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Abstract: We study a token ring system with & stations, one of which has an infinite or finite
capacity buffer, and the rest have unit-capacity buffers. Assuming that packet arrivals are asym-
metric Poisson, and other distributions such as service-times and walking-times are arbitrary, it is
shown that the the queue-length process at the station with non-unit buffering (reference station)
is essentially a Markov renewal process. The states of the Markov renewal process are given by
the different types of service cycles made by the token with respect o the reference station. Using
the different service cycles initiated by customers at the reference queue to differentiate berween
customer fypes at this queue, the queueing process at the reference station can be viewed as an
M/SM/1 queve. We describe how the transidon probability submatrices for the block M/G/1
structure for the queue length can can be computed. Once these submatrices are obtained, we

apply known results to obtain the statonary queue-length distribution at the reference queue.




1. Introduction

In building models of communication systems, an increasingly comﬁmn phenomenon is
that of analytic intractability. While one reason for this is the increasing complexity of systems
being modelled, it i1s often possible to handle otherwise difficult models by resorting to algo-
rithmic methods (1]. In such instances, it is convenient to settle performarce questions computa-
tionally instead of discarding a difficult problem in favour of one obtained via simplifying
assumptions (such as independence assumptions). As an example of such an instance, we intro-
duce a simple, but sufficiently detailed model of a token ring queue. Token rings are known to
pose formidable problems 1o analysts, especially when stations offer asymmetric traffic, and mes-

sages are transmitted nonexhaustively [2].

A token ring is a local area network [3] that allows N different computer systems to com-

municate with one another. Messages that are sent from one system to another are, in essence,

customers that require service from the network. In this way, each of the N different stations

offers customers that require service. A single server (the token) walks around the ring from one
station to another, making repeated cycles. At each station, the server serves at most one custo-
mer (hence called the one-ar-a-time service discipline) if the station's buffer is not empty, and
then proceeds to the next station. Due to channel propagation delays, the server takes a centain

amount of time to walk from one station 10 the next on this ring,

We are interested in computing stationary distributions of customer-queue lengths and
waiting-times, etc. At the very oulset, we restrict our model to one in which (N — 1) stations have
unit capacity buffers, and the N station has a buffer of either finite or unlimited capacity. It will
be seen the technique is easily generalised, at the expense of increased matrix sizes, to a system
in which the unit-capacity buffers are replaced by arbitrary, finite capacity buffers. By making the
size of these buffers sufficiendy large, one may obtain a theoretically sound approximation to the

problem where all buffers are infinite. This generalises the manner in which an M/GI/1/K queue,
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Figure 1. A three station cyclic-server model.
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with large X, can be used to approximate an M/G//1/ea queue, in essence a truncation.

In section 2, we first present the model and we show that the queueing process at station N
is a Markov renewal process. Initially this is done for N =3 to demonstrate the ideas involved,
and later generalised. Since the queue at station N appears to station-N customers as a single
server queue, we label each station-N customer with a fype, given by the kind of service cycle
this customer initiates. Once transitions between customer types are described, known resuits for
M /SM /1 theory [6] may be applied to obtain the queueing distibutions at station N . In section 3,
we describe how these transition probabilities between customer types can be computed, and
show that the queueing process at station N is an M/SM/1 queue. In section 4, we apply results
of Neuts [4], and Lucantoni and Neuts [5] to obtain the stationary queue length distribution of

staton N customers and present some numerical results.

2. The Cyclic-Server Model

Consider a system of ¥ independent queueing stations_armanged in a circle_as shown in Fig-

ure 1. Each queueing station is given a unique label j, 1 < j < N. Eachstation j, 1< S N-1,
Is assumed to have a maximum queue capacity of one, and station N is assumed to have a queue
capacity of b, beI*={1,2, --- }. Customers arrive at each queue j as a Poisson process
with rate A;, independently of arrivals 10 other queues, 1 < j € N. Those customers who arrive

at a given queve only to find it filled to capacity are lost to the system.

