 HMA, __ , ___ HMA, Type B, Surface
 (Type) (Course)

ESAL & PG Binder

- DO NOT SHOW ESAL ON TITLE SHEET
- DO NOT SHOW PG BINDER ON TYPICAL SECTION

DARWin INPUTS

Flexible Structural Design

- 18-Kip ESAL’s
- Initial serviceability
- Terminal Serviceability
- Reliability Level
- Overall Standard Deviation
- Roadbed Soil Resilient Modulus

DARWIN will compute/calculate

- Calculated Design Structural Number (SN)
- $SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$
 - a_i: ith layer coefficient
 - D_i: layer thickness (inches)
 - m_i: layer drainage coefficient

Typical HMA Pavement

- 90 kg/m² QC/QA-HMA, 4, 76, Surface, 9.5 mm
- 150 kg/m² QC/QA-HMA, 4, 76, Intermediate, 19
- 180 kg/m² QC/QA-HMA, 4, 64, Base, 19.0 mm
- 140 kg/m² QC/QA-HMA, 5, 76, Intermediate, C19
- 180 kg/m² QC/QA-HMA, 4, 64, Base, 19.0 mm
- 180 kg/m² QC/QA-HMA, 4, 64, Base, 19.0 mm on Subgrade Type A or B or C or D or E
DARWin INPUTS
Rigid Structural Design

- Pavement Type
- 18-kip ESAL's
- Initial Serviceability
- Terminal Serviceability
- 28-day Mean PCC Modulus of Rupture
- 28-day Mean Elastic Modulus of Slab
- Mean Effective k-value
- Reliability Level
- Overall Standard Deviation
- Load Transfer Coefficient, J
- Overall Drainage Coefficient, Cd

DARWIN will calculate the design thickness
- Calculated Design Thickness

Typical PCCP

- 10 to 15 inches of plain jointed QC/QA PCCP on
- Subbase for PCCP
 - 3 inches of open graded aggregate No. 8
 - 6 inches of dense graded aggregate No. 53
- Subgrade Treatment Type
- With Underdrain
- 18 feet Joint Spacing

UNDERDRAINS

- The purpose
- UD Warrants
- UD for PCCP, HMA, C & S and Rubb.
- Geotextile
- UD are not for PM or functional overlay

Pavement Design Requests and Instructions

- Pavement Design Approval Request Form for INDOT/LPA
- Submit to INDOT Pavement Design Engineer at the Mat & Tests
- Fill out the appropriate forms completely
- Turn Around time is 4 to 6 weeks
District Pavement Design Request

- Pavement Design Approval Request Form
- Pavement Core Report
- Color Pictures
- Do not fax Request Form
- Pavement history /Give your recommended pavement design
- Underseal and FWD Report
- Typical section (8.5X11)

Subgrade Treatment

- Subgrade Treatment Type A,B,C,D,E
 - Type A: 16 inch chemical modification or
 - 12 inches excavation and CA 53
 - Type B: 8 inch chemical or
 - 6 inch excavation and CA 53
 - Type C: 24 inches compacted to density/moisture
 - Type D: 12 inch compacted to density/moisture
 - Type E: 6 inch compacted to density/moisture

This form is available at the back of Chapter 52, IN Design Manual

Questions?

Thank You