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Recently, there has been considerable interest in developing organically functionalized silicon
surfaces for a variety of applications including sensing and nanoelectronics. In this study, a series of
as-deposited, para-substituted aryl-diazonium molecular layers covalently grafted to
�111�-orientation silicon are characterized using a variety of surface analysis techniques.
Collectively, these measurements suggest that relatively ideal molecular layers can be achieved with
a variety of headgroups. Submonolayer amounts of silicon oxide are detected on all modified
surfaces and the extent of silicon oxidation depends on the molecular substituent. For electronic
device applications, it is necessary to apply contacts to molecular layers while maintaining their
structural and chemical integrity. To this end, in situ spectroscopies are used to infer the effects of
metallization on such molecular layers. It is found that applying gold using a soft evaporation
technique does not significantly perturb the molecular layer, whereas the application of copper using
the same technique induces changes in the molecular vibrational spectra. Two complementary in situ
spectroscopic methods are analyzed to more accurately determine the chemical properties of gold/
molecule/silicon junctions. The physical mechanisms of the measurements and consequences for
interpretation of the resulting spectra are discussed. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3103337�

I. INTRODUCTION

Modified semiconductor surfaces are are great interest
due to their potential application in nanoelectronics, sensing,
and biological applications.1 Functionalized silicon is par-
ticularly relevant because of its ubiquitous use in integrated
circuit technology. Covalent modification of Si through Si–C
bonds is particularly attractive due to its robustness and flex-
ibility. The isolated Si–C bond strength is 451 kcal /mol. The
bond strength of the as-deposited molecules is likely differ-
ent, but it is still very strong. It has been shown that Si
surfaces modified with hydrocarbons are resistant to oxida-
tion, even after boiling in solvents and exposure to hydrof-
luoric acid.2 Molecular layers have been used as electrode
passivation materials for Si electrodes for electrochemical
applications.3 The thermal stability for a few molecular spe-
cies has been assessed and alkyl molecular layers on Si have
been demonstrated to survive to temperatures of 300 °C.4

Chemical modification of silicon can be achieved by a
number of derivitization methods which involve covalently
attaching the molecular modifiers via stable Si–C bonds.5,6

Most reported methods consider the attachment of aliphatic
chains to �111� Si, which has been demonstrated by
thermal,7,8 radical,9,10 electrochemical,11 and
radiation-assisted12 methods. For molecular electronic appli-
cations, it is desirable to utilize molecular layers with ex-
tended conjugation because they have potentially higher con-
ductivity and increased electronic functionality.13

Functionalization of �111� Si with aromatic species has been

demonstrated by electrochemical14 and spontaneous15,16 re-
duction of aryl-diazonium salts. Electrochemical reduction of
para-substituted aryl-diazonium salts can be carried out rap-
idly in ambient laboratory conditions for a variety of molecu-
lar species using dry solvent or acidic aqueous solutions,
yielding densely packed molecular layers.2,17

A number of characterization techniques can be used to
evaluate the molecular layers on surfaces.6,18–20 Collectively,
these techniques can provide information about the presence
of the molecular species, approximate surface coverage,
thickness and bonding characteristics, as well as chemical
modifications which may have occurred during deposition. A
few electrochemically grafted aryl molecular layers on sili-
con and carbon have been studied using Rutherford back-
scattering spectroscopy, electrochemical methods, scanning
tunneling microscopy, atomic force microscopy �AFM�, and
x-ray photoemission spectroscopy �XPS�.2,21–23 It is found
that the density and thickness of the molecular layer are
functions of grafting conditions and molecular substituent,
indicating that careful characterization and control of graft-
ing potential and charge can lead to well-defined molecular
layer structure. It has been demonstrated by infrared spec-
troscopy that the addition of an in situ etchant to aqueous
solutions suppresses oxidation of the silicon surface during
molecular grafting.24 Applications such as electronic devices
typically require a dense molecular layer as well as applica-
tion of a top contact such as an evaporated metallic layer.
Electrical measurements such as current-voltage or
capacitance-voltage show systematic trends based on the mo-
lecular species that is employed25–27 which provide indirect
evidence of the integrity of the molecular layers within thea�Electronic addresses: scott26@purdue.edu.
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device structures. However, it is also important to study the
structural/chemical characteristics of the molecular layers
following metallization, since the deposition process can
have significant effects on the molecular layer.28–30 Recently,
several in situ characterization techniques, i.e., techniques
which allow characterization of the molecular layer follow-
ing metallization, have been employed to study metal/
molecule/silicon structures.31,32

