Concrete Pavement:

Rehabilitation Applications, Options & Performance

Purdue Road School

March 29, 2006

Concrete Pavement Basics
Concrete Pavement Types

- Jointed Plain
 - Undoweled
 - Doweled
- Jointed Reinforced
- Continuously Reinforced

Jointed Plain

Plan

Profile

3.5-6.0 m

or
Jointed Plain

Jointed Plain
Load Transfer

• The slabs ability to share its load with its neighboring slab
 – Dowels
 High Traffic Volumes
 (Pavements > 8 in.)
 – Aggregate Interlock
 Low Traffic Volumes
 (Pavements < 7 in.)

Jointed Reinforced

Plan

7.5-9.0 m

Profile
Jointed Reinforced
Continuously Reinforced

Plan

Profile

0.6-2.0 m
Continuously Reinforced

Rehabilitation Strategies

• Three categories:
 – Restoration
 – Resurfacing
 – Reconstruction
 Together, known as CPR³
• Which is used depends on existing condition.
Concrete Pavement Rehabilitation

- Improves structural and/or functional condition of pavement.
 - Structural condition - the ability to carry traffic.
 - Functional condition - the ability to serve the user comfortably.

Pavement Condition

<table>
<thead>
<tr>
<th>Pavement Type</th>
<th>Condition</th>
<th>Original Pavement</th>
<th>Rehabilitated Pavement</th>
<th>Increase due to Rehabilitation</th>
<th>Min. Acceptable Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Pavement</td>
<td>Terminal Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rehabilitated Pavement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rehabilitation Timing

![Graph showing Rehabilitation Timing with labels for Restoration, Resurfacing, and Reconstruction with a scale for Structural/Functional Condition and Age or Traffic]

Optimize

![Balancing scale with Cost and Performance]
Restoration (CPR)

- Used early when pavement has little deterioration.
- Repairs isolated areas of distress.

Concrete Pavements

- Full-depth repair
- Partial-depth repair
- Diamond grinding
- Joint & crack resealing
- Slab stabilization
- Retrofitting dowels
- Retrofitting concrete shoulders
- Cross-stitching long. cracks/joints
Full Depth Repairs

• Repairs distresses greater than 1/3 the slab depth.
• Consists of removing and replacing at least a portion of the existing slab to the bottom of the concrete.

![Diagram of Full Depth Repairs]

![Image of Full Depth Repair in a real setting]
Use of High Early Strength Mixes

• Can design mix to meet opening need requirements
• Specify minimum requirements:
 – INDOT(506.04): Minimum cement – 658 lbs./cy
 – INDOT(506.11): Open to traffic when $M_R > 300$ psi
 – When use Calcium Chloride – use 506.11 Chart
 – Alternative – can use maturity method to open
• California 4 x 4 system
Partial Depth Repairs

• Repairs deterioration in the top 1/3 of the slab.
• Generally located at joints, but can be placed anywhere surface defects occur.

Carbide-Milling

Longitudinal Milling

Transverse or Longitudinal Joint/Crack
Near vertical edges.

Transverse Milling (Half-moon)

Transverse or Longitudinal Joint/Crack
TYPICAL SPALLS
REMOVAL

• Milling machine
CURING

• Use curing compound

Supporting Research

• JTRP/Purdue research nearing completion with report due summer 2006
 – SPR – 2648: Evaluation of Rapid Setting Cement Based Materials for Patching (Ph I)
 – SPR – 2789: Dowel Bar Retrofit Mix Design & Performance

• Presentation of interim result available on 2006 PCCP Workshop CD
• Field Trial of Rapid Set Materials (Ph II)
Load Transfer Restoration

- Reestablishes load-transfer at undoweled joints or cracks
- Used to limit future faulting

\[\Delta L = x \quad \Delta U = 0 \]
Poor Load Transfer

\[\Delta L = x \quad \Delta U = x \]
Good Load Transfer
Concrete Pavement Restoration
Concrete Pavement Restoration

Diamond Grinding

- Improves ride by removing:
 - Faulting at joints
 - Slab warping
 - Surface deformations caused by studded tires
- Reestablishes skid resistance
- Corrects cross-slope
Joint and Crack Resealing

- Minimizes water & incompressibles into pavement system.
 - Reduces:
 - Subgrade softening
 - Pumping
 - Erosion of fines
 - Spalling
Restoration Performance

- Provides 10 or more years of service.
- Preliminary engineering & timing are critical.
- Overall effectiveness is highly dependent on design adequacy, construction quality, and other restoration activities.

