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Slender sharp-edged flexible beams such as flapping wings of micro air vehicles
(MAVs), piezoelectric fans and insect wings typically oscillate at moderate-to-high
values of non-dimensional frequency parameter β with amplitudes as large as
their widths resulting in Keulegan–Carpenter (KC) numbers of order one. Their
oscillations give rise to aerodynamic damping forces which vary nonlinearly with
the oscillation amplitude and frequency; in contrast, at infinitesimal KC numbers
the fluid damping coefficient is independent of the oscillation amplitude. In this
article, we present experimental results to demonstrate the phenomenon of nonlinear
aerodynamic damping in slender sharp-edged beams oscillating in surrounding fluid
with amplitudes comparable to their widths. Furthermore, we develop a general theory
to predict the amplitude and frequency dependence of aerodynamic damping of these
beams by coupling the structural motions to an inviscid incompressible fluid. The
fluid–structure interaction model developed here accounts for separation of flow and
vortex shedding at sharp edges of the beam, and studies vortex-shedding-induced
aerodynamic damping in slender sharp-edged beams for different values of the KC

number and the frequency parameter β . The predictions of the theoretical model
agree well with the experimental results obtained after performing experiments with
piezoelectric fans under vacuum and ambient conditions.

1. Introduction and background
The presence of a surrounding fluid significantly modifies the dynamics of oscillating

slender sharp-edged structures commonly found in electronic cooling devices like
piezoelectric fans (Kimber, Garimella & Raman 2007), in aeronautical applications
like flapping wings of micro air vehicles (MAVs) (Ansari, Zbikowski & Knowles 2006)
and in biological structures like insect wings. When such structures undergo large-
amplitude oscillations, the surrounding fluid gives rise to fluid forces that depend
nonlinearly on structural motion. In this article, we present experimental results and
develop a theoretical model to understand the nonlinear aerodynamic damping of

† Email address for correspondence: raman@ecn.purdue.edu



270 R. A. Bidkar, M. Kimber, A. Raman, A. K. Bajaj and S. V. Garimella

slender sharp-edged flexible beams oscillating in surrounding quiescent fluid with
large amplitudes comparable to their widths.

Typically, the effect of the surrounding fluid on these structures is incorporated into
structural dynamics models either by using experimentally measured fluid force data
or by using empirical relationships based on these fluid force data (Sarpkaya 1995).
However, this approach of using experimental fluid force data is less effective when an
a priori prediction of the structural amplitude response or an a priori estimate of the
power consumption at resonance is required. Under these circumstances, a theoretical
model which a priori accounts for the effect of the surrounding fluid is more useful
than a theoretical model which relies on the experimental fluid force data. In this
article, we develop such a theoretical model for slender sharp-edged beams, which
oscillate in surrounding fluid with amplitudes comparable to their widths.

The nature of the fluid loading on an oscillating structure and the fluid flow theory
used for modelling it depend on the amplitude of the structural oscillations. For
structures with large characteristic lengths and relatively small oscillation amplitudes,
such as flexible offshore structures, the fluid viscosity and the vortex shedding from
sharp edges of the structure can be neglected (Chu 1963; Meyerhoff 1970; Fu & Price
1987). Under these circumstances, the surrounding fluid gives rise only to an added-
mass effect, which modifies the natural frequencies of the structure. Conversely,
flexible structures like flapping wings of MAVs and piezoelectric fans inherently
operate at large amplitudes to actuate large volumes of the surrounding fluid. When
structures oscillate with amplitudes comparable to their characteristic length, the
effects of the fluid viscosity in inducing vortex shedding cannot be neglected. In such
situations, the vortices shed from the structure’s sharp edges produce a damping
effect on the structural oscillations (Graham 1980). Furthermore, this damping force
depends nonlinearly on the structural amplitude and frequency (Sarpkaya 1995). In
this work, we are concerned with the vortex-shedding-induced damping in slender
sharp-edged beams where the beam oscillation amplitudes are comparable to their
widths. The focus is on developing experimentally validated theoretical models, which
not only show the amplitude and frequency dependence of the vortex-shedding-induced
aerodynamic damping but also clarify the underlying physics of vortex shedding and
the associated mechanism that generates the damping force.

Two non-dimensional parameters, namely the Keulegan–Carpenter (KC) number
and the frequency parameter β , have been identified as governing the phenomenon of
vortex-shedding-induced damping for structures oscillating in a surrounding quiescent
fluid (Keulegan & Carpenter 1958; Sarpkaya 1976). These parameters are defined as

KC =
2πA

c
, (1.1)

and

β =
c2ω

2πν
, (1.2)

where A is the amplitude of structural oscillations, c is the characteristic length of the
structure, ω is the angular frequency of structural oscillations and ν is the kinematic
viscosity of the fluid. The oscillatory Reynolds number (Re) for flows around such
oscillating structures is the product of KC and β , and is defined as

Re =
Aωc

ν
. (1.3)
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Physically, the KC number signifies the distance that a fluid particle travels compared
to the characteristic length of the structure before the fluid reverses the direction of
flow, and is crucial for determining the size and the strength of the shed vortices
as well as the nature of the fluid force acting on the structure (Keulegan &
Carpenter 1958). The frequency parameter β (Sarpkaya 1976) signifies the importance
of the unsteadiness of the fluid flow relative to the rate at which the fluid viscosity
diffuses momentum in the fluid. These non-dimensional parameters were introduced to
interpret experimental results on purely oscillatory flows around flat plates, cylinders
and spheres in the works of Keulegan & Carpenter and Sarpkaya. These works
reported the Fourier-averaged fluid forces acting on flat plates, cylinders and spheres
in terms of drag and inertia coefficients, and studied the dependence of these force
coefficients on the KC number and the frequency parameter β .