In the ring-based queueing system just described, a single server provides service by walk-
ing from one station to the next, unidirectionally. The sequence of station visits is specified as
1,2,.,N,1,2, .., orotherwise known as cyclic service. The arrival instant of the server at
queueing station j is called the scan-instant of station j, 1 < j € N. If staton ;s queue is found
nonempty on any station-j scan, then ar most one customer is served at station j, 1< j € N on
that visit. Station j customers require service of random length X, with Pr(X; <) = B;(1),

1sj<N. Customers leave the system if they have completed service. If the server finds
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station j's buffer empty on any station-j scan, it takes the server a small random time ¥ ; (called
the swirching-time at station-f) to bypass this station, with Pr(Y, F£8)=8()1<j<N. On
completion of either service or switching at station j, the server must walk over to station
k =( mod N}+ 1, this walk-time being random, of length W,, with Pr(W; <r] =V;(t),

1<j<N.

Semi-Markov Service Cycles
Assuming that the system is operating at steady-state and all queueing distributions are sta-

Honary, let time r =0 correspond to an .arbitrary scan-instant at station N. Let the set

{tf ;1< j <N, k > 0} define a strictly increasing sequence of Lime instants, with ¢ correspond-

ing to the kth scan-instant  of  the server  at staton  j,
O=r=ty<tl <+ < IN—1 < & < -+, etc. The intervisit ime of the server for any sta-

e
tion j is the time between two consecutive scans of the server at station j, 1< J<N. The kth inter-

visit time of the server at any station j is defined as Cf = ¢f ~ ¥, 1< j <N,k > 1.

Let Zf denote the number of customers that the server finds quened at station j at scan-
instant ¢f, 1 sj <N, k 2 1. For convenience, we take Z° =0, 1 < j < N. It should be clear
that 2fe {0,1} for 1<j <N—1 and 2% € {0,1,2, ... 5}, for each k. &k > 1 Let
{Z{) ; t > 0} be a continuous-time stochastic process defined by
Z(t) = < Zy(t) Z1(2), ., Zy{t) >, where Z;(t) =ZF for of <t <f*!, k > 1. The discrete
parameter process {Zy ; £ > 1} given by Z; = < Z§, Zf, ..., Z§_, > and the continuous param-
eter process {Z(¢)} are both defined with respect to embedded instants ¢§ , £ > 1., At each scan-
instant 1 of station N, the server has available 2 new record Z,_, = < z&™1, 2671, _, z&=! >, of
events (i.e., an ¥ -vector description) that occurred in the interval (157", 1£) , £ > 1. Station ¥ is
the first to contribute to this record, with Z§ ! =z§1e {0, 1, ..., b}. The other N1 stations

contribute in increasing order of station indices, with staton J contributing
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Zf ' =z e {0, 1}, 1<j<N-1. Thus, at tme 1§, the server completes a record

-1 k-1 k—ll

<zZy .27 - 2Zj_| > and simultaneously begins to define a new record with

ZEk=z6e {0.1,2, ..., b}
THEOREM
If all queueing disiributions are stationary, and the system is in steady state operation, then

(1) {Z{z); t > 0} is a semi-Markov process, and

() {Zg; k > Q}is a time-homogeneous Markov chain

defined on {0, 1, 2, ..., b} X By, where @y_; denotes the set of all (N—1) bit binary vec-

tors.,

PROOF:

For ®ach k, & > 0, the events {Z}; 1</<N} are dependent events. This is due to the

~——monempty-intersection of each pair of ‘initervals [¢/; ') and ¢ 7/*!) corresponding to server

intervisit intervals for stations { and j,i # j, andevery k > Q.
Let A(Cf*') denote the number of customer arrivals at each station j during the intervisit
time Cf*' = ¢+ — X 1< j <N. Using a stochastic equation very similar to that of the stan-

dard M /G{/1 departure-instant based queueing chain,

zZF! = (ZF- 117+ DF! (2.1)
forl = j <N, with
1 A(CF*HY >0
D}”’l - (2.2)
0 ACfH=0
forl1 <j £N-1,and
DEY = min {b ~[Z5 —al*, A(CE) } (2.3)

From (2.1) we see that {Z; ; £ > 0} is an ¥ -dimensional Markov chain embedded at station-¥
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scan-instants. The process {Z(t)} also makes transitions at the embedded instants %, £ > 1.
However, {Z(z)} spends an arbitrary time in each state, with each complete record defining a
state, hence it is semi-Markov process with {Z,; } as its embedded Markov chain.

