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Abstract; We study a token ring system with N stations. one of which has an infinite or finite

capacity buffer. and the rest have unit-capacity buffers. Asswning that packet arrivals are asym­

metric Poisson, and other distributions such as service-times and walldng-times are arbitrary. it is

shown that the the queue-length process at the station with non-unit buffering (reference station)

is essentially a Markov renewal process. The states of the Markov renewal process are given by

the different types of service cycles made by the token with respect to the reference station. Using

the different service cycles initiated by customers at the reference queue to differentiate between

customer rypes at this queue, the queueing process at the reference station can be viewed as an

M/SM/I queue. We describe how the I:ransition probability submatrices for the block MlG!1

structure for the queue length can can be computed. Once these submatrices are obtained, we

apply known results to obtain the stationary queue-length distribution at the reference queue.



1. Introduction

In building models of communication systems. an increasingly common phenomenon is

that of analytic inuactability. While one reason for lhis is the increasing complexity of systems

being modelled. it is often possible to handle otherwise difficult models by resorting to alga·

rithmic methods [1]. In such instances. it is convenient to settle peIfOImance questions ~mputa­

tionally instead of discarding a difficult problem in favour of one obtained via simplifying

assumptions (such as independence assumptions). As an example of such an instance. we intro­

duce a simple, but sufficiently detailed model of a token ring queue. Token rings are known to

pose formidable probl~ms 10 analysts. especially when stations offer asymmetric traffic, and mes­

sages are transmitted nonexhaustively [2].

A token ring is a local area network [3] that allows N different computer systems to com­

municate with one another. Messages that are sent from one system to another are, in essence,

customers that require service from the network. In this way, each of the N different stations

offers customers that require service. A single server (the token) walks around the ring from one

station 10 another, making repeated cycles. At each station, the server serves at most one custo­

mer (hence called the one-al-a-time service discipline) if the station's buffer is not empty, and

then proceeds to the next station Due to channel propagation delays, the server takes a certain

amount of time to walk: from one station to the next on this ring.

We are interested in computing stationary distributions of customer-queue lengths and

waiting-times, etc. At the very outset, we restrict our model to one in which (N -1) stations have

unit capacity buffers, and the Nth station has a buffer of either finite or unlimi[ed capacity. It will

be seen the technique is easily generalised, at the expense of increased matrix sizes, to a system

in which the unit-capacity buffers are replaced by arbitrary, finite capacity buffers. By making the

size of these buffers sufficiently large, one may obtain a theoretically sound approximation to the

problem where all buffen; are infinite. lbis generalises the manner in which an M IGlllIK queue.
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Figure 1. A three station cyclic-server model.
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with large K, can be used to approximate an M IGI fl/oa queue,-in essence a truncation.

In section 2, we first present the model and we show that the queueing process at station N

is a Markov renewal process. Initially this is done for N =3 to demonstrate the ideas involved,

and later generalised. Since the queue at smtioo N appealS to station-N custOmers as a single

server queue, we label each station-N cus[Qmer with a type. given by the kind of service cycle

this customer initiates. Once transitions between customer types are described, known results for

M ISM11 theory (6] may be applied to obtain the queueing distributions at station N. In section 3,

we describe how these transition probabilities between customer types can be computed, and

show that the queueing process at station N is an M ISM11 queue. In section 4, we apply results

of Neuts [4], and Lucantoni and Neuts [5] to obtain the stationary queue length distribution of

station N customers and present some numerical results.

2. The CycHc-Server Model

Consider a system of N inde~ndent queueing_sJ~_tio_ns_ammgedJn..a..circle_as_shown..in..Eig-~ _

ure 1. Each queueing station is given a unique label j. 1 S; j S; N _ Each station j. 1 S; j S; N-l .

is assumed to have a maximum queue capacity of one. and station N is assumed to have a queue

capacity of b. b e 1+ = { 1 • 2. . _. }. Customers arrive at each queue j as a Poisson process

with rate A.j. independently of arrivals to other queues. 1 S; j S; N. Those customers who arrive

at a given queue only to find it filled to capacity are lost to the system.