In this study, the electrochemical reduction technique is
used to deposit molecular layers of several species on silicon
surfaces. The as-deposited molecular layers are studied using
a variety of surface analysis techniques. Two complimentary
in situ techniques are used to evaluate the influence of metal
deposition on a molecular layer. Collectively, these measure-
ments are used to assess the chemical and structural proper-
ties of the molecular layers.

II. SAMPLE PREPARATION

A. Hydrogen passivation

Hydrogen-terminated �111� Si was prepared by wet
etching.33,34 n-type �P-doped, Nd=3�1015 cm−3�, n-type
double side polished �As-doped, Nd=3�1015 cm−3�, and
p-type �B-doped Na=4�1019 cm−3� silicon wafers were
used in this study. The wafers were coated with photoresist
to protect the surface from mechanical damage and diced
using a dicing saw. The photoresist was removed from the
wafer pieces by soaking them in acetone. The Si pieces were
cleaned by sonicating them for 5 min in toluene, 5 min in
acetone, and 5 min in methanol. This sequence was then re-
peated to ensure that the particulate contamination from the
dicing process was removed. The samples were then cleaned
by immersion in hot piranha solution �either 1:1 volume ratio
H2SO4:H2O2 or Nanostrip 2X� for 15–20 min to remove
any residual organic contamination. The samples were re-
moved from the piranha solution and rinsed repeatedly in
ultrapure water. Hydrogen termination was achieved by etch-
ing the freshly cleaned samples for 12 min in concentrated
aqueous ammonium fluoride solution which had been de-
gassed by bubbling with nitrogen for at least 30 min in a
teflon beaker.35 The samples were then rinsed briefly with
ultrapure water which had been degassed by bubbling with
nitrogen and were dried under a stream of nitrogen. It has
been reported that similarly prepared surfaces are stable for a
period of hours under ambient conditions, exhibiting only
submonolayer coverage of silicon oxide after 24 h in air.36 In
this study, all characterization and processing of these sur-
faces was initiated within 30 min of hydrogen terminating
the samples.

B. Molecular grafting

Silicon surfaces modified by substituted aryl species
were prepared by electrochemical reduction of para-
substituted aryl-diazonium salts in an aqueous, acidic
solution.14,17,37 Bromobenzenediazonium tetrafluoroborate
�B-benz�, diethylanilinebenzenediazonium tetrafluoroborate
�D-benz�, methoxybenzenediazonium tetrafluoroborate �M-
benz�, nitrobenzenediazonium tetrafluoroborate �N-benz�,
2-methyl 4-nitrobenzenediazonium tetrafluoroborate �2M