The server in our system defines states by recording each station’s queue size each time he
visits the stadon. He begins with staton N, then visits staton 1, station 2, ..., station {¥-1),
Even though he has completed a record when he obtains station (N—1)'s queue status, a state
transiton of the system occurs only when the server arrives at station N. The new system state is
then defined by the record just completed by the server. Once again at station N, the server

begins to define a new record, and thus, a new System next state,

In the next section, we focus our attention on the queueing process at station N. When a
customer from station N goes into service, this customer initiates a server-cycle of some random

length. The actal length of this cycle must depend on evenis at the various stations visited before

the server completes the cycle. Since there are only (¥ — 1) other stations to be visited, the
number of such events is 2¥~!. Consequently, a station-N customer may initiate any one of 2¥~1

server cycles. The above theorem tells us that if we know what events (i.e., service or switching)

occurred at the N stations during any paricular cycle, say < zy, zy , - , Zy_1 >, the probabil-
ity of a given sequence of events < zy’,z,", - , zy_;” > on the next cycle is obtainable in
Markov fashion.

Consider a server cycle corresponding to the record of evenis 2=< zy , 2y, - . Zy—1 >, where

zy =i, and { > 0. This means that a staton-N customer went into service at the start of the
cycle. The probability that the next record of events zZ'=< zy’, z;", --- , zy-;” > takes on a
particular form depends on the record z. In particular, if zy” = m >0 (i.e., the server finds station
N nonempty on the next visit) then < z;, --- , zy_; > is said to define the rype of the next cus-

tomer to go into service at stadom N. With this interpretation, the 2V~ different records
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obtainable from stations 1 through N—1 define 2"~ possible customer types offered by station & .
More importantly, the problem can now be viewed as one in which customers of 2¥~! different
types arrive at station N as points from a Poisson process, with a customer of type j following a
customer of type { with a certain computable probability p;_ i 1Si.) N1 A computaticnal
method to obtain P = {p; ; ] is outlined in the next two sections, along with a more detailed look

at starion N 's queue.

3. The M/SM/1/b Queue at Station N

At the kth scan of station N at time z§, the server obtains a new queue-length (i.e., number

of customers in the queue), Ly = Z§. It is clear that
Lq = (Le - 117 + DY (3.1)

for each &, £ > 1. Equation (3.1) bears a strong resemblance to the departure-instant based

MIGIn dﬁcueing chain. However, in this case, the sequence of random variables {Df ; & > 1}

is nor an 1.i.d sequence. In fact, by Theorem 1, this sequence is semi-Markovian, thus causing the

queue at station N 10 be a generalisation of the M/GI/1 queue, known as the M |SM | 1 queue [6).

The Transition Probability Matrix

Given that Z, = < i, z{, .., z§_; > , Theorem 1 says that we can compute the probability
of the next state being Ze, = <m, 2§, ., z§*) >, fori 20, and max (G —1,0)<m < b,
k > 1. Using (¥—1) bit binary vectors z and 2, we are now interested in computing the probabii-
wy Pr(Zyy =<mz > Zy,=<i,z>] fori 20and max (i — 1 . 0) £m £ b. Since transi-
tions are statonary, we can neglect the index & and wrte this as
PriZ’=<m, 2> | Z=<i,z>]

Foreachk, £ > 1,and 1 £ < N, the (k + 1)" intervisit ime of the server at station j

(see Figure 2) is given by
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N
CH' = F(TF + W many+1) + WE
i=f

j-1
+ TITHY + WL my+1] (32)
i=1
where
| Xk ZE=1
TE = (3.3)
Y¥ ZE=0

where {X¥; &k 21} is an iid sequence of random variables with common law B;(-), and
Y k2 1} is an i.i.d sequence of random variables with common law S;(°), 1 <j<N. The
independence: between random variables in the above two sequences is a consequence of the fact
that different customers (possibly from the same queue) have independent service-times, and the
walk-times of the server between any two consecutive stations, in any two different cycles, are
independent. Since transitions are stationary, we can neglect &, and replace Z¥ by Z;, and Z#+!

by Z;’,forl i £ N. Note that for each current state and next state pair, we can write

CI=T1+W2+T2+W3+"'+TN+W1’ (3.4)
Co=To+W3+T3+Wye+ - +T +Wy

CN =TN +W1’+T1’+W2’+ +TN-—1’+WN’

where all unprimed terms correspond to random times that occur in defining the current state, and
primed terms correspond to random times that occur in defining the next state. Note that C; and
C; are dependent random variables due to the overlap of part of C; and C;. Given thar the
current state is Z=<{,z>,'for any { 20 and ze Oy, we only need to compute
Pr(Z7=<m,0,0,..,0> | Z=<{,z>]in order to obtain the desired transition probability

matrix. This is best explained with the aid of an example for ¥ = 3.