In the ring-based queueing system just described, a single server provides service by walk·

ing from one station to the next. unidirectionally. The sequence of sration visits is specified as

I, 2 •...• N , 1, 2, ... , , or otherwise known as cyclic service. The arrival instant of the server at

queueing station j is called the scan-inseam of station j. I S; j S; N. If station j's queue is found

nonempty on any station-j scan. then at most one customer is served at station j, 1 S; j ::; N on

that visit. Station j customers require service of random length Xj, with Pr(Xj ::; t) = Bj(t),

1 ::; j ::; N. Customers leave the system if they have completed service. If the server finds
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station j 's buffer em.pcy on any station-} scan, it takes the server a small random time Yj (called

the switching-rime at station-j) to bypass this station, with Pr(Yj .s; t) = SjCt). 1 .s; j .$ N. On

completion of either service or switching at station j I the server must walk over to station

k = U mod N) + 1, this walk-time being random. of length Wk. wilh Pr[Wj :5 r] = VjCt).

15j$.N.

Semi-Markov Service Cycles

Assuming that !:he system is operating at steady-state and all queueing distributions are sta-

donary, let time c = 0 correspond to an .arbitrary scan-instant at station N. Let the set

{If; 1 ::;; j ::;; N. k > O} define a strictly increasing sequence of time instants. wilh t} correspond-

ing- to the k'h scan-instant of the server at station j.

o = r = tJ < t l < ... < t~_l < tJ < ... ,etc. The intervisit dIne of the server for any sta-
,

tion j is the time between two consecutive scans of the server at station j I l'5.j'5N. The kth inter-

visit time of the server at any station j is defined as Cf t'J tf 1,1 '5,j '5,N,k > 1.

Let Z} denote the number of customers that the server finds queued at station j at scan­

instant tf. 1 S;; j S N, k ;;:: 1. For convenience, we take Zp = 0, 1 S j '5, N. It should be clear

that Zfe {O,I} for 1 Sj SN-I and Z~ e {D, 1,2, .... b}, for each k. k > L Let

(Z(I) ; I > O} be a continuous-time stochastic process defined by

Z(t) = < ZN(t), ZI(t), ... , ZN_I(t) >, where Zj(t) =Zf for ct S t < ct+l • k > 1. The discrete

parameter process {Zk ; k > I} given by Zk = < zt, Zf, ...,zh_1 > and the continuous param-

eter process {Z(c)} are both defined with respect to embedded instants tr, , k > 1.. At each scan-

. tan 'f . N th h ail bi d Z x-I x-I x-( fms t'fl 0 staOon , e server as av a e a new recor k-I = < zN ,Z I , ... , zN_l >,0

events (Le., an N -vector description) lhat occurred in the interval [tt- I , t~) ,k > 1. Station N is

the first to contribute to this record, with zh-1= z~-I e {D, 1, ... , b}. The other N -I stations

contribute in increasing order of station indices. with station j contributing
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Zl-l = zf-I E {D, Il, 15.j'5N-1. Thus. at dme t~. the server completes a record

< ZN'-I. Z',-' zk-l >.._, N-I and simultaneously begins [0 define a new record wim

z~ =z§ E {O,l, 2, ...• b}.

THEOREM

If all queueing disl:Iibutions are stationary, and the system is in steady state operation, then

(1) {Z(t); t > O} is a semi-Markov process, and

(2) {Zk; k > O} is a time-homogeneous Markov chain

defined on {Ot 1,2, ...• b} X 8 N _h where 8 N- 1 denotes the set of all (N-I) bit binary vec-

tors.

PROOF:

For 'each k, k > 0 • the events {Z}; 15.jgif} are dependent events. This is due to the

·~--~ll0nemptrinterseC[ion-Of-e-a-Ch-palI·-6r-mtervals[ff-;cj+1) andTit·;rt·+1) conesIX:mdin"'"g"["o-'se=rv'"e"r~------

intervisit intervals for stations i and j, i :;e j, and every k > O.

Let A CCf+l) denote the number of customer arrivals at each station j during the intervisit

time Cf+1 = rj+1 - tt, 1 ::; j :f N. Using a stochastic equation very similar to that of lhe stan-

dard M /GI/1 departure-instant based queueing chain,

Z~+l = [Zi:"-lJ++Di:"+l
J J J

forl5,j 5,N,with

(2.1)

1

Di:"+l =
J

o
forl5,j SN-l,and

(2.2)

D~+l = min [b - [Z~ - at ,A(C~+I) } (2.3)

From (2.1) we see that {Zk ; k > O} is an N -dimensional Markov chain embedded at stution·N
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scan-instants. The process {Z(t)} also makes transitions at the embedded iIlSlants t~, k > 1.

