SR 66 and Green River Road Project
“Transforming a Bottleneck”

Mark Eckert, P.E.
Michael McCool, P.E.

Project Location:

• SR 66 (Lloyd Expressway) at Green River Road
• Eastside of Evansville, Vanderburgh County
• INDOT’s Vincennes District
SR 66 and Green River Road Project

Need for Improvement:

• Heavily Congested
 – AADT (2001)
 • 50,000 vpd SR 66
 • 40,200 vpd Green River Road
 – Projected AADT (2021)
 • 63,700 vpd SR 66
 • 51,200 vpd Green River Road

• Delays
 – Major Approaches
 – Minor Approaches

• Safety Concerns

SR 66 and Green River Road Project

Existing Conditions:

• Tight Urban Diamond
• Highly Developed Area
• Utilities
SR 66 and Green River Road Project

Existing Conditions:

- SR 66 over Green River Road
 - 5 Lanes (2 EB; 3 WB)
 - Shoulders
 - Depressed Median

- Green River Road
 - 4 Travel Lanes
 - 2 each direction
 - Auxilliary Lanes
 - Left & Right to SR 66
 - Two Distinct Intersections
 - Little storage under bridge
SR 66 and Green River Road Project

Existing Conditions:

- SR 66 Ramps to Green River Road
 - Single Lane
 - Entrance
 - Exit
 - Adjacent to MSE Walls
 - Widen Lanes at Green River Road
 - 2 Left
 - 1 Right
 - Signals at Ramp Termini

SR 66 and Green River Road Project

Alternates Considered:

- Retain Existing Bridge
- Single Point Urban Interchange
- No Action
SR 66 and Green River Road Project

Alternates Considered:

• Retain Existing Bridge
 – Unable to Obtain Acceptable LOS without Significant Impacts

• No Action
SR 66 and Green River Road Project

Alternates Considered:

- SR 66 (Lloyd Expressway)
 - 3 Lanes Each Direction
 - Shoulders
 - Barrier Wall in Median
 - Necessary to Raise Grade
 - Maximize Use of Existing Pavement

Alternates Considered:

- Green River Road
 - No Change to Thru Lanes
 - Dual Left Turn Lanes to SR 66

- Ramps
 - Widen and Lengthen
 - Maintain Existing Vertical Alignments
SR 66 and Green River Road Project

Issues to be Addressed:
- Provide Dual Lefts
- Minimize Grade Raise
- Maintain Vertical Alignments on Ramps
- Construct Under Traffic
- Coordinate with Adjacent Projects
- Signalize Under Bridge
 - Keep Signals Visible
 - Channelization

Design Criteria:
- SR 66 – Principal Arterial
 - 4R (Partial Reconstruction)
 - Design Speed: 50 mph
 - 6 Lanes at 12 ft
SR 66 and Green River Road Project

Design Criteria:

- Green River Road
 - 3R (Non-Freeway)
 - Design Speed: 30 mph
 - 4 Lanes at 12 ft
 - Left Turn lanes 11 ft

SR 66 and Green River Road Project

Roadway Design Issues:

- Establish SR 66 Profile
 - Dual Left Turns on Green River Road
 - Vertical Clearance
 - Horizontal Clearance
 - Substructure – Iterative Process
SR 66 and Green River Road Project

Roadway Design Issues:

- Maintenance of Traffic – SR 66
 - Maintain 2 Lanes Each Direction
 - Coordinate with Adjacent Projects
 - Phased Construction
 - Phase 1 - Construct WB maintain on EB
 - Phase 2 - Construct EB maintain on WB
 - Multiple Shifts on Ramps
 - Temporary Signals with Video Detection

- Maintenance of Traffic – Green River Road
 - Schedule of Ramp Closings
 - Phased Construction
 - Phase 1 – Widen to Outside
 - Phase 2 – Construct Medians
SR 66 and Green River Road Project

Roadway Design Issues:

• Utilities
 – SE Quadrant
 • Gas Distribution
 • Electrical Substation
 – Lack of Information
 • Location
 • Facilities Present

• Tight Urban Project
• Time of Construction Limited
• Adjacent Project Overlap
• Utilization of Existing Storm
• Location of Signal Equipment
 – Existing
 – Proposed
SR 66 and Green River Road Project

Roadway Stats:

- Project Length
 - 2,800 ft SR 66
 - 1,500 ft Green River Road
- Contaminated Soil 1,400 cyd
- Pavement Removal 25,000 syd
- QC/QA PCCP 37,000 syd
- Temporary Signal with Video

SR 66 and Green River Road Project

Bridge and MSE Walls:

- Existing Conditions
- Bridge and Wall Design
- Constraints
- New Bridge and Reconstructed MSE Walls
- Design
- Construction Sequencing
- End Results
SR 66 and Green River Road Project

Existing Bridge:
- The existing single span steel girder bridge was built in 1988.
- The bridge span length was 122 feet.
- The bridge consisted of twin structures carrying eastbound and westbound traffic.

Existing Substructure:
- The existing substructure consisted of full face abutments on a pile foundation.