In the current article, we study the specific case of slender sharp-edged flexible
beams and demonstrate the phenomenon of nonlinear aerodynamic damping in these
beams. Specifically, we present experimental results for the aerodynamic damping
of piezoelectric fans which are slender sharp-edged beams with low KC numbers
(ranging from 0 to 4) and moderately high values of β (ranging from 300 to 1200).
The corresponding oscillatory Reynolds numbers reach up to 4000. Following the
experimental results, we develop a general theoretical model that combines the existing
inviscid vortex-shedding fluid models (Jones 2003) and the structural beam models
(Meirovitch 2000). This fluid–structure interaction model can be used for predicting
the nonlinear aerodynamic damping and resonant amplitudes of slender sharp-edged
beams for different values of KC and β . We point out that existing fluid–structure
interaction models for studying beam oscillations in surrounding quiescent fluid are
based on either a purely inviscid fluid theory (Chu 1963) (which neglects vortex-
shedding from beam’s sharp edges) or a purely viscous-diffusion-based fluid theory
(Tuck 1969; Sader 1998), and that both models are inadequate for explaining the
fluid loading on beams oscillating at large amplitudes. In this article, we show that
for low KC values (ranging from 0 to 4) and moderately high β (ranging from 300
to 1200), the aerodynamic damping is mainly caused by the vortices shed from the
beam’s sharp edges.

At this point, we describe the difference between the direct numerical simulation
(DNS) approach used in a related work (Tao & Thiagarajan 2003a ,b) and the
approach used here. Tao & Thiagarajan (2003a ,b) study the vortex-shedding modes
and the hydrodynamic damping of circular cylinders that oscillate along their axis
of symmetry. They present experiments and use DNS to demonstrate the combined
role of viscous diffusion and vortex-shedding-induced damping in determining the
overall hydrodynamic damping of oscillating cylinders. The DNS approach in their
work, although more accurate for modelling the finite Reynolds number viscous
fluid flows, is time-intensive and computationally expensive. Here, we model the fluid
flow around the oscillating beam structure by using a much simpler inviscid fluid
theory with allowance for vortex shedding from the beam’s sharp edges (Jones 2003).
Furthermore, this fluid model is solved using a mesh-less boundary integral method,
which is computationally less intensive when compared to the DNS approach. We
show that for slender sharp-edged beams (oscillating at amplitudes comparable to
their widths), the essential features of the surrounding fluid flow, the aerodynamic
forces and the underlying physics can be sufficiently captured by using an inviscid
fluid theory with discrete vortex shedding from the beam’s sharp edges.

The remainder of this article is arranged in the following fashion. In § 2, we present
experimental results of nonlinear aerodynamic damping in piezoelectric fans. In § 3,



272 R. A. Bidkar, M. Kimber, A. Raman, A. K. Bajaj and S. V. Garimella

Physical quantity (units) Symbol Fan 1 Fan 2 Fan 3

Length of the piezoelectric patch (mm) L1 20.5 22.9 28.3
Length of the fan (mm) L 44.5 44.1 64.9
Width of the fan (mm) c 6.40 12.7 12.6
Thickness of the shim (mm) tb 0.10 0.10 0.25
Thickness of the piezoelectric patch (mm) tp 0.42 0.40 0.55
Density of the shim (kg m−3) ρshim 7850 7850 1400
Density of the piezoelectric patch (kg m−3) ρpatch 7800 7800 7800

Table 1. Geometric and material properties of the piezoelectric fans.

we develop a general theoretical model for predicting the nonlinear aerodynamic
damping and the amplitude response of slender sharp-edged beams. We compare the
experimental results and the theoretical predictions in § 4. In § 5, we present a physical
explanation for the phenomenon of nonlinear aerodynamic damping, and finally in
§ 6, we summarize the findings of this work.

2. Experiments
2.1. Objective of the experiments

The main objective of the experiments conducted in this work is to estimate the
aerodynamic damping of oscillating slender sharp-edged beams and demonstrate the
phenomenon of nonlinear aerodynamic damping for these beams. This is achieved by
measuring the amplitude and the phase of response of an oscillating slender sharp-
edged beam while the excitation frequency is slowly swept from a value below the
resonant frequency to a value above the resonant frequency. From this amplitude and
phase response, the quality factor (Q-factor) is extracted by using the circle-fit method
(Ewins 2000). Physically, the Q-factor represents the sharpness of the frequency
response of the oscillating beam and is a measure of the amount of damping present
when the beam oscillates in a particular eigenmode. Mathematically, the Q-factor
equals 1/(2ζ ) where ζ is the damping ratio for that eigenmode (Meirovitch 2000).

The two sources of damping, namely, the structural damping and the aerodynamic
damping are isolated by performing experiments in vacuum as well as in air. The
Q-factor measured during the vacuum experiments is used to estimate the structural
damping and the Q-factor measured during the air experiments is used to estimate
the combined structural and aerodynamic damping. Using these estimates of the
structural damping and the combined structural and aerodynamic damping, the
aerodynamic damping can be calculated. Furthermore, this procedure for estimating
the aerodynamic damping is repeated for increasing amplitudes of external excitation.
With increasing external excitation, the amplitude of the oscillating beam increases,
thereby allowing us to experimentally study the nonlinear dependence of the
aerodynamic damping on the oscillation amplitude.

2.2. Experimental set-up

Piezoelectric fans (Piezo Systems Inc., Part Nos. RFN1-005, RFN1-LV-02) are used
for performing all the experiments reported in this article (see figure 1 and table 1 for
descriptions of the three different fans that were used). A piezoelectric fan consists
of a thin flexible shim with a bonded piezoelectric patch. The fans considered in
the current article are fabricated from mylar and steel shims. Under the influence of
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and (c) a picture of a piezoelectric fan oscillating with amplitudes comparable to its width.
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Figure 2. (a) A piezoelectric fan mounted inside the vacuum chamber and (b) the
vacuum chamber.

an applied time-varying voltage, the piezoelectric patch applies a bending moment
(about the y-axis) on the shim, and this in turn causes the transverse deflection (along
the z direction) of the shim. The actuation of these piezoelectric fans is a relatively
simple process and therefore these fans are ideal devices for performing experiments
involving slender sharp-edged beams.