However, {Z(t)} spends an arbitrary time in each state, with each complete record defining a

state, hence it is semi-Markov process with {Z1:} as its embedded Markov chain.

•
The server in OUf system defines states by recording each station's queue size each time he

visits the statiOIL He begins with station N. then visits station 1. station 2, ..., station (N-1).

Even though he has completed a record when he obtains station (N-I)'s queue status, a state

transition of the system occurs only when the server arrives at station N. The new system state is

then defined by the record. just completed by the server. Once again at station N, the server

begins to define a new record. and thus, a new system next state.

In the next section. we focus our attention on the queueing process at station N. When a

customer from sratiaD N goes into service, this customer initiates a server-cycle of some random

length. The actual length of this cycle must depend on events at the various stations visited before

the server completes the cycle. Since there are only (N - 1) other stations to be visited. the

number of such events is 2N- 1. Consequently, a station-N customer may initiate anyone of2N - 1

server cycles. The above theorem tells us that if we know what events (i.e., service or switching)

occurred at the N stations during any particular cycle, say < ZN. Zl •...• ZN_l >, the probabil­

ity of a given sequence of events < ZN' ,ZI' •... , ZN_I' > on the next cycle is obtainable in

Markov fashion.

Consider a server cycle corresponding to the record of events Z= < ZN ' Z 1 , ...• ZN-l >. where

ZN = i, and i > O. This means that a sration-N customer went into service at the smlt of the

cycle. The probability that the next record of events 'Z!=< ZN' • Zl' , ...• ZN_{ > takes on a

particular form depends on the record z. In particular, if ZN' = m >0 (i.e., the server finds station

N nonempty on the next visit) then < Z I • ... ,zN_1 > is said to define the rype of the next cus­

tomer to go into service at station N. With this imerpcctadon, !.he 2N - 1 different records

4.
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obtainable from stations I through N -1 define 2N- 1possible customer types offered by stadoD N_

More importantly, the problem can now be viewed as one in which customers of 2N - 1 different

types anive at station N as points from a Poisson process, with a customer of type j following a

customer of type i with a cenain computable probability Pi.j. 1 :5: i ,j QN-I. A computational

method to obtain P = [Pi ,j ] is outlined in the next two sectioru;, along with. a more detailed look

at station N's queue.

3. TheM/8M/lib Queue at Station N

At the k th scan of station N at time rA. the server obtains a new queue-length (i.e.. number

of customers in the queue), LI; :=: Z~. It is clear that

Lk+1 = (Lk - 1] + + D~+I (3.1)

for each k. k > 1. Equation (3.1) bears a strong resemblance to the departure-instant based

M IGIII q~eueing chain. However. in this case, the sequence of random variables {D~ ; k > I}

is nor an i.i.d sequence. In fact, by Theorem I, this sequence is semi-Markovian, thus causing the

queue at station N to be a generalisation of the M IGIIl queue, known as the M ISM 11 queue [6].

The Transirion Probability Matrix

Given that Zk = < i, zt, ... , Z~_I > , Theorem 1 says that we can compute the probability

of the next stare being Z.t+l = < m. zt+1, ... , z~~\ >, for i ;::. O. and max (i - 1 .0)::;; m ::;; b,

k > 1. Using (N -1) bit binary vectors z and z', we are now imeres[ed in computing £he probabil­

ity Pr[Zx+l = < m.z' > I Zk = < i, z >] for i ;::. 0 and max (i -1 .O).s: m ::;; b. Since rr.m.si­

dons are stationary, we can neglect £he index k and write this as

Pr [Z' = < m, z' > I Z = < i. Z >].

For each k. k > 1, and 1 5: j ::;; N, the (k + l)/h imervisit time of lhe server a[ station j

(see Figure 2) is given by
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N

= L.[Tl: + WrimDdN)+l] + w1+1

i=j

j-I
+ L[ Tj!:+l + Wtt~N)+tl

;=1
(3.2)

zf= I}
Zf=O

(3.3)

where fJ(f; k ;;;: I} is an d.d sequence of random variables with common law BiC-), and

{Yf; k ;::: I} is an ii.d sequence of random variables with common law SiC-), 1 ::; j s. N. The

independence- between random variables in the above two sequences is a consequence of the fact

that different customers (possibly from the same queue) have independent service-times, and the

walk-times of the server between any two consecutive stations, in any two different cycles, are

independent Since transitions are stationary, we can neglect k. and replace zl' by Zj, and Zf+l

by Zj " fod ::;; i ::;; N. Note that for each current state and next state pair, we can write