Repairing Cracks

Alternative: Cross Stitch Crack
Recommendation: Saw & Seal Crack - Epoxy Saw Cut

- Crack Fully Penetrates Slab Depth
- Crack within 0.3 m of Joint
- Joints Not Cracked where Cracks Exist
Cross-Stitching
Repairing Cracks

Recommendation: Cross-Stitch the Crack

- Crack Fully Penetrates Slab Depth
- Crack Relatively Parallel in Mid-slab (>1.35 m) from Joint or Edge

Repairing Cracks

Alternative: Cross-Stitch Crack
Recommendation: Replace Slabs Full-Depth

- Crack Fully Penetrates Slab Depth
- Crack Relatively Parallel in Wheelpath (0.3-1.35 m) from Joint
Resurfacing

- Used when pavement has medium to high levels of distress.
- Used when restoration is no longer effective.

Resurfacing Activities

- Concrete overlays for concrete pavements:
 - Bonded Concrete Overlays
 - Unbonded Concrete Overlays
- Concrete overlays for asphalt pavements:
 - Conventional Whitetopping
 - Ultra-Thin Whitetopping
Bonded Overlays

- Consists of a thin concrete layer (100 mm or less) on top of an existing concrete surface.
- Specific steps are taken to bond the new concrete overlay to the existing concrete.
Bonded Overlay

- The major use of Bonded Overlays is structural enhancement of the pavement.
- Cracks in the underlying pavement will reflect into the resurfacing.
- Most often used where the underlying pavement is in reasonably good condition.

Bonded Overlays

Performance

- Good when:
 - Placed correctly and at the right time.
- Poor when:
 - Placed on deteriorated pavements.
- Loss of bond does not necessarily constitute failure.
Unbonded Overlay

• Consists of thick concrete layer (125 mm or greater) on top of an existing concrete.
• Uses a “separation interlayer” to separate new overlay and existing concrete.

Unbonded Overlays

Separation Interlayer:

• Allows layers to act independently.
• Prevents distresses from reflecting into overlay.
• Typical Interlayer:
 – 1-1 ½ “ Asphalt layer
Unbonded Overlays

Separation Interlayer:

“Key”

Overlay

Old Pavement

Smooth Slip Plane

Overlay

Old Pavement

Thick Interlayer (> 50 mm)

UNBONDED CONCRETE OVERLAYS

Advantages

• Can Place on Pavement in Bad Condition.
• Less Pre-Overlay Repair Needed Than Other Overlay Designs.
• No Future Reflective Cracking.
• Avoid Reconstruction Problems.
• Maintain Traffic.
UNBONDED CONCRETE OVERLAYS

Job-Site Considerations

- Overhead Structures.
- On-line Bridges.
- Shoulders.
- Fill for Slope Flattening.
- Traffic Control.

UNBONDED CONCRETE OVERLAYS

Payment

Cubic Yard Square Yard

![Money Stack] ![Money Stack]

NOTE: Divided payment is the most equitable and economic.
Unbonded Overlays

Performance

• Very Good
• Can be expected to perform for 20+ years.
 – Most failures are due to the use of inadequate separation layers.

Conventional Whitetopping

• Consists of thick concrete layer (100 mm or greater) on top of an existing asphalt pavement.
• Behaves as a new pavement on a strong base.
Whitetopping Engineering Bulletin

- New for 1998
 - Conventional Whitetopping
 • Design
 • Construction
 • Performance
 - Ultra-thin Whitetopping
 • Design
 • Construction
 • Performance

Whitetopping - History

- First Whitetopping
 - South 7th street in Terre Haute, Indiana - 1918
 - 4” concrete overlay of existing asphalt pavement
- During 40’s & 50’s used to upgrade military & civilian airports
- Highway use started approx. 1960
 - Types have included JPCP, JRCP, CRCP, FRC
Whitetopping History

• Modern usage began in Iowa in 1960’s where heavy loads from farm trucks created a need for a durable pavement.
• Performance was excellent
• Over 500 miles of whitetopped roads since the 1960’s
• Now used for Interstates, highways, airports, intersections and parking lots

Typical Whitetopping Thickness

• Depends on expected traffic load.
 – City streets, county roads, and small airports
 • 100 to 175 mm (4 to 7 in.)
 – Primary roads and interstate highways
 • 175 to 280 mm (7 to 11 in.)
 – Large airports
 • 200 to 460 mm (8 to 18 in.)
Whitetopping - Advantages

Construction

• Can place on pavement in bad condition.
 – Little or no pre-overlay repair needed.
• Avoid reconstruction problems.
 – Minimal rain delays.
 – Maintain traffic on existing surface.