4N-benz�, and 2-methoxy 4-nitrobenzenediazonium tet-
rafluoroborate �2MO 4N-benz� were purchased from Sigma
Aldrich and used without further purification. A custom
three-electrode electrochemical cell with a Pt mesh counter-
electrode, Au wire pseudoreference electrode, and the freshly
hydrogen-terminated silicon sample as the working electrode
was used for molecular deposition. An Ohmic contact was
made to the silicon by applying InGa eutectic and the sample
was mounted on a sample holder with a Cu contact. A solu-
tion of 1:1:250 H2SO4:HF:ultrapure water by volume was
prepared and degassed by bubbling with nitrogen for at least
20 min. 50 ml of this solution was added to a nitrogen-
purged teflon electrochemical cell. A quantity of the desired
molecular species adequate to form a 5 mM molecular con-
centration when dissolved in the solution was dissolved in a
small quantity of deoxygenated de-ionized water and added
to the cell just prior to application of a potential. Initial ex-
periments were performed to determine the optimal grafting
potential for each combination of molecular species and sub-
strate type using cyclic voltammetry, the peak corresponding
to the reduction of the diazo group was located, and this
potential was selected as the optimal grafting condition. Mo-
lecular layer grafting for all samples was performed in a
constant potential configuration while the current was moni-
tored. The grafting potentials used in this study varied from
−0.7 to −1.2 V �versus Au pseudoreference electrode� de-
pending on the molecular species and substrate doping. Dur-
ing monolayer formation, the current drops exponentially.
After monolayer coverage has been achieved, the current be-
gins to drop linearly, corresponding to multilayer growth.21

The reaction is stopped by switching the potential to zero as
soon as the linear region of the grafting curve is encountered.
Using this method, approximate monolayer coverage is
achieved. The as-grafted species used in this study are shown
in Fig. 1.

After molecular layer deposition, the samples were
cleaned by rinsing in de-ionized water followed by drying
under a stream of nitrogen. They were then sonicated for
5 min in acetonitrile to remove physisorbed species and re-
action by-products. The sonication step was repeated in fresh
solvent and the samples were dried under a stream of nitro-

FIG. 1. �Color online� Molecules used in this study. X=Br �B- benz�,
N�C2H5�2 �D-benz�, OCH3 �M-benz�, NO2 �N-benz�, R=CH3 �2M 4N-
benz�, R=OCH3 �2MO 4N-benz�. The ideal surface bonding is shown
schematically.
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gen. At this stage, molecular layers are designated “as depos-
ited.” Samples were either transferred immediately to the
measurement apparatus or stored in a drybox with continu-
ous nitrogen purge until characterization was performed.

C. Metallization

In order to assess the influence of metal deposition on
molecular layer characteristics, some samples were metal-
lized by “soft” vapor deposition of gold or copper.25,38,39 The
samples are introduced into the chamber of a thermal evapo-
rator with the sample surface oriented away from the metal
source. The chamber is pumped down to a base pressure of at
least 10−6 Torr. The chamber is then backfilled with argon to
atmospheric pressure. This pump-purge cycle is repeated.
The chamber is then pumped down to 6 mTorr and the
evaporation is performed. During the metal deposition, the
evaporation rate is monitored and restricted to a rate of
0.1 Å /s. The first 15–20 nm of metal is deposited using this
procedure. The sample is then transferred to a standard
electron-beam evaporator and an additional 150–200 nm of
metal is deposited at a rate of 1 Å /s to enable further pro-
cessing.

III. CHARACTERIZATION OF AS-DEPOSITED
MOLECULAR LAYERS

Freshly prepared as-grafted molecular layers on silicon
were analyzed using a number of standard surface character-
ization techniques to determine the structural and chemical
properties of the surfaces.

A. AFM

AFM was performed using a Dimension 3100 atomic
force microscope in cleanroom conditions to determine the
topography of the samples. All scans were taken in contact
mode with a silicon nitride AFM tip. Tapping-mode measure-
ments were also performed and yielded similar results. All
scans are 1�1 �m. n �P-doped� and p+ hydrogen-
terminated silicon surfaces are shown in Fig. 2. For the
lightly doped sample, steps are clearly visible on the surface.
Each step is a large �111� facet of the crystal, with the edges
corresponding to the height difference between individual
planes of silicon atoms. The step height as measured by
AFM is 2.2�0.2 Å, which is in reasonable agreement with

the atomic spacing for �111� silicon planes. For the heavily
doped samples, step edges are not present, however, the sur-
faces are still very flat.