Example. N =3 stations.

In order to obtain Pr(Z'=<m2> | Z=<i,z>] for a given pair z,2z€®,, i 20,
max(i —1,0)<m <£b, we proceed as follows. We keep ze®, fixed, and first compute
Pr(Z=<m ,0,0> | Z=«i ,z>] separately, for i =0 and { > 0 respectively. With

x=<0, 0>, define the 4x4 (in general, 2%~ x 21y marrices of transition probabilities

Ba(x,t | 2)=Pr{iZ’'=<m x> Cy <t | T=<0, z>]
Ap X, .t [ Z)=Pr(Z =<m ,x>,Cy <t | T=<i , 2>] (3.5

Observing that the three different station intervisit times can be written as

C1=T1+W2+T2+W3+T3+W1'
C2= T2+ W3 +T3 +W1' +T1’ +W2’ (3.6)
C3 = T3 +W1'+ Tl’ +W2’ +T2’ + "Vg,Ir

where rhe;“panial overlap of these times is clearly dispiayed, we obtain

By (¢t | D=[e™ dFy, (v) N
0 e~ dFy(y)

I
, ]
—0-14'11)} !
x)e dfr, ()
£ Ie—ﬂ1+h) dFy ()
0
L m i M
Ray )™ Ray)™
» S(Z) b[ e—G-i + A3+ A)y ml! dFT,(}') 4’ e—(l1+ll+lg)y 2 d-FWIO) (37)
m

[ (lay)rm
t my —(M+l:|))‘__..dp
[ vusry QY Je ™ Fm0)
3

I 7 ! iyl
(Aay )™’ (Aay )™
—Ayy —Ay
X . dF
J € mgt 1) g e o w0)
6
where S(m) = {(my, ... mg) | m; 20,15i £6, >, m; =m}. Similarly, we obtain

i=1
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!
Ag 2 1 2)=[e™ dFp(y)
X g T e—liy dF-wz(y)

'
=+ Ay

X|e dF,(y)

g T e-{lu+1a))’ dFy (y)

|
|

I 7y r l Lot ]
xq 3| [ePertariy 9—3% dry) [etrmery SO o) 5
Sem) | © mj: ) mal

f m.
gfarry Q)

! 3 — dF
e J' e‘@:+l:l))’ _(}.ﬂy)T dFT.'()‘) g mgl W:.(y)
0 ms.
t m ‘ m
)™ Ly Gan)™
8 g e ms! Fr) ie ’ meg! Fw)

We next take a case-by-case approach in showing how an arbitrary transition probability
A2, ¢t | 2), 0r B, (Z, ¢ | Z) can be computed, z, Z € ©,. Given any two vectors z, z’ in ©,,
we first obtain the distribution functions F7, and Fr,’, for 1 £ j < N-1. Additionally, in comput-

ing A, (z';'t | z) we require the distribution B4("), and in computing B,,(z", ¢ [ z) we require the

di:.uibuLion-Sg(T).—Next,-keEp'z;ﬁxe‘d'ah’d'c'o‘_"“mpute A (X, T [ zyand B, (X, f | z) forx = <0,0>,
using the integral products in (3.8) and (3.7), respectively. We now examine how AnZ, t | Dis

computed for z fixed, and any z'=©;.
CASE 1 : z’ contains a single nonzero bit.

In this case,

Ap{(<0,1> ¢t | D =A,(<0,>,t | 2) — A (<0,0>,1 | 2) 3.9
An(10> ¢ | 2)=4,(< 0>, | 2)~A4,(<00>,¢ | 2) (3.10)

Note that the above computations require the conditional joinr probability that any one of two sta-
tions (excluding station N = 3) is found empty by the server. This is easily computed using

(3.8). For example, 4,,(<0,> , ¢ | 2} is obtained from (3.8) by setting A, = 0.
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CASE 2 : 7 contains two nonzero bits

In this case we are merely computing the complement of the probability computed in case 1.
That is,

Ap(<lI>,t | 2=1-A,(<00>,¢t | 2)

—An(<0,1> , 1 | 2) —A,(<10> ,1 | 2) (3.11)