Existing MSE Walls:
- The approach roadway was elevated by the use of MSE walls.
SR 66 and Green River Road Project

Design Constraints:

- Interchange Geometrics
- Required Vertical Clearance
- Maximum Vertical Grade Raise for Existing MSE Walls
- Existing Substructure Conflicts
- Required Maintenance of Traffic during Construction

SR 66 and Green River Road Project

Design Constraints:

- The single point interchange required a bridge that would span the entire intersection and also provide sufficient length to accommodate dual left turn lanes to and from Green River Road under SR 66.
SR 66 and Green River Road Project

Design Constraints:

• The SR 66 roadway grade was raised to accommodate a 16’-6” minimum vertical clearance over all ramps and Green River Road.

• This increase in vertical clearance along with the increased construction depth of the superstructure required an approximate 3 foot grade raise on SR 66.

• It was determined that the existing MSE walls could be utilized in accommodating the 3 foot grade raise.
SR 66 and Green River Road Project

Design Constraints:

• The existing abutments are in the same location as the interior bents.

• Traffic on SR 66 and Green River Road had to maintain a minimum of two travel lanes in each direction at all times.

• Phased construction was utilized to maintain traffic on SR 66 and Green River Road.
SR 66 and Green River Road Project

New Bridge and Reconstructed MSE Walls:
- Three span twin structures that are 317'-6" in length.
 Superelevated curved bridge decks on
 kinked post-tensioned bulb-tee beams embeded in
 post-tensioned straddle bent caps on
 columns located within turn islands on
 pile foundations.
- Integral end bents on piles with MSE walls.
- Approach roadway with reconstructed MSE walls.
SR 66 and Green River Road Project

New Bridge:
• Curved bridge decks in superelevation.

SR 66 and Green River Road Project

New Bridge:
• Kinked post-tensioned bulb-tee beams
SR 66 and Green River Road Project

New Bridge:
- Post-Tensioned Straddle Bent Caps

- The staddle bent caps are on columns located within the turn islands of the interchange.
- Multi-directional pot bearings support the straddle bent caps on columns.
SR 66 and Green River Road Project

New Bridge:
 • Due to the geometric constraints of the single point interchange, some of the existing piles were utilized in the interior straddle bent column footings.

SR 66 and Green River Road Project

New Bridge:
 • Integral end bents on piles with MSE walls
SR 66 and Green River Road Project

Reconstructed MSE Walls:
• Approach roadway with reconstructed MSE walls.
• The MSE walls at the outside shoulder were modified to accommodate the grade raise and concrete barrier.

SR 66 and Green River Road Project

Design:
• Finite element analysis was used for the superstructure and straddle bent design.
• Time-dependent analysis of all construction/post-tensioning stages.
• Kinked Post-Tensioned Beams
• Design for seismic performance Category B.
• Phased Construction
SR 66 and Green River Road Project

Construction Sequencing:
• Staged post-tensioning to accommodate the loading sequence for the bridge construction.
• Total of 5 major construction stages per structure.

SR 66 and Green River Road Project

Construction (Stage 1):
• Construct sheet pile wall between structures
• Remove existing bridge
• Remove portions of MSE wall
• Construct lower portions of end bents
SR 66 and Green River Road Project

Construction (Stage 1):
- Construct interior bent columns and footings
- Construct temporary falsework

SR 66 and Green River Road Project

Construction (Stage 2):
- Place end bent concrete to encase beams
- Install duct splices at staddle bents
- Place straddle bent concrete to encase beams
SR 66 and Green River Road Project

Construction (Stage 2):
- Stress 1 of 3 tendons in beams
- Stress 8 of 10 tendons in straddle bent caps

Construction (Stage 3):
- Place concrete in diaphragms
- Take screed elevations
- Place deck forms and resteel
- Stress second tendon in beams
- Grout all tendons stressed to date
SR 66 and Green River Road Project

Construction (Stage 4):
• Place concrete in deck
• Stress and grout the third tendon in beams
• Stress and grout final 2 tendons in straddle bent

Construciton (Stage 5):
• Remove temporary supports
• Pour concrete barriers
• Open to traffic
SR 66 and Green River Road Project

Results:
• The unique components of the project make the interchange bridge aesthetically pleasing.
• The bridge was designed to fit into the tight configuration of an urban interchange and minimize impacts to the right of way.

SR 66 and Green River Road Project

Results:
• INDOT has expressed their satisfaction with this project.
• The Executive Director of the Evansville Urban Transportation Study (EUTS) has expressed extreme satisfaction with the project.
• The Director quoted “The project exceeded her expectations and had nothing but praise for the work that was completed”
SR 66 and Green River Road Project

Results:

• The final construction cost of the project was $12,272,699, with an original budget estimate of $12,321,768.
BEST BRIDGE WITH SPANS BETWEEN 65 AND 135 FEET

SR 66 over Green River Road, Evansville, Indiana

Engineer:
Beam, Longest & Neff

Owner:
Indiana Department of Transportation