CI=TI+W2+T2+W3+

C2=T2+WJ+T3+W4+

(3.4)

where all unprimed terms correspond to random times that occur in defining the current state, and

primed terms correspond to random times that occur in defining the next state. Note that C j and

Cj are dependent random variables due to the overlap of pan of Ci and Cj . Given that the

current State is Z = < i. z >,' for any i ~ 0 and Z E eN_I> we only need to compute

Pr [Z~ = < m. O. 0, ...• 0 > I Z = < i. z >] in order to obrain the desired transition probability

maUix. TIlis is best explained wilh !.he aid of an example for N = 3.
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Example. N = 3 stations.

In order to obtain Pr [Z' = <m ,z'> J Z = <i ,z>] for a given pair z, Z'E e2• i ::::: 0,

max(i - I • 0) ~ m .:::;; b, we proceed as follows. We keep ze 8 2 fixed, and first compute

Pr(Z' = <m .0.0> I Z = <i • z>] separately, for i = 0 and i > 0 respectively. With

X= <0 , 0>, define the 4x4 (in general, 2(f1-I) x 2(N-l>:> matrices of transition probabilities

B",(X,I I z)=Pr{Z'=<m ,x>,CN.s;rl Z=<O,z>]

Am_i+1(X • I [ z) = Pr (Z' = <m • X>, eN $; I I Z = <i , z>] (3.5)

Observing that the three different station inrervisit rimes can be written as

C1=T1+W2+Tz+W3+T3+Wl'

Cz= T2 +W3 +T3+W{+T{+Wz'
C3 = T3 +W{+T{+Wz'+Tz'+W3'

(3.6)

where th~'partialoverlap of these times is clearly displayed, we obtain

,
Je--Q.l+~) dFW1(Y)
o

dFT,(Y) Je--Q.t+;"2+A.l)Y ~~m2
o m2'

,
x f e--Q.l+""-)Y dFT2 (y)

o

x{ L [; e-<',+),,+),,), (A.,y~m,
SCm) 0 mI'

(3.7)dFw,(y)

,
Je->"
o

I z) = Je-J"y dFT , (y)
o

Bm (x, t

6
where SCm) = {(m, • ...• m6) I mi ;::: 0, 1 :s; i :;; 6. ~ mi = m}. Similarly, we obtain

i= 1
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(3.8)

,
I z) = Je-A,y dFT,(y)

o
Am (x, I

x{ L [f e-(A, .".A,)y (A3Y~m,
SCm) 0 mI_

l <A3Y)mJ
x Je--Q.2 + ).,»' ..:....:::...:-,- dFT.1y)

o m3_

We next lake a case·by-case approach in showing how an arbitrary transition probability

Amez', t I z), or Bm ('£, t I z) can be computed, Z, Z E E}.z. Given any two vectors z, z' in 8 2,

we first obtain the distribution functions FT, and FT/. for 1 :s:; j :5. N-l. Additionally, in comput-

ing Am (z';- t I z) we require the distribution 8 3(-), and in computing Bmez', t I z) we require the

using the integral products in (3.8) and (3.7), respectively. We now examine how Amez, t I z) is

computed for z fixed. and any z'E~.

CASE 1 : z contains a single nonzero bit

In !.his case,

Am«O,I> ,I I z) =Am«O.·>, I I z) -Am«O,O>. r I z)

Am(I,O> ,I I z) = Am«· ,0> . I I z) - Am «0.0> ,I I z)

(3.9)

(3.10)

Note that the above computations require the conditional joim probability that anyone of ~o sta­

tions (excluding station N = 3) is found empty by !.he server. This is easily computed using

(3.8). For example, Am «0,·> I t I z) is obtained from (3.8) by setting A,z = o.
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CASE 2 : z contains two nonzero bits

In this case we are merely computing the complement of the probability computed in case 1.