The experimental set-up is shown in figure 2. A piezoelectric fan was mounted
inside a vacuum chamber, which has electrical access ports as well as optical ports. A
laser displacement sensor (Model LKG-157, Keyence Corp.) was used to measure the
response amplitude at a single point (the black spot in figure 2a) on the piezoelectric
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Physical quantity (units) Fan 1 Fan 2 Fan 3

First in vacuo frequency (Hz) 128 128 60
Applied voltage range (V) 5–25 5–25 5–60
Frequency range (Hz) 122–134 122–134 57–63
Free-end amplitude range (mm) 1.18–3.30 1.62–4.98 1.31–6.28

Table 2. Applied voltages and frequencies.

fan. The voltage signal from the laser displacement sensor was collected using a USB-
based data acquisition unit (Model USB-1408FS, Measurement Computing Corp.),
and the collected data were analysed using a MATLAB R© program. The laser sensor
could traverse along the axial direction (x-axis) of the piezoelectric fan and measure
its operating deflection shape (ODS). For the vacuum experiments, the absolute
pressure in the chamber was reduced to 10 Pa. The air experiments were performed
in the same vacuum chamber, except under atmospheric conditions.

The experiments and the theoretical predictions presented in this article focus on
the case of single mode resonant harmonic motions of piezoelectric fans because in
typical electronics cooling applications such as resonant fluidic actuators (Kimber
et al. 2007), piezoelectric fans are operated under these conditions. Specifically, we
restrict our attention to studying the aerodynamic damping of piezoelectric fans
oscillating in their first flexural mode (see table 2 for the first in vacuo resonant
frequency of the three fans). The range of applied voltages, excitation frequencies
and free-end oscillation amplitudes for which the experimental data were collected
are shown in table 2. Experiments with the piezoelectric fans oscillating in their
second flexural mode were also conducted in this work. However, two important
experimental considerations give rise to a large uncertainty in the extracted values of
aerodynamic damping of the second flexural mode: (a) unlike the first flexural mode,
the amplitudes of the second mode oscillations did not change significantly between
the vacuum and the air experiments, indicating that the effect of the aerodynamic
damping is small compared to the structural damping, and (b) the response of the
fan in the second mode was nonlinear in both air and vacuum, and the resonance
curve exhibited a voltage-dependent bending or softening nonlinearity (Nayfeh &
Mook 1979) so that the extraction of gas damping requires an accurate model of
the structural nonlinearity. For these reasons, the experimental data on aerodynamic
damping of the second flexural mode are not presented in this article.

2.3. Experimental results

In this subsection, we present experimental data on the aerodynamic damping of
piezoelectric fans and also study the nonlinear dependence of this aerodynamic
damping on the fan oscillation amplitude. In figure 3(a), we present the amplitude
response curves of fan 3 (oscillating in air) for increasing values of the applied voltage
V ′. In figure 3(b), we replot the curves from figure 3(a) with the amplitude normalized
by the static deflection at zero frequency. We see that with increased applied voltage,
the normalized amplitude response curves of figure 3(b) become flatter, indicating an
increase in the aerodynamic damping. The increase in damping seen in figure 3(b) is
a predominantly aerodynamic phenomenon; this observation was verified from the
vacuum experiments where the damping remains unchanged even for increased fan
oscillation amplitudes. The amplitude response curves for fans 1 and 2 also show
similar amplitude-dependent aerodynamic damping behaviour.
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Figure 4. Variation of the experimentally measured Q-factor with KC number based on the
free-end amplitude.

The dependence of the aerodynamic damping (represented by the corresponding
Q-factor) of the three fans on the KC number is shown in figure 4. Note that the
KC number used in figure 4 is based on the free-end resonant amplitude of the
fan. Similarly, the values of β used in figure 4 for classifying the three fans are
based on the resonant frequencies of the corresponding fans. Also, the data points
shown in figure 4 represent the average values of the estimated quantities taken
over a set of five experimental runs (with an average standard deviation of 0.70,
2.58 and 0.31 for fans 1, 2 and 3, respectively). This figure clearly shows that with
increasing oscillation amplitude, the aerodynamic damping increases (or the Q-factor
decreases) in a nonlinear fashion. In the next section, we develop a theoretical model
for explaining the nonlinear aerodynamic damping results of § 2.
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Figure 5. (a) A slender sharp-edged cantilevered beam and (b) the shedding of vortices from
the sharp edges of the beam cross-section.

3. Development of the theoretical model
3.1. Model

A schematic diagram of the flexible beam along with the xyz coordinate system is
shown in figure 5(a). The cantilever beam of width c and length L is assumed to be
made of a linearly elastic and isotropic material, and its out-of-plane displacement
is denoted by w(x, t). Assuming that the wavelength of the motion is large and the
slope of the deflection is small, the motion of the beam can be modelled using the
Euler–Bernoulli beam theory:

EIw,xxxx +ρAcsw,tt = Ff luid(x, t) + Fext (x, t), (3.1)

where (),x = ∂()
∂x

, (),t = ∂()
∂t

, E represents the Young’s modulus, I represents the second
moment of area of the beam, ρ represents the density, Acs represents the cross-
sectional area, Ff luid(x, t) represents the fluid force and Fext (x, t) represents the
externally applied force on the beam. The structural boundary conditions for the
beam are clamped at x = 0 and free at x = L. We non-dimensionalize the axial
direction (x direction) with the length L and the remaining two spatial directions
with half-width c/2 of the beam. Taking the Fourier transform of (3.1), after some
rearrangement we obtain:

w,xxxx (x, ω) − ρAcsω
2L4

EI

{
w(x, ω) +

(
ρf c2

ρAcs

)
Ff luid(x, ω)

ρf ω2c2

}
=

L4

EI
Fext (x, ω), (3.2)

where ρf is the fluid density and x represents the non-dimensionalized spatial variable

from this point forward. In (3.2), the non-dimensional term ρAcsω
2L4

EI
characterizes the

flexibility of the beam relative to the beam inertia and the fluid force. The term
ρf c2

ρAcs
is

the non-dimensional fluid to structural mass ratio and characterizes the extent of fluid
loading. In the remainder of this section, we develop a time-domain fluid flow model
and then take the Fourier transform of the corresponding fluid force to calculate
Ff luid(x, ω) corresponding to purely harmonic motion of the beam. In deriving the
fluid force Ff luid(x, ω), it is assumed that the fluid responds instantaneously to the
motion of the beam, and this assumption is justified in a later part of this article.