AFM images of the as-modified surfaces on n-type sili-
con are shown in Fig. 3. For B-benz, D-benz, and M-benz,
the step edges are still clearly visible, indicating that the
surface modification has not significantly affected the topog-
raphy. This is consistent with the expected morphology of
ideally modified surfaces. The N-benz surface no longer has
clear step-edge structure, indicating that the molecular layer
is sufficiently disordered to affect the surface topography.

B. XPS

XPS was performed using a Kratos Ultra DLD XPS sys-
tem with monochromatic Al K� radiation �h�=1486.6 eV�
and an analyzer pass energy of 20 eV. Spectra were obtained
at normal incidence and angle resolved measurements were
performed at 15° increments. Background subtraction and
peak fitting were performed using CASAXPS software40 with
Gaussian–Lorentzian line shapes and linear or Shirley back-
ground subtraction. Wide scans were used to determine the
species present on the surface. High-resolution scans were
then performed in the regions where elements of interest
were present to more precisely determine the atomic concen-
trations and oxidation states of those species. Angle-resolved
XPS was utilized to determine the thickness and orientation
of the various atomic species on the surface. Peak assign-
ments were made based on comparing the binding energies
with reports in the literature for similar molecular species.41

All data shown were obtained on n-type Si; however, other
substrate dopings were measured for a subset of the molecu-
lar species and showed similar results.

Survey scans of H-terminated and molecularly modified
samples are shown in Fig. 4. For the H-terminated spectrum,
the results are consistent with the presence of silicon with
some hydrocarbon contamination and a small amount of

FIG. 2. 1�1 �m2 AFM images of lightly doped �a� and heavily doped �b�
hydrogen-terminated silicon wafers. The steps in �a� correspond to indi-
vidual planes of Si atoms. The root-mean-square roughnesses of the images
are 1.1 and 1.6 Å, respectively.

FIG. 3. �Color online� AFM images of B-benz �a�, D-benz �b�, M-benz �c�,
and N-benz �d� on n-type Si. Atomic step edges are still visible in �a�–�c�,
whereas �d� exhibits much less-ideal topography.
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fluorine. The hydrocarbon is attributed to contamination
from exposure of the samples to ambient as they are trans-
ported from the fume hood to the XPS system. The presence
of fluorine can be attributed to the presence of a small
amount of residual etchant on the surface or fluorinated hy-
drocarbon contamination from the teflon beakers used for
etching. For the modified Si samples, the survey spectra
show evidence of the silicon substrate, atomic species con-
sistent with the adsorbate of interest, and residual hydrocar-
bon contamination. The absence of sulfur and boron on the
surface confirms that the postdeposition cleaning removes
the deposition solution and reaction by-products. High-
resolution and angle-resolved XPSs were then performed to
gain a more detailed understanding of the molecular layer
composition and structure.

It has been shown that bromine-functionalized molecular
layers can form various surface species due to molecular
decomposition and interaction between the silicon and
bromine.18 High-resolution XPS of the Br 3d region of
B-benz is shown in Fig. 5. The characteristic doublet due to
the carbon-bound bromine is clearly visible. If silicon-bound
bromine was present, there would be an additional doublet
shifted to lower binding energy. The absence of these peaks
indicates that electrochemical deposition does not decom-
pose the aryl-bromine species. Angle-resolved XPS measure-

ments indicate that the bromine is located at the sample sur-
face which is consistent with the expected molecular layer
orientation.

High-resolution spectra of the N 1s region for nitro-
substituted species are shown in Fig. 6. There are peaks cor-
responding to multiple oxidation states of nitrogen which are
attributed to various NOx and NHx species. The presence of
these peaks suggests that the molecular headgroup is un-
stable and prone to reduction. There are two possible mecha-
nisms for this: since the molecular grafting takes place at a
reduction potential, it is possible that the nitro headgroup is
reduced during molecular grafting. Alternately, the head-
group could spontaneously reduce after the molecular layer
is put on the surface. NO2 is quite unstable, and assuming
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FIG. 7. High-resolution XPS of the Si 2p region for hydrogen-terminated
and molecular samples.
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FIG. 4. XPS survey spectra of hydrogen-terminated and representative mo-
lecular samples. All spectra are shown in arbitrary units �A.U.�.
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FIG. 5. Br 3d high-resolution XPS of Br 3d region of B-benz sample show-
ing characteristic doublet consistent with carbon-bound bromine.
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that some of the sites on the Si surface maintain the hydro-
gen termination, there is adequate hydrogen to react with.
Angle-resolved XPS of the N 1s peak suggests that the ni-
trogen is primarily located at the sample surface, which is
consistent with the molecules orienting in the expected man-
ner.