The computation of B,,(z", ¢ | z) for z fixed and arbitrary z € ©, proceeds in exactly the
same manner as described for A, (z", ¢ | z), except that (3.7) is used in place of (3.8). Repeating
the above procedure for each ze ©), yields the complete probability transirion matrix. This matrix

of transition functions is given as

[ By Ba) Ba®) Ba@®) ]

Agt) Aile) A1) As()
’ 0 Aor) Ale) Axe)
A A
= ——F—20 4 312)

Aolz)

where 4,,(¢) is the 4 X 4 matrix,

Ap (<0,0>.1 | <0,0>)
An(<0,0>1]<0,1>)
Am@) = | 4 (<0054 |<1,05)
AL (<0,0>,t 1 <1,1>)

Ap(<0,1>,1 | <0,0>)
AL (<0,1>,0 | <0,1>)
AR (<0,1>,1| <1,0>)
A (<0,1>,¢ | <1,1>)

A (<1,0>,01<0,02)
AL (<1.0>,r]<0,1>)
A (1,056 | <1,0>)
A (<1,0>,0 | <1,1>)

An(<1,1>, | <0,0>)
An (<1150 1<0,15)
AL« 1> 0]<1,0>)
A (<1, 1> ]<1,13)

(3.13)

and B, (¢) is a 4x4 matrix with structure identical to An(t), foreachm, m 2 0. The matrix Q)
is the Iransition probability matrix of an embedded Markov renewal sequence, given by the queue
length (at station 3), types of service-cycles (which in effect define customer types) and limes

between consecutive server scans at station N,
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Define A(¢) = 3, Ag(¢) to be a marrix of transition functions. The matrix A () is the transi-
k=0

ton probability matrix of a 4 state Markov renewal sequence describing the successive (station
N') customer types and service-imes. Observe that A (e0) = P is a stochastic matrix that defines
consecutive customer types (or equivalently, server cycle types), given that station 3 is not empty.
With z = <z),z,> and z’ = <z,z,> in ©, representing the current and next type of service cycle,
there are at most four kinds of service cycles (ie., <0,0>, <0,1>, <1,0> and <1,1> ) involving
events at stations 1 and 2. Thus, station 3 can be viewed as a station that offers four different
types of customers for service. When a customer does go into service at station 3, the following
evenis <zy,z,> at stadons 1 and 2, respectively, define the length of service of this customer, and
also the type of the next customer. Correspondingly, A,,(2, « | Z) gives the probability that m
station-3 customers amrive while a station-3 customer, with service length described by z’, is
being sen‘[ed. Since it 1s possible for stadon-3 customers to arrive during 2 cycle for which sta-

tion 3 was found empry at its scan-instant, B,,(z’ , ¢ | z) gives the probability of m station-3

arrivals during such a cycle. The traffic intensity p of the queue at station 3 is given by

p = ArE(C) (3.14)

where &= <mg, Ry, Kyg, B> is  the invarant probability vector of P, and
E(C)=<E(Cxw) ,E(Cw), E(C\p) . E(C11)> is a vector of the expected lengths of the four-
different service cycles, condiioned on station 3 being nonempty. That s,
ECw=EW)+EX)+EX>, ECa)=EW)+EX)+EXD, E(C0)=EW)
+EX)+EXD), EC))=EWY+EX)+EXy), and EZW)=EW ) +EW,). It is

necessary for for p to be less than one for well-defined steady-state distributions to exist



-12 -

Extension of Computational Scheme to General N

For the case of general N, we can develop a similar scheme to compute transition probabili-
ties for transitions from any fixed ze @y_, to all possible z’e Oy, with m station-N customer
arrivals during the server cycle defined by z. In actuality, the extension of (3.7) and (3.8) to the
case of general N is failgly straightforward. However, the number of individual cases 1o investi-
gate is now (N—1) ie., case k would be the case in which the (W—1)-bit vector ' contained
exactly k nonzero bits, 1 £ £ < N—1. Within case &, the number of distinct transition probabili-
ties 10 be computed would be equal to the number of ways of choosing & bits from (N —1)-bits

without repetition, i.e., [N ;1] .