For developing the fluid flow model, it is assumed that the beam is surrounded by
an initially quiescent, incompressible and inviscid fluid. For very large beam lengths
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(when L � c), the fluid flow gradients along the x direction are far smaller than the
fluid flow gradients in the remaining two directions (Taylor 1952). As a consequence,
the fluid flow along the x direction is small, and it is sufficient to restrict the fluid
flow problem to a two-dimensional plane parallel to the y–z plane. The governing
equation for motion of the surrounding fluid is

�2φ = 0, (3.3)

where �2 is the Laplace operator and φ(y, z, t) is the velocity potential at a particular
beam cross-section located at x = x ′. The nonlinear boundary condition for the fluid
flow is obtained by matching the velocity of the beam with the normal velocity of the
fluid along the z direction, and is represented as

φ,z |surface of the beam = w,t (x
′, t). (3.4)

Apart from the fluid boundary condition in (3.4), we also need to enforce the unsteady
Kutta condition (Jones 2003) at the sharp edges of the beam so that the fluid flow
solution becomes physically acceptable.

3.2. Solution of the fluid flow problem

The problem of studying the fluid flow at a particular beam cross-section (see
figure 5a) reduces to studying the fluid flow surrounding an oscillating flat plate with
two sharp-edges (see figure 5b). In the current work, we adapt the general solution
approach developed in the work of Jones (2003) to solve the specific problem of
fluid flow around an oscillating beam cross-section. In what follows, the procedure
to obtain the fluid flow solution and the resulting fluid force acting on the beam
cross-section is briefly summarized.

Following the work of Jones (2003), a boundary integral method is used to express
the complex-conjugate velocity field ϕ(ς, t) (where ς = y +iz) as a combination of the
flow fields caused by a beam-bound vortex sheet and two free vortex sheets emanating
from the sharp edges of the beam (see figure 5b). Then the complex-conjugate velocity
field can be written as (Jones 2003)

ϕ(ς, t) =
1

2πi

(∫
l−(t)

φ−(λ, t)

λ − ς
dλ +

∫
l=(t)

φ=(λ, t)

λ − ς
dλ +

∫
l+(t)

φ+(λ, t)

λ − ς
dλ

)
, (3.5)

where, l=(t) represents the beam-bound vortex sheet, and l−(t) and l+(t) represent the
free vortex sheets emanating from the two sharp edges of the beam cross-section. Here,
φ−(λ, t), φ+(λ, t) and φ=(λ, t) represent the complex vortex sheet strengths associated
with the vortex sheets l−(t), l+(t) and l=(t), respectively. Apart from the fluid boundary
conditions described in § 3.1, we require that the fluid flow perturbations caused by
the beam motion decay to zero at large distances away from the beam and that the
Kelvin circulation theorem is satisfied at every time instant. Furthermore, using the
unsteady Kutta condition (see (3.13) in Jones 2003), we can obtain the vorticity shed
into the fluid from the sharp-edges of the beam. Once the strengths of the free vortex
sheets φ−(λ, t) and φ+(λ, t), and the strength of the bound vortex sheet φ=(λ, t) are
known, the fluid force acting (in the z direction) on the beam cross-section can be
computed.

The solution procedure described above was implemented using a C++ program
and the results of this program were benchmarked against the results presented in the
work of Jones (2003). In figure 6, we present a set of representative results which were
obtained after solving for the time evolution of fluid flow around a beam cross-section
of non-dimensional width c = 2 that was undergoing the motion w(x ′, t) =A cos(ωt)
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Figure 6. Results of a representative computation for a beam cross-section of c = 2 performing
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(with A= 0.2, ω = 118π rad s−1 and vortex-blob smoothing parameter δ = 0.2 (Krasny
1986; Nitsche & Krasny 1994; Jones 2003). Figures 6(a)–6(f ) show the evolution of
the free vortex sheet as the beam oscillates through 1.68 cycles. Note that for beam
oscillations along the z-axis, the free vortex evolution exhibits symmetry about the
y = 0 axis even though no such constraint is imposed in the mathematical formulation.
Figure 7(a) shows the normalized force F (x ′, t)/(ρf A2ω2c) acting on the beam cross-
section along with a plot of the beam acceleration w,tt (x

′, t). It is seen that the
normalized force F (x ′, t)/(ρf A2ω2c) lags the beam acceleration w,tt (x

′, t) by a small-
phase angle. This phase lag between the beam acceleration and the fluid force gives
rise to energy dissipation and is the main cause of the aerodynamic damping. We
postpone discussion of the physical significance of this result to § 5 and first consider
the approach adopted for converting the force F (x ′, t) acting on a particular beam
cross-section into the fluid force operator Ff luid(x, ω).