Tharis,

Am«I,I>, t 1 z) = I-Am«O,O>, t 1 z)

-Am.«O,1> , t I z) -Am «l,O>. t I z) (3.11)

•
The computation of 8 m (z' I liz) for z fixed and arbitrary Z E 8 2 proceeds in exactly the

same manner as described for Am (z • t J z), except mat (3.7) is used in place of (3.8). Repeating

!:he above procedure for each ZE 8 2 yields the complete probability transition matrix. This matrix

of transition functions is given as

Bo(t) B1{t) Bz(t) B,{t)
Ao{t) A1(t) Az{t) A,(I)

o Ao{t) A ,(t) Az(t)

~ Q(c).=. _8;__8:_..:A:."og_)-~~~:---;-;-:-I------(oHl11-----

where Am (t) is the 4 x 4 matrix,

Am «O,O>,t 1<0,0»

Am «0,0>,1 1<0, I»
Am{t) = .

Am «0,0>,1 1<1,0»

Am «0,0>,1 I<1,1»

Am«O,I>,I 1<0,0»

Am «O,I>,t I<0,1»

Am«O,I>,11 <I,D»

Am«O,I>,I 1<1,1»

Am«I,O>,I I<0,0»

Am«I,O>,t I<0,1»

Am ( <1,0>,11 <I,D»

Am«I,O>,I 1<1,1»

Am «1,1>,1 1<0,0»

Am «1,1>,1 1<0,1»

Am«I,I>,11 <1,0»

Am«I,I>,t 1<1,1»

(3.13)

and Em (t) is a 4x4 matrix with structure identical to Am (l), for each m I m ~ O. The matrix Q(c)

is me transition probability matrix of an embedded Markov renewal sequence, given by the queue

length (at station 3), types of service-cycles (which in effect define customer types) and times

between consecutive server scans at station N.
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Define ACt) = L Al:;(t) to be a mauix of transition functions. The matrix A Co) is the transi·
J:=O

tion probability matrix of a 4 state Markov renewal sequence describing the successive (station

N) customer types and service-limes. Observe that A (00) = P is a stochastic matrix that defines

consecutive customer types (or equivalently, server cycle types), given that station 3 is not empty.

With z = <zl,z2> and z' = <ZloZ2> in~ representing the current and next type afservice cycle.

there are at most four kinds of service cycles (i.e.• <0,0>, <0,1>, <1,0> and <1,1> ) involving

events at stations 1 and 2. Thus. station 3 can be viewed as a station that offers four different

types of customers for service. When a customer does go into service at station 3, the following

evenlS <ZttZ2> at stations 1 and 2. respectively, define the length of service of this Customer, and

also the type of the next customer. Correspondingly, Amer . OQ I z) gives the probability that m

station-3 customers arrive while a station-3 customer, wilh service length described by z', is

being served. Since it is possible for station-3 customers to arrive during a cycle for which sta-
"

tion 3 was found empty at its scan-instant, Bm(z • t L!U~ives the probability of m station-3

arrivals during such a cycle. The traffic intensity p ofme queue at sLation 3 is given by

p = 1.. x E(C) (3,14)

where 1t = <1too. 7to1o ?t1O' ?tIl> is the invariant probability vector of P, and

E (C) = <E (C 00) ,E (Cot) , E (C LO) , E (C ll» is a vector of the expected lengths of the four-

different service cycles, conditioned on station 3 being nonempty. That is,

E(C oo) = E(W) + E(Y1) + E(Y,). E(COl ) = E(W) + E(Y1) + Erx,), E(C IO) = E(W)

+E(X1)+E(Y,), E(Cll)=E(W)+E(X1)+E(X,). and E(W) =E(W1) +E(W,), It is

necessary for for p to be less than one for well-defined steady-state distributions to exist.

•
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Extension afComputational Scheme to GeneraL N

For the case of general N. we can develop a similar scheme to compute transition probabili-

ties for transitions from any fixed ZE 8N-l to all possible z'e eN_lo with m sration-N customer

arrivals during the server cycle defined by z. In actuality, the extension of (3.7) and (3.8) to the

case of general N is fairly straightforward. However. the number of individual cases to investi-

gate is now eN-I) Le., case k would be the case in which me (N-I)-bit vector z contained

exactly k nonzero bits. 1 :::; k :::; N -1. Within case k, the number of distinct transition probabili-

ties to be compmed would be equal to the number of ways of choosing k bilS from (N-I)-bits

·th ... [N-1JWI out repeno.on. I.e., k .