Let 26 @y be fixed. In order to compute A, (', ¢ | z) or B,,(z, ¢ | z) for any Ze Oy-t.
we must first develop general expressions for (3.8) and (3.7), respectvely, thar is, for

Z=<0,0,.,0>. We first introduce some compact notation. Define vectors

AP =g A and Ay = <G, Ay S for T<j < V. Next, for genetic, nonnegative Tan-
dom variables X and Y, with distributions Fx(-) and F r(), respectively, we define the joint

integral products

i

_ ¢ (X W)z ! —(ikly
Ge A9, 1, X ¥)=[e dFy(x)-[e dFy(y) (3.15)
0 0
for1 < <N-1, and
L O
[ixd — rul . . r=l
Ge (A )".'X'Y)'Je T () i" - o)

(3.16)

Similarly, define
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£ | —(}E_a.)x Ay x) ¢ —cilf)y Oy e
B gt X =T [e =00 =i [ ST o dRvo)

(3.17)
for 1<j<N. Nowe that the function Gz(AY), ¢, X, ¥) is independent of k, for each j,
1< j < N.For a fixed ze ®y_; , we first must obtain the distributions Fr () 1£j<N-1. In
computing A,(x",¢ | z) and B,(x",z | z), for x" =<0, ..,0> € Oy, and m 20, we

require the distributions Fy, (') and Fy, (-}, respectively. For a fixed ze ®y_;, we obtain

v [ .
B, ,t|D=% {H Gy [A(”.r.Tj,W(;mdN)H]] (3.18)
§'m) | j=1

N-L -
XH[Hm A(t).t.Tx'.W'(kmmﬂ]]
k=1 \

~

' N
where S* (m) = {my, . my) 1 M 20, 1S SN, Y m =m}

¥=1

From the integral product in (3.12) it is possible to generate B, (', ¢ | z) for all Ze©y_,,
with z fixed in ©y_; . The idea is a generalisation of what was done for the N = 3 case. For
example,

Bu(<0, ... 1>, ¢ [ ) =Bp(<0, .., 0, >, | )= BL(<0,..,0,0> ,¢ | ) (3.19)
where B, (<0, ..., 0, >, ¢ | z) is obrained from (3.17) by setting Ay_; = 0. The other transition
probabilides are obtained similarly. Observe that in (3.17), Ty = Yy (since for B,,, we take
zy =0). Incase zy = 1, then Ty = Xy and (3.17) yields A, (x", ¢ | z) instead of B, (x" , ¢ | 2).
Hence, from (3.17) we can obrain both A,,(x" , ¢ | z) as well as B,,(x" , ¢ | z). Once these are
obtained, for z fixed, it is a routine matter t0 obtain 4,,(z' , ¢ | ) and B,,(z’, ¢ | z) for arbitrary
z in O.,. This procedure is repeated for each z € ©y.., in order to obtain the transition probabil-

ity matrix Q(-) for general N,
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4, Stationary Queue-Length Distribution

In section 4 we showed that station N may be viewed as an M /SM /1 queue in which there
are 2V-1 different types of customers, and we also showed how the embedded transition probabil-
ity matrix Q of this queue can be obtained. Letq = {g;, 20, < <21} denote the invari-
ant probability vector of the matrix Q. Clearly, q is the stationary joint density of the queue
length and the customer type at embedded points. Writing q in the particoned form qq, qy , . . .,
where each q; is a 2¥~! dimensional vector, the equilibrium equarions gQ = q may be written as

i+]

9 =qoBi+ 3 qr Ai—k+1n 20 @.1)
k=l

where A; and B; have been described in Section 3. If gy is known, (4.1) can be applied to obtain
the stationary queue length distribution. However, obtaining qq is not straightforward. This
requires an examination of a sequence of matrices {G(k), k = 1}, with G(k) = [GyAk)], and

Gk, 1</, /<L g>1, representing the conditional probability that, starting in state

(@ + 1, j), the process reaches level { for the first time in the state (i, j*) after precisely & transi-
tions. This sequence of matrices defines the first passage time distributions from states in level
(i + 1) 1o states in level {. Starting from any state in level ({ + 1), the process eventually reaches

astate in level { if G = G(1-), given by

G@i) = ¥ Gk)z* = I zA4, G*@), 4.2)
k=0 £=0
Is a stochastic matrix. The first equality essentially describes a matrix transform for 0<z <1, and

the second is a matrix functional equation obtained by making use of first passage times [7,8]. In

[7] itis shown that the equation

G = f‘, A, G* (4.3)
k=0

has a minimal nonnegative solution which is stochastic if and only if p < 1, in which case G is

the unique nonnegative matrix satisfying (4.3).
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Assuming that the Markov chain is recwrent non-null (i.e., p < 1), the matrix G exists and
can be computed using a technique of modified successive substitutions [8]. That is,

GO =( -A)" Ao
(4.4)

Gk+l)= 3 U —-A)"' A, G™(k),
m=0
m#l
for £ = Q. In [7] it is shown that this sequence of substitutions yields entry-wise strictly increas-

ing matrices that converge to the matrix G .

