CHIP SEALS: ART, SCIENCE OR JUST_plain LUCK?

PURDUE ROAD SCHOOL

MARCH 26, 2008
PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA

Scott Shuler
Colorado State University
WHAT ARE CHIP SEALS?
Who, What, When, Where, Why?

- Who?
 - Owner Crews
 - Advantages
 - Patience, Care, Ownership, Experience
 - Disadvantages
 - Experience
 - Contractors
 - Advantages
 - Depends on Contract and Contractor
 - Experience
 - Disadvantages
 - Depends on Contract
Who, What, When, Where, Why?

- What, When, Where?
 - What?
 - Asphalt Pavements
 - Surface Treatments
 - HMA
 - Unsurfaced
 - Earth
 - Aggregate
 - When?
 - Before It’s Too Late
 - Distress Should be Low to Moderate
 - Where?
 - Anywhere
 - Traffic
 - Climate
Who, What, When, Where, Why?

- Why?
 - Waterproof Surface
 - Improve Friction
Design

- Aggregate
 - Properties
 - Spread Rate
- Emulsion
 - Properties
 - Spray Rate
Aggregate

- Properties
 - Crushed
 - 2 Mechanically Fractured Faces
 - Hard

Like THIS Right?
Aggregate

- Spread Rate
 - One Stone Thick
 - Or.....
Designing it One Stone Thick

- Basically, Two Design Methods
 - Hanson/McLeod/AusRoads
 - ALD, Flakiness Index, Unit Weight, SG
 - Kearby/Gallaway/Epps
 - Board Test, Unit Weight, SG
Emulsion

- Properties
 - Thick Enough, but Not Too Thick
 - Fast Setting, but Not Too Fast
 - Sticky

- Spray Rate
 - Embed Chips about 30-70% Initially
 - Traffic Embeds to 50-90%
Estimating Spray Rate (Modified Kearby)

\[A = \% \text{embedment} \times \text{avg mat depth} \times \{1 - \left(\frac{W}{62.4G} \right) \} \times T + V \]

Where

- \(A \) = Asphalt, gsy
- \(W \) = Loose Unit Weight of Aggregate, pcf
- \(G \) = Bulk Specific Gravity of Aggregate
- \(T \) = Traffic Correction
- \(V \) = Surface Condition Correction
Construction

- Equipment
- Conditions
- Emulsion Application
- Aggregate Application
- Rolling
- Sweeping
- Traffic Control
Equipment

- Distributor Spraybar
 - Nozzles
 - Calibrated Equal Flow
Rollers

- Rubber-Tire
 - 3 mph
 - Around 2 - 4000 sy/hr
 - Equal Tire Pressure
 - 40-90 psi
- Enough for 1 Coverage Before ‘Gelling’
Equipment

Rollers
- Steel-Wheel ?????
 - Why?
 - Smoothes Surface
 - ‘Locks’ chips
 - 3 – 6 t, max.
- Why Not?
 - Crushing
 - Non-uniform surfaces
Equipment

- **Brooms**
 - **Why?**
 - Remove 10% Extra for Pickup
 - **What?**
 - Push, Sweep/Pickup
 - EASY Pressure
 - Nylon
 - Wears Out Faster Than Steel, but...
 - **Timing**
 - After Final Embedment
 - When Cooler
 - Before Traffic

Construction
Ideal Conditions

- **Dry**
 - No rain threatening
 - Pavement Dry
- **Low Wind**
 - <10 mph
- **Temperate**
 - 50F Air, min
 - 70F Surface, min
 - However, lower possible if sunny and warm later
Uniform Application

- Calibrate Nozzles
 - Each Nozzle +/- 10% of Mean Flow
 - Edge Nozzles
 - Or… Turn End Nozzle Perpendicular to Bar
- Start and Stop on Paper
- Rate = +/- 5% of Design to Start
 - Check after 1st Distributor
Uniform Application

All Gates Open the Same

Check Transverse Rate After 1st Distributor

Rate = +/- 5% of Design

Look at It - See Voids in Surface

Adjust up slightly for Pick up on Rubber
Traffic Control

- Pilot Cars
 - 15-25 mph depending on traffic volume
Current Research

- Quantify Judgement Items, ie ‘Art’
 - Time to Broom/Traffic
 - Modified Sweep Test (ASTM D7000)
 - Compatibility of Emulsion and Chips
 - Modified Sweep Test
 - Surface Texture
 - Sand Patch
 - CT Scan
 - Field Consistency
 - Portable Viscosity
 - Specifications
 - Emulsions
 - Residues
 - New Recovery Test
Questions ?