Let ze8N_1 be fixed. In order to compute Amer, t [ z) or Bm(z, t I z) for any -LeaN_I.

we must first develop general expressions for (3.8) and (3.7), respectively, that is, for

z= <0 , 0 ,... , 0>. We first introduce some compact notation. Define vectors

dam variables X and Y, with distributions FxO and FyO. respectively, we define the joint

integral products

i i
f -(~A.)J: t -(LA.)y

G,(AUl, I ,X ,Y) = Je ,., tlFx(x) . Je'" tlFy!:;)
o 0

for 1 :s; j :s; N-l, and

(3.15)

"-,
l -(E"'i)J:

G,(A(N)",X,Y)=Je ,.,
o

Similarly, define

owx )'.,,.
"-,

f -(LA.)y
. tlFx(x) . Je .. ,

o

(A,vy)'-i

(k-i)!
tlFy !:;)

(3.16)
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Owx)'
'rl.

"I -(L'-,.)y
. dFx(x) . f e '-j

o

OWY)'-'

(k-i)!

(3.17)

for 1::; j ::; N. Note that the function Gi;(A(j), CI X. Y) is independent of k. for each j.

1 ::::;; j ::; N. For a fixed ZE 8 N _ 1 • we first must obtain the distributions FT/)' 1 ::;: j s: N -1. In

computing Am (x· • I I z) and Bm(x· I r I z), for x" = <0, ...• 0> E 8 N _ h and m :2: 0, we

require the distributions Fx"O and Fy"O. respectively. For a fixed ZE eN_I. we obtain

8= (x'" I z)= ,L {il[ G_ [AU)" ,Tj , WUmodN)+lJ]
S (m) J=1

X P. [H~ [1.(,) , t , T, ,W'(, mod N) + 1J]}

(3.18)

N
whereS·Cm) = {(mi•..., lnN) I mi =:::0, 1::;; i SN, ~~m:.:,~=-.:m:.:..o} _

From the integral product in (3.12) it is possible to generate Bm(z', I I z) for all ze8N _1o

with z fixed in 8 N_1 . The idea is a generalisation of what was done for the N = 3 case. For

example.

8=«0, .. ., 1> " I z) = 8=«0, ..., 0, . > " I z) - 8=«0, ..., 0, 0,> " I z) (3.19)

where Bm «0.... , O. -> • t I z) is obtained from (3.17) by setting }W-l = O. The other transition

probabilities are obrained similarly. Observe mat in (3.17), TN = YN (since for B m • we take

ZN = 0). In case ZN = 1. then TN = X N and (3.17) yields Am (x· ,I I z) instead of B m (x· ,I I z).

Hence, from (3.17) we can obrain both Am (x· ,I I z) as well as Bm (x~ • t J z). Once these are

obtained. for z fixed. it is a routine matter to obtain Am (z ,I J z) and B m (Z, I I z) for arbitrary

z in 8 N -Jo This procedure is repeated for each z E 8 N_ 1 in order ro obtain the transition probabil-

iry marrix Q(-) for general N.
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4. Stationary Queue-Length Distribution

In section 4 we showed that station N may be viewed as an M ISM /1 queue in which there

are 2N
-

1 different types of customers, and we also showed how the embedded transition probabil-

icy matrix Q of this queue can be obtained. Let q = {qij. i ;:::. O. i ::;: j ::;: 2N- 1} denote the invari-

ant probability vector of the matrix Q. Clearly, q is the stationary joint density of me queue

length and the customer type at embedded points. Writing q in me partitioned form Qa. qi ' ....

where each Qj is a 2N
-

1 dimensional vector, the equilibrium equations qQ = q may be written as

i+l

q... = qo Bi + L Q;; Ai _ k + \I i ~ 0
'~l

(4.1)

where Ai and B i have been described in Section 3. If qo is known, (4.1) can be applied to obtain

the stationary queue length distribution. However, obtaining qo is not straightforward. This

requires an examination of a sequence of matrices {G(k), k ~ I}, with Gek) = [Gjj{k)], and

c

Gjj{k), 1 '$ j, j' '$ 2N
-

1
, k 2:: 1, representing the conditional probability that, starting in smte

(i + 1, j), the process reaches level i for the first time in the state (i. j) after precisely k transi-

tions. ntis sequence of matrices defines the first passage time distributions from states in level

(i + 1) to states in level i. Starting from any state in level (i + I), the process eventually reaches

a smte in level i ifG = G (1-), given by

G(z) = LG(k)z' = L zA, G'(z),
,b·O '<:=>O

(4.2)

(4.3)

is a stochastic matrix. The first equality essentially describes a matrix mInsform for o::;:z ::;1, and

the second is a mat:rix functional equation obtained by making use of first passage times [7,8J. In

[7] it is shown that the equation

~

G = L A, G'
,=0

has a minimal nonnegative solution which is stochastic if and only if p < I, in which case G is

the unique nonnegative matrix satisfying (4.3).
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Assuming mat the Markov chain is recurrent non-null (Le., p < I), the matrix G exists and

can be computed using a technique ofmOdified successive substitutions [8]. That is.