Let g be the invariant probability vector of the stochastic matrix G. In [4] it is shown that

@ =(1-p)g (4.5)

with the aid of which (4.1) can be used to generate the invariant vector q. In acmality, the
recurrence in (4.1) can be numerically highly unstable when applied directly. An alternate
iterative-recursive scheme based on the Gauss-Seidel iterative method for obtaining q can be

— —foundin (5]

First, we obtain the vector q, from [9],

1-p
= h 4.6
T U —dge — 1 “.6)

where h is the left-invariant vector of the matrix

H=( —Ao)-l}'i A G*! 4.7)
k=1

and e is the vector with all entries equal to one. Once qq and q, are known, the stationary vector

can be computed using the Gauss-Seidel iterative scheme,

a:0)=(qo By +qy A —A)!
{4.8)

k-1
qQe(n +1)=q, (@ +{ 2 qm(n + 1) Agsion + Qenan) Ao} -4y

m=2
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where the iteration index r is large enough to effect a tolerable value of |qe(n + 1) — q, ()],

M
0<k<M,and ) q is tolerably close to unity.
k=0

In Figure 3 can be seen a plot of steady-state queve length distributions for three different
vatues of p, and N = 3. Stations 1 and 2 have unit buffers, and station 3 has unlimited waiting
room. Amivals at stations 1, 2 and 3 are Poisson, with rates A; = 0.004, A, = 0.0045, and
A3 = 0.00505, 0.005, and 0.0047, respectively, for the three different high traffic situations
displayed. All other random variables are assumed to be exponential, since the ransition func-
Hons are most easily computed for this case. The parameters are fixed at E(W) =1,
EW)=13, EW3=12, EX)=9, EX)=110, EX4) =100, E(Y)) =1/10,
E(Y2) = 1420, and E(Y3) = 1/30. In Figure 3, we see that the distribution can be fairly sensitive
10 variation in input traffic. Additionally, these distributions tend to have extremely long tails,

which makes computation time-consuming. If Figure 4a and 4b are shown disjoint parts of the

same graph for moderate values of p. Figure 4a_shows _the crossing_that occurs_ when lower traffic

queue-length distributions fall more steeply than higher traffic queue-length distributions. The
fact that the three graphs appear to cross at the same point is merely a coincidence. In Figure 4b
can be seen the second half of the same graph, with all distributions taking on an exponential

form.

Remarks

The method of successive substitutions in (4.4) converges fairly rapidly, with speed of con-

M
vergence depending on the sequence of matrices {A,, ; m 2 0}. Defining Pyy = 3 4,,, and

m=0

P=h£imPM.weseeﬂlatasM =, | |P=Py|| — 0, and the faster thar | [P —P, || — 0,
=

so also the faster will the sequence of modified successive substitutions converge to the stochastic

matrix G. It follows that when p is close to one, | |P — Py | | converges to zero very slowly, and



= (.9948
0.9751
= 0.9258
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=8 p=07184
A—i p = 0.6825
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{(4.4) can be time consuming. Neuts suggests the use of a hybrid algorithm that uses a Newton-
Kantorovich iteration scheme for the first few G-iterates, after which (4.4) is used. In (8], Neuts
demonstrates considerable savings in time with this technique.

Though a Gauss-Seidel iteration can be performed without explicit knowledge of q, it is
clear that first computing q;, will speed up the convergence of (4.8). From hard experience, the
authors advocate the use of (4.6) in computing q, instead of resorting to the more tempting

matrix relaton

Qo=9qoBo+q, 4y 4.9)
which yields q, = qo (. — Bp) Ag'.
The latter computation is extremely sensitive to the condition of Ag. In our particular

token-ring application, the first column of A ¢ tends to take on values that are considerably larger

-~
than the values in the other columns. This is understandable, since the first column represents the

probabilities of no customer arrivals at station N during cycles in which other all stations are
found to have empty buffers. Since such cycles tend to be extremely small in relation to cycles

that include customer service at these stations, the result is immediate.
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