For a prescribed harmonic motion w(x ′, t) =A cos(ωt) of the beam cross-section,
the fluid force F (x ′, t) is found to be periodic in time (see figure 7b for the normalized
fluid force during the second and the third cycle superimposed on top of the fluid
force during the first cycle of oscillation). The time-series fluid force data F (x ′, t) are
converted into the added mass and aerodynamic damping coefficients by representing
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Figure 7. Results of a representative computation for a beam cross-section of c = 2 performing
w(x ′, t) = 0.2 cos(118πt) showing (a) the phase lag between the normalized fluid force and the
acceleration of the beam cross-section. Note the different y-axes used for the normalized force
and the acceleration, and (b) the computed normalized fluid force plotted with the second and
the third cycles superimposed on the first cycle.

them as a Fourier series. Here we adopt the approach from the work of Keulegan &
Carpenter (1958), and expand the periodic fluid force as a Fourier series to obtain

F (x ′, t) = −ρf A2ω2c

[
A1 cos(ωt) + A3 cos(3ωt) + A5 cos(5ωt) + · · ·
+B1 sin(ωt) + B3 sin(3ωt) + B5 sin(5ωt) + · · ·

]
, (3.6)

where An(KC)(n= 1, 3, 5, . . .) and Bn(KC)(n= 1, 3, 5, . . .) are the odd Fourier series
coefficients, and the even coefficients A2, A4, . . . and B2, B4, . . . are zero because of the
condition F (x ′, t) = − F (x ′, t + π/ω). As seen in (3.6), the fluid force F (x ′, t) depends
on the amplitude A and the frequency ω through the A2ω2 term. Additionally, the
force F (x ′, t) depends on the Fourier coefficients An and Bn, which in this work are
known to be functions of KC alone and independent of the value of frequency ω. As
a consequence, the force F (x ′, t) depends on frequency ω only through the ω2 term.

The Fourier series coefficients computed in the current article are based on three
oscillation cycles of the beam cross-section. For low KC numbers, as is the case for
the piezoelectric fans studied here, the computed fluid force reaches its steady-state
periodic behaviour (see figure 7b) after one to two cycles of beam oscillation, and
it is sufficient to use three cycles of the fluid force for computations of the Fourier
coefficients. For higher KC numbers, however, a large number of beam oscillation
cycles are needed to attain steady-state behaviour for the fluid force. Computational
issues like the interference of the shed wake vortices and the beam cross-section
(Jones 2003) do not allow the further time integration of the governing equations.
Implementation of better computational schemes such as adaptive time stepping, or
an improved mathematical formulation for handling the interference of the wake
vortices and the beam cross-section (Jones 2003) would certainly allow further time
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Figure 8. Dependence of the Fourier coefficients on the KC number (a) coefficients A1, A3

and (b) coefficients B1, B3.

integration of these equations along with better estimates for the Fourier coefficients.
Such a study, however, is beyond the scope of the current article.

The dependence of the computed Fourier coefficients A1, B1 and A3, B3 on the
KC number is shown in figure 8. For low values of KC, such as KC < 10, as
is typically the case for the applications like piezoelectric fans considered here, the
Fourier coefficients A3, A5, . . . and B3, B5, . . . are expected to be small (see figure 8 and
Keulegan & Carpenter 1958), and the fluid force F (x ′, t) may be well approximated
by just the first harmonic of the Fourier series as

F (x ′, t) = −ρf A2ω2c[A1 cos(ωt) + B1 sin(ωt)]. (3.7)

Equation (3.7) is an approximate representation of the fluid force acting on a particular
beam cross-section located at x = x ′ that is performing harmonic oscillations with
amplitude A. Thus, for harmonic motion of the beam cross-section and small values
of KC, the fluid force F (x ′, t) is harmonic and can be thought of as being the
instantaneous response of the fluid to the beam motion. This description of the fluid
force is valid for a two-dimensional beam cross-section, and needs to be coupled with
the mode shape of the beam deflection so that the fluid force acting on the entire
beam can be obtained. In the next subsection, we describe a procedure for converting
the fluid force expression of (3.7) into a form which can be used in (3.2).

3.3. Description of the fluid force operator Ff luid(x, ω)

To derive the form of the operator Ff luid(x, ω), we assume that the displacement of
the beam oscillating in air can be expressed in terms of one of its in vacuo modes.
Thus, the displacement of the beam w(x, t) is

w(x, t) = Âmψm(x) eiωt , (3.8)

where Âm(m =1, 2, 3, . . .) is the modal participation factor, and ψm(x)(m = 1, 2, 3, . . .)
represents any of the unit-normalized in vacuo modes (Meirovitch 2000) of the beam.
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When w(x, t) is described by (3.8), the force F (x ′, t) from (3.7), can be written
equivalently as

Fm(x, t) = −ρf Â2
m|ψm(x)|ψm(x)ω2c(A1 − iB1) eiωt , m = 1, 2, 3, . . . (3.9)

In (3.9), the |.| operator on the beam mode shape is introduced to account for the
dependence of the force Fm(x, t) on the local displacement. After defining a spatially
varying Keulegan–Carpenter number as |KC(x)| = 2πÂm|ψm(x)|/c, we use (3.9) to
obtain the following description for the Fourier transform of fluid force Ff luid(x, ω):

Ff luid(x, ω) = −
{

−ρf

|KC(x)|
2π

ω2c2(A1 − iB1)w(x, ω)

}
. (3.10)

The term ρf
|KC(x)|

2π
c2A1(|KC(x)|) is the amplitude-dependent added-mass coefficient,

while the term ρf
|KC(x)|

2π
ωc2B1(|KC(x)|) represents the amplitude-dependent

aerodynamic damping coefficient. The fact that the Fourier coefficients A1 and
B1 are functions of the spatially varying KC number is clearly indicated in the
expressions for the added-mass and aerodynamic damping coefficients. We also note
that the aerodynamic damping coefficient depends linearly on the frequency ω. Thus,
very flexible beams with low resonant frequencies experience smaller aerodynamic
damping compared to stiffer beams with high resonant frequencies. Substituting
(3.10) into (3.2), we get :

w,xxxx (x, ω) − ρAcsω
2L4

EI

{
1 +

(
ρf c2

ρAcs

)
|KC(x)|

2π
[A1 − iB1]

}
w(x, ω)

+
ΛstructL

4

EI
iωw(x, ω) =

L4

EI
Fext (x, ω), (3.11)

where the coefficient Λstruct has been introduced to account for the internal structural
damping. In (3.11), the dependence of A1(|KC(x)|) and B1(|KC(x)|) on the spatially
varying KC number is omitted for clarity. Equation (3.11) can be used for predicting
the nonlinear aerodynamic damping and the amplitude response of slender sharp-
edged beams under the influence of external periodic excitation Fext (x, ω). The authors
want to emphasize that (3.11) is valid only for harmonic motion of the beam and
not for any general time-dependent motion. In the next subsection, we outline a
general solution procedure for using (3.11) to obtain the amplitude response and the
aerodynamic damping for a sharp-edged beam oscillating in a particular eigenmode.