(4.4)-G(k+l) = L (I-A,)-' A= G=(k),
m=O

="
for k ~ O. In [7] it is shownlhat this sequence of substitutions yields entry-wise strictly increas-

ing matrices that converge to the matrix G.

Let g be the invariant probability vector oIme stochastic matrix G. In [4] it is shown that

qo = (I - p) g (4.5)

with the aid of which (4.1) can be used to generate !he invariant vector q. In acruality, the

recurrence in (4.1) can be numerically highly unstable when applied directly. An alternate

iterative-recursive scheme based on the Gauss-Seidel iterative method for obtaining q can be

_----ffoundin.(5.J_. _

First, we obtain the vector ql from [9],

I-p
q - ----'----'-;--·h
,- h(I-AoJ'e-1

where h is the left-invariam vec[Qr aCthe matrix

-H = (I - AO)-L L A, G'-'
k=\

(4.6)

(4.7)

and e is the vector with all entries equal [0 one. Once qo and ql are known. the sffitionary vector

can be computed using the Gauss·Seidel iterative scheme,

q,(O) = (qo B, + q I A,)(I - A,)"'

(4.8)
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where the iteration index n is large enough [0 effect a tolerable value of I<!ken + 1) - lIk(n) I.

M
a::;; k ::; M, and l: qk is tolerably close to unity.

..1:=0

In Figure 3 can be seen a plot of steady-state queue length distributions for tluee different

values of p. and N = 3. Stations 1 and 2 have unit buffers, and station 3 has unlimited waiting

room. Arrivals at stations 1, 2 and 3 are Poisson, wilh rates A.I = 0.004, ~ = 0.0045. and

~ = 0.00505, 0.005, and 0.0047. respectively, for the three different high traffic situations

displayed. All other random variables are assumed to be exponential, since me transition func-

lions are most easily computed for !his case. The parameters are fixed at E(W1) = I,

E(W,) = 113, E(W,) = 112, E(X ,) = 90, Eex,) = 110, Eex,) = 100, E(Y ,) ~ 1110,

ECYu= 1120, and E(Y3) = 1/30. In Figure 3, we see that the distribution can be fairly sensitive

to variation in input traffic. Additionally, these distributions tend to have extremely long tails,

which makes computation time-eonsuming. If Figure 4a and 4b are shown disjoint parts of the

queue-length dislributions fall more steeply than higher traffic queue-length dislributions. The

fact that the three graphs appear to cross at the same point is merely a coincidence. In Figure 4b

can be seen the second half of the same graph. with all dislributions taking on an exponential

form.

Remarks

The method of successive substirutions in (4.4) converges fairly rapidly, with speed of con-

M
vergence depending on the sequence of matrices {Am ; m ;:: OJ. Defining PM = l: Am, and

m=O

P = lim PM, we see that asM ~ 0<1. J IP -PM II ~ 0, and me faster that lIP -Pm II ~ 0,
M_

so also the faster will the sequence of modified successive substitutions converge to lhe stochastic

matrix G _ It follows that when p is close to one, IIP - PM II converges to zero very slowly. and
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(4.4) can be time conswning. Neuts suggests the use of a hybrid algoritlun that uses a Newron-

Kantorovich iteration scheme for the first few G-iterates. after which (4.4) is used. In (8]. Neuts

demonsrrates considerable savings in time with this technique.

Though a Gauss-Seidel iteration can be performed without explicit knowledge of qJ, it is

clear that first computing qb will speed up the convergence of (4.8). From hard experience, the

authors advocate the use of (4.6) in computing ql instead of resorting to the more tempting

matrix relation

(4.9)

which yields q, = qo (I - BolA 0' .

The latter computation is extremely seIl'iitive to the condition of A o. In our particular

token-ring application. the first column ofA 0 tends to take on values that are considerably larger

•
than the values in the other columns. TIlis is understandable. since the first column represents the

probabilities of no customer arrivals at station N during cycles in which other all stations are

found to have empty buffers. Since such cycles tend to be extremely small in relation to cycles

that include customer service at these stations. the result is immediate.
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