Whitetopping - Advantages

• Improved structural capacity.
• Maintains high level of serviceability.
• Low maintenance.
• No seasonal weakening (spring breakup).
• Concrete slabs bridge problems asphalt cannot.
• Light reflective, safe riding surface.
Whitetopping Construction

- Critical issue is uniform support
- Subgrade / base failures need repair
- Need to evaluate drainage (esp. Inlays)
- Address surface distortions
 - Direct application
 - Profile milling
 - Leveling course

Ultra-Thin Whitetopping

- Consists of thin concrete layer (4 in. or less) on top of an existing asphalt pavement.
- Specific steps are taken to bond the new concrete to the existing asphalt and to saw short joint spacing.
Ultra-Thin Whitetopping

Short joint spacing allows the slabs to deflect instead of bend. This reduces slab stresses to reasonable values.

Bonding Effects on Edge Stress

<table>
<thead>
<tr>
<th></th>
<th>Unbonded</th>
<th>Bonded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.49 Mpa (1230 psi)</td>
<td>2.90 Mpa (420 psi)</td>
</tr>
</tbody>
</table>

75 mm Concrete, 100 mm AC, K=81 Mpa/m, Ec = 27,580 Mpa, Eac = 2,758 MPa
Known Design Considerations

- Bond is critical.
- Slab size (Jointing) is important.
- Underlying asphalt thickness is important.

OVERLAY PERFORMANCE in INDIANA

Specific Concrete Overlay Projects
Indiana Overlays

- I – 69 North of SR 18 – 11” 1986
- I – 65 North of SR 114 – 10.5” 1994
- I – 94 West of SR 39 – 13” 1998
- I – 70 at US 27 – Richmond – 12” 2000
- Harding Street – Indianapolis – 6” 1985
- 121st Street – Fishers – 9” 1992
- Indianapolis Bus Lanes – 3.5” 1997
- Allisonville Rd – N. of 96th – 7” 1999
- 56th Street – Brownsburg – 5” 2001
- Market & Columbia – Warsaw – 3.5” 2002

I-69 UNBONDED PCC OVERLAY

FROM SR 18 RM 66.29
to
GRANT COUNTY LINE RM 71.64
I-69 UNBONDED PCC OVERLAY

- OPENED TO TRAFFIC 1964
- RESURFACED (Bituminous) 1975
- NBL RESURFACED (Bituminous) 1978
- UNBONDED OVERLAY 1986
I-65 UNBONDED PCC OVERLAY

8” 12” 11”

Harding Street - Indianapolis

- Old concrete street with patches
- PCC Unbonded overlay placed 1985
- 6” thick over old street
- Widened 6’ with 8” PCCP
- Skewed non-doweled transverse joints
- Tied longitudinal joint provided at section thickness change
- Still in excellent condition
Allisonville Road
96th Street to Eller Road

Project Information

• Traffic: 26,360 vpd
• Existing 24’ asphalt pavement
• Scope:
 – widen to outside
 – maintain traffic
 – mill & overlay existing
56th Street - Brownsburg

- Commercial and Residential traffic
- 44’ wide, 3500’ long
- 6” concrete overlay with variable depth to 9” as needed
- Center line realignment
- Drainage
- Texture: Turf Drag and Random Tining

56th Street Brownsburg
56th Street Brownsburg

City of Indianapolis

Ultra – thin Whitetopping

Bus Lanes
PLACING CONCRETE

PERFORMANCE

• All three sections are performing well
Market & Columbia Streets - Warsaw

3 ½” Concrete overlay over milled HMA
Joints sawed at maximum spacing – 5’ 0”
Joints sawed at 1/3 depth of overlay
Market & Columbia Streets - Warsaw

Market & Columbia Streets - Warsaw
Market & Columbia Streets - Warsaw

Madison, IN Airport Apron

3 ½ “ Concrete overlay over existing HMA
Joints sawed at 4’ x 4’ spacing
Madison, IN Airport Apron

Reconstruction

- Used when the pavement has high levels of distress.
- Used after overlays are no longer effective.
Reconstruction Activities

• Final stage of rehabilitation.
• Involves removing and replacing existing pavement with a new pavement.
 – Complete removal & replacement
 – Partial removal & replacement (Inlay).
• Can correct:
 – Subgrade / subbase deficiencies, Roadway geometrics, Roadside safety features, Drainage

Reconstruction Activities

• Controls the final elevation
 – Minimizes roadside appurtenances adjustments.
• Can recycle the old pavement
Summary

• CPR³ repairs structural / functional deficiencies.
• Improves pavement condition to an acceptable level.
• Appropriate activity depends on the existing pavement condition.
 – As condition declines, the optimum activity changes.
 – Applying correct activity at correct time is essential.

Summary

• Restoration
 – Repairs isolated areas of deterioration.
• Resurfacing
 – Repairs a pavement with medium to high severity levels of distress.
• Reconstruction
 – Used at the end of the pavement’s life, when it has very high severity levels of distress.
YOU HAVE OPTIONS.

Questions?

www.pavement.com