3.4. Solution procedure

To predict the aerodynamic damping for a particular eigenmode of the beam, we use
a single-mode Galerkin approximation (which uses that particular in vacuo eigenmode
as the basis function) to transform (3.11) into an ordinary differential equation (ODE).
This assumption about the single-mode approximation can be made as long as the
fluid force nonlinearity does not couple the natural modes of the beam when the
beam is excited with an external force. Specifically for an N-term Galerkin expansion,
if ω is the excitation frequency and ω1, ω2, . . . , ωN are the linear natural frequencies
of the beam, then mode coupling can occur if (a) pω = qωk (case of secondary
resonances where p, q , k are integers such that both p and q cannot be 1), or (b)
pω = a1ω1 + a2ω2 + · · · + aNωN , where p and an are integers such that (Nayfeh &
Mook 1979):

p +

n=N∑
n=1

|an| = M, (3.12)
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where M is the order of nonlinearity plus one (Nayfeh & Mook 1979). As long as
these conditions are not satisfied, the beam will respond in a single mode when excited
near its resonance frequency, and the use of a single-mode approximation is valid.

Expressing the beam motion in the form w(x, ω) = q(ω)ψ(x), where q(ω) is the
generalized coordinate, ψ(x) is the in vacuo mode shape of the beam, and using
Galerkin’s method, the following ordinary differential equation is obtained:

Ksq(ω) − ω2(Ms + Mf )q(ω) + iω(Cf + Cs)q(ω) = Fproj (ω). (3.13)

The various terms in (3.13) are defined as follows:

Ks =

∫ 1

0

ψ(x)ψ,xxxx (x) dx, Ms =
L4

EI

∫ 1

0

ρAcsψ
2(x) dx,

Mf =
ρf c2L4

EI

∫ 1

0

|KC(x)|
2π

A1(|KC(x)|)ψ2(x) dx,

(3.14)

Cf =
ρf c2ωL4

EI

∫ 1

0

|KC(x)|
2π

B1(|KC(x)|)ψ2(x) dx,

Fproj (ω) =
L4

EI

∫ 1

0

ψ(x)Fext (x, ω) dx,

while Cs has been introduced to model the internal structural damping present in the
beam. For externally applied harmonic modal excitation Fproj (ω), the expression for
the generalized coordinate becomes q(ω) = Xaire

−iθ , where Xair (ω) and θ(ω) are the
amplitude and the phase of the approximate harmonic response, respectively. Based
on (3.13) the amplitude of the approximate harmonic response Xair (ω) of the beam
oscillating in air is given by

Xair (ω) =
Fproj√

(Ks − [Ms + Mf (Xair )]ω2)2 + ([Cs + Cf (Xair )]ω)2
. (3.15)

The terms Mf (Xair ) and Cf (Xair ) in (3.15) represent, respectively, the modal added-
mass and the modal aerodynamic damping effects due to the surrounding air. Also,
since the terms Mf (Xair ) and Cf (Xair ) depend on the magnitude of response Xair (ω),
(3.15) needs to be solved iteratively in order to obtain Xair (ω).

Equation (3.11) is the governing equation for slender sharp-edged beams oscillating
in surrounding quiescent fluid with amplitudes comparable to their widths, while
equations (3.13), (3.14) and (3.15) present a procedure for predicting the amplitude
response and nonlinear aerodynamic damping of such structures. These equations are
quite general and can be used for a wide range of engineering applications including
piezoelectric fans (Kimber et al. 2007), sharp-edged marine structures (Sarpkaya &
Isaacson 1981), aeronautical structures like flapping-wing MAVs (Ansari et al. 2006),
insect wings, cantilever beam wind energy harvesters and several such structures as
long as these structures oscillate at low KC numbers of the order of one and perform
single-mode harmonic motions.

Other extensions are possible to make this theoretical model applicable to a wider
array of problems. For example, a possible extension to the current theoretical model
is the inclusion of structural nonlinearities (Nayfeh & Mook 1979) and the retention
of higher harmonics of the fluid force terms (see (3.6)) to study the aerodynamic
dissipation of slender sharp beams oscillating at even higher KC numbers. This
extension, however, is out of the scope of the current article. Before proceeding to
§ 4, where we compare the predictions of the current theoretical model with the
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Figure 9. Contour plots of Cf EI/(ρf ωL6) as a function of c∗ and A∗ for a cantilever beam
oscillating in (a) the first mode and (b) the second mode.

experiments of § 2, we study the properties of the modal aerodynamic coefficient Cf ,
which was introduced in (3.14).

3.5. The modal aerodynamic damping coefficient Cf

The modal aerodynamic coefficient Cf (see (3.14)) depends on the fluid density ρf ,
the beam geometry (i.e. width c and length L), the beam oscillation mode shape ψ(x)
and the beam oscillation amplitude. In order to calculate Cf for a wide range of
beams with different widths, lengths and oscillation amplitudes, we can normalize the
expression for Cf in the following manner:

Cf EI

ρf ωL6
= c∗

∫ 1

0

A∗B1(|KC(x̂)|)|ψ(x̂)|ψ2(x̂) dx̂. (3.16)

In (3.16), c∗ = c/L is the ratio of the beam width to the beam length, A∗ = A/L

is the ratio of the free-end beam amplitude to the beam length and ψ(x̂) is the
unit-normalized mode shape (Meirovitch 2000) of a cantilever beam.