The Si 2p region of the spectrum was analyzed in detail
to characterize the level of oxide formation at the silicon
surface. High-resolution scans at normal incidence for
hydrogen-terminated and representative molecular samples
are shown in Fig. 7. The characteristic doublet due to the Si
2p 3 /2 and Si 2p 1 /2 states is clearly visible. The silicon
oxide peak is located at 103.5 eV. There is no distinguish-
able peak in this region for the hydrogen-terminated sample
which is consistent with relatively ideal termination. The
N-benz sample exhibits a fairly substantial oxide peak,
whereas the M-benz sample has a very weak peak. It is found
that the molecular headgroup affects the degree of substrate
oxidation. In order to quantify this effect, angle-resolved
XPS was used to offer a more quantitative determination of
the degree of substrate oxidation. The amount of oxide was
estimated by using a uniform overlayer model,42 which is
likely to overestimate the degree of oxidation because it fails
to take into account the attenuation of the signal due to the
molecular overlayer. High-resolution angle-resolved XPSs of
samples exhibiting low and high degrees of surface oxidation
are shown in Figs. 8�a� and 8�b�, respectively. The oxide
appears to form a partial monolayer since the experimentally
determined thicknesses are less than 2.7 Å, which is the
thickness of a SiOx monolayer.43,44 The calculated quantity
of silicon oxide on the sample surfaces is given in Table I.

The hydrogen-terminated samples do not yield a measurable
peak in the SiOx region at any angle. The NO2-containing
layers exhibit a much higher level of oxidation than the other
molecular samples. This supports the idea that the NO2 may
be reducing by taking the interstitial hydrogen from the Si
surface.

High-resolution spectra of the C 1s regions of the
hydrogen-terminated control sample and various molecular
samples are shown in Fig. 9. The hydrogen-terminated
sample has some hydrocarbon contamination with C–C,
C–O, and OvC–OH species. All of the molecular samples
have increased peak intensity in the C 1s region. In the case
of M-benz and 2MO 4N-benz, there is a clear contribution
near 287 eV due to the methoxy substituents. In order to
accurately determine the molecular contribution to the car-
bon signal of the modified surfaces, it is necessary to correct
for the presence of the hydrocarbon contamination.19 Each
spectrum is fitted using multiple Gaussian peaks. Assuming
that the adsorbed hydrocarbon contamination on the molecu-
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FIG. 8. Angle-resolved XPS of Si 2p region for molecular layers exhibiting
high and low degrees of substrate oxidation. The takeoff angle was varied
from 0° to 75°.

TABLE I. Quantity of silicon oxide for various molecular layers as calcu-
lated from Si 2p XPS peaks.

Molecular species
Amount of oxide

�% of a monolayer�

B-benz 14
D-benz 12
M-benz 18
N-benz 80
2M 4N-benz 45
2MO 4N-benz 33
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FIG. 9. As-measured high-resolution XPS of the C 1s region for hydrogen-
terminated and molecular samples.
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lar samples is similar to the hydrocarbon on the hydrogen-
terminated sample, the fitted peaks can be attributed to car-
bon in the molecular layer or contamination based on
comparison with the hydrogen-terminated sample C 1s spec-
trum, as shown in Fig. 10. The constraints obtained after
correcting for the hydrocarbon contamination are shown in
Fig. 11. In the case of D-benz, N-benz, and 2M 4N-benz,
only one peak is resolved after this correction, which is con-
sistent with previously observed XPS for similar
compounds.45,46 The peaks are located near 285 eV, which is
consistent with aromatic carbon. The D-benz peak is shifted

to a relatively higher binding energy. The reason for this is
under investigation. For B-benz, peaks corresponding to aro-
matic and Br-bound carbon are clearly visible. The M-benz
and 2MO 4N-benz constraints each exhibits two peaks which
can be attributed to aromatic carbon and oxygen-bound car-
bon from the methoxy substituent.