The quantity Cf EI/(ρf ωL6) can be used to predict the vortex-shedding-induced
damping for a wide range of slender sharp-edged beams oscillating with amplitudes
comparable to their widths. In figure 9, we plot the quantity Cf EI/(ρf ωL6) as
a function of c∗ and A∗. Figure 9(a) shows a contour plot of Cf EI/(ρf ωL6) for
a cantilever oscillating in its first eigenmode, while figure 9(b) shows the contour
plot of Cf EI/(ρf ωL6) for the second eigenmode. From figure 9, we see that the
quantity Cf EI/(ρf ωL6) increases with increasing width as well as increasing free-end
amplitude. The contour plots in figures 9(a) and 9(b) are quantitatively similar to one
another, however, the corresponding value of aerodynamic damping Cf for the first
and second mode will be different due to their different frequencies.

4. Comparison of theory and experiment
In this section, we adapt the general theoretical model for aerodynamic damping

of slender sharp-edged beams developed in § 3 to the specific case of the piezoelectric
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fans used in § 2. The theoretical predictions are then compared with the experimentally
estimated aerodynamic damping of piezoelectric fans.

In order to determine the theoretical predictions of aerodynamic damping for
piezoelectric fans (by using (3.15)), we need to know the external forcing Fproj (i.e. the
forcing induced by the voltage-actuated piezoelectric patch) as well as the in vacuo
mode shape and the natural frequency of the first flexural mode of the piezoelectric
fan. The piezoelectric forcing can be calculated theoretically by using an analytical
electro-mechanical coupling model (Bürmann, Raman & Garimella 2003), while the in
vacuo mode shapes and natural frequencies of the piezoelectric fan can be calculated
by using an accurate finite-element model of the piezoelectric fan (Wait et al. 2007).
However, since modelling the aerodynamic damping is the primary focus of this article,
we do not include an analytical model of the piezoelectric forcing or a finite-element
model of the piezoelectric fan in this article. Instead, we rely on the measurements
taken during the vacuum experiments for estimating the piezoelectric forcing, and
the in vacuo mode shapes and natural frequencies. In what follows, we describe a
procedure based on (3.15) for predicting the amplitude response of the piezoelectric
fan.

The procedure for predicting the amplitude response Xair (ω) is summarized in the
following discussion (see figure 10 for a detailed flow chart). We use the experimentally
measured mode shape ψexp(x) and the in vacuo resonance frequency ωvac to calculate
the structural modal mass Ms and the structural modal stiffness Ks of the piezoelectric
fan. The structural modal damping Cs and the modal forcing Fproj are estimated by
using the in vacuo amplitude response. Finally, we use the values Ms , Ks , Cs and
Fproj along with the theoretically calculated values Mf (Xair ) and Cf (Xair ) to predict
the response amplitude Xair (ω) of the piezoelectric fan. In figure 10, the two-way
arrows between Xair (ω), and Mf (Xair ) and Cf (Xair ) signify the iterative nature of this
calculation. Furthermore, the response amplitude Xair (ω) is also used to calculate the
modal aerodynamic damping coefficient Cf (Xair ) (and the corresponding Q-factor)
of the piezoelectric fan.

Figure 11(a) shows the comparison of the theoretically predicted and the
experimental amplitude response curve of fan 1 oscillating in air for an applied
external voltage V ′ = 5 V. It is seen that the error in predicting the resonant frequency
is 0.28 % (predicted value of 127.64 Hz and experimental value of 128.0 Hz), the
error in predicting the peak amplitude is 7.94 % (predicted value of 0.9222 mm and
experimental value of 1.0017 mm) and the error in predicting the Q-factor is 17.8 %
(predicted value of 178.60 and experimental value of 217.45). The numbers presented
here are representative calculations, and similar calculations were done for fans 1, 2
and 3 for various values of the applied voltage. Overall, the model developed in this
article is capable of predicting the resonant amplitudes with an error of less than
10 %.

In figure 11(b), we show a comparison of the experimentally estimated and the
theoretically predicted aerodynamic Q-factors for fans 1, 2 and 3. We see that the
theoretical model slightly overpredicts (by 15 %–20 %) the aerodynamic damping.
This is an expected result because the theoretical model uses a two-dimensional
approximation for the fluid flow at every beam cross-section. In a three-dimensional
flow, the shed vortices stretch and tilt relative to the two-dimensional computational
plane (Sarpkaya 1989), and a two-dimensional vortex calculation is incapable of
capturing the fluid force reduction caused by these three-dimensional effects (Sarpkaya
1989). Furthermore, the two-dimensional fluid flow assumption accounts only for
vortex-shedding from the side edges of the beam, and neglects the vortex-shedding
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Figure 10. A flow-chart for combining the theoretical fluid flow model with the
experimental structural model for predicting the amplitude response Xair (ω) of the fan.
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Figure 11. (a) Comparison of the theoretical and experimental amplitude response of fan 1,
and (b) comparison of the theoretically predicted and the experimentally estimated Q-factor
for fans 1, 2 and 3.

and energy dissipation at the sharp edge located at the free end (x = L) of the
cantilever. However, since L � c, it is surmised that this effect is small compared
to the side-edge vortices, and the overall effect of the two-dimensional fluid flow
assumption is an over prediction of damping. Furthermore, we note that the inviscid
fluid flow model presented here does not account for the viscosity-induced reduction
in strength of the shed vortices, which also leads to the slight overprediction of the
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Figure 12. Comparison of the experimentally estimated Q-factors for fans 1, 2 and 3 with
the theoretical predictions of the viscous-diffusion-based theory of Sader (1998).

aerodynamic damping. The mismatch between the theory and the air experiments is
less likely to be caused due to the presence of the surrounding vacuum chamber walls,
because the chamber walls are located at least 10–15 times the fan width away from
the piezoelectric fan and the vortices formed around the fan are expected to diffuse
before reaching the chamber walls.