XPS measurements confirmed that chemical composi-
tion consistent with the expected adsorbates and some hydro-
carbon contamination were present on all sample surfaces.
Analysis of the Si 2p region revealed submonolayer quanti-
ties of silicon oxidation that is molecular-layer dependent
with NO2-substituted samples exhibiting relatively higher
quantities of silicon oxide. Close analysis of the C 1s region
including correction for hydrocarbon contamination revealed
characteristics consistent with aromatic hydrocarbon and
showed evidence for the methoxy substituent for M-benz and
2MO 4N-benz. High-resolution spectra of the N 1s regions
of the NO2-substituted species reveal the presence of NHx

species in addition to the expected NO2 oxidation states. The
Br 3d region for B-benz reveals that the molecular layer
binds to the substrate in the expected orientation.

C. Ellipsometry

Ellipsometry was performed using a Gaertner Scientific
L116S variable-angle Stokes ellipsometer with a �
=543.5 nm light source. Measurements were performed on
at least five regions on each sample of as-deposited molecu-
lar layers on n-type Si. The thickness was determined using a
standard three-layer model. The molecular layer was consid-
ered using n=1.48 and k=0. Reference samples of hydrogen-
terminated silicon and oxidized silicon were measured for
comparison. It is difficult to accurately determine the thick-
ness of very thin films with ellipsometry and the absolute
height obtained is very sensitive to the optical parameters
and other factors such as surface roughness. As such, trends
in the data are considered, but the absolute film thicknesses
as determined by this method are likely inaccurate. The ex-
pected molecular lengths as calculated by density functional
theory and thicknesses of the molecular layers as extracted
from ellipsometric measurements are given in Table II. The
relative thickness of M-benz is larger than the other molecu-
lar layers which may indicate partial multilayer formation.
The results are generally consistent with approximately one
monolayer coverage for most samples.

D. Infrared spectroscopy

Fourier transform infrared �FTIR� spectroscopy was per-
formed in a thermo-Nicolet spectrometer with a nitrogen-
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FIG. 10. Spectra illustrating the contamination correction procedure. The
dots are measured spectra and solid lines are fits. The two peaks labeled
“contamination” are attributed to hydrocarbon, while the two other peaks are
attributed to C–C and C–Br species.
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FIG. 11. XPS of the C 1s region for molecular samples corrected to remove
contribution from hydrocarbon contamination.

TABLE II. Calculated and ellipsometrically measured thicknesses of mo-
lecular layers

Molecular species
Expected thickness

�Å�
Measured thickness

�Å�

B-benz 6.6 9.5�1
D-benz 6.72 10.7�1
M-benz 6.91 12.4�1
N-benz 7.09 9.5�1
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purged measurement chamber. Transmission FTIR was per-
formed on n-type double-polished Si samples using
p-polarized light incident at the silicon Brewster angle. The
spectrum of a hydrogen-terminated Si sample is used as a
background and subtracted from the spectrum of a function-
alized silicon sample, yielding spectra which should be
dominated by features of the adsorbate. Peaks were assigned
based on comparison with values in the literature for similar
molecular species. Peak fits were performed using Gaussian
or Lorentzian peak shapes with IGORPRO. The absorption sig-
nal for a particular mode in infrared spectroscopy is related
to the number of bonds present, their orientation relative to
the surface, and the dipolar nature of the bond. Due to the
small amount of adsorbate present in a molecular monolayer,
only species with strongly dipolar bonds yielded spectra with
clear molecular peaks. For this reason