It is worthwhile to compare the predictions of the current theoretical model with the
predictions of the purely inviscid model of Chu (1963) and the viscous-diffusion-based
model of Sader (1998). The purely inviscid model of Chu (1963) predicts that the
frequencies of the piezoelectric fans 1, 2 and 3 reduce by 0.35 %, 0.70 % and 1.54 %
when moved from vacuum to air due to the added mass caused by the presence of
the surrounding air. Although these predictions agree well with the experimentally
measured shifts in the frequencies of piezoelectric fans, the purely inviscid model (Chu
1963) is unable to predict any aerodynamic damping for these piezoelectric fans. The
aerodynamic damping predictions of the viscous-diffusion-based theory (Sader 1998)
can be obtained by using the fluid force expression in (9) in Sader (1998) along with
the flow chart in figure 10. As shown in figure 12, the viscous-diffusion-based theory
of Sader (1998) predicts Q-factors of 1063, 994 and 316 for fan 1 (β = 300), fan 2
(β =1180) and fan 3 (β = 550), respectively, for all amplitudes of fan oscillations.
These theoretical predictions show a large mismatch with the experimental results.
Furthermore, the predictions of the viscous-diffusion-based theory (Sader 1998) do not
depend on the amplitude of beam oscillation, thereby failing to capture the nonlinear
amplitude-dependent behaviour of the aerodynamic damping. On the other hand, the
current theoretical model successfully captures the nonlinear trends in aerodynamic
damping with approximately 15 % error when compared to the experiments.

In summary, the theoretical model developed here is capable of predicting the
nonlinear aerodynamic damping observed in slender sharp-edged beams oscillating
in quiescent fluids at moderately high values of the frequency parameter β with large
amplitudes comparable to their widths. The utility of the model lies in the fact that
the model uses an inviscid fluid flow theory (with the advantage of less computational
effort), and yet is able to capture the nonlinear trends in aerodynamic damping with
approximately 15 % error when compared to the experimental values. Using a fully
three-dimensional Navier–Stokes fluid model instead of the current vortex-shedding
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Figure 13. A stationary cylinder subjected to a time-dependent potential flow.

inviscid model (Jones 2003) could possibly reduce the error between theory and
experiments, but only at the cost of an increased computational effort. In the next
section, we present a physical explanation for the phenomenon of vortex-shedding-
induced damping, which helps us better understand the trends seen in figure 11(b).

5. Mechanism of vortex-shedding-induced damping
It is helpful to understand the mechanism by which vortices shed by an oscillating

structure in a potential flow cause the fluid force on the structure to lag its acceleration
and thus dissipate structural energy. The discussion presented here complements our
understanding of the phenomenon of vortex-shedding-induced damping as presented
in several previous experimental (Keulegan & Carpenter 1958; Sarpkaya 1975b, 1976;
Maull & Milliner 1978; Sarpkaya & Isaacson 1981) as well as numerical (Clements
1973; Sarpkaya 1975a; Stansby 1977; Jones 2003) studies.

We consider the case of a stationary cylinder of radius c (a representative case of
a two-dimensional bluff body) subjected to an inviscid flow with velocity Uo(t) along
the x direction (see figure 13), and use this example to demonstrate how the presence
of vortices around an oscillating bluff body gives rise to fluid damping. The fluid
force Fx acting on the cylinder along the x direction is given by (Sarpkaya 1963)

Fx = 2πρf c2 ∂Uo

∂t
− ρf

m∑
k=1

Γk(vk − vki), (5.1)

where Γk is the real-valued strength of the kth discrete vortex (there are m such
discrete vortex pairs), and vk and vki are the y-direction transport velocities of the
kth vortex and the kth image vortex, respectively.

We note from (5.1) that in the absence of vortices (i.e. Γk = 0) around the cylinder,
the force on the cylinder is proportional only to the fluid acceleration ∂Uo/∂t .
However, when Γk �= 0, the phase of the force component ρf Γk(vk − vki) caused by
the kth vortex pair is determined by the phase of the y-direction relative transport
velocity (vk −vki). In general, the relative transport velocity (vk −vki) of the kth vortex
pair will not be in phase with the fluid acceleration, thus causing a portion of the fluid
force ρf

∑m

k = 1 Γk(vk − vki) to have a phase different from the fluid acceleration. Thus,
the transport of the vortices around a cylinder with y-direction relative transport
velocities (vk − vki) not in phase with the fluid acceleration can shift the phase of
the fluid force acting on the cylinder. For the case of a bluff body oscillating in
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surrounding quiescent fluid, this phase shift between the fluid force and the structural
acceleration gives rise to the vortex-shedding-induced fluid damping. Furthermore,
increasing the oscillatory flow velocity Uo(t) causes both the strength Γk of the shed
vortices and the y-direction transport velocities vk and vki to increase in magnitude,
which subsequently cause the fluid force to increase in a nonlinear fashion.

6. Conclusions
Slender sharp-edged oscillating flexible beams are used as fluidic actuators

in flapping wings of MAVs, insect wings and piezoelectric fans for electronics
cooling, and encounter nonlinear aerodynamic forces at moderate-to-large oscillation
amplitudes. This article presents detailed experiments on piezoelectric fans performed
in ambient and vacuum conditions, and develops models for predicting the nonlinear
aerodynamic damping for slender sharp-edged beams. In particular, both theory and
experiment demonstrate that such structures encounter significant nonlinear increase
in aerodynamic damping with oscillation amplitude. This behaviour is excellently
captured by the model that allows for flow separation and vortex shedding from the
sharp edges of the structure. The aerodynamic loading can be expressed in terms of
two non-dimensional parameters KC and β making the results scalable and useful to
predict the aerodynamic loading of a wide variety of sharp-edged beams oscillating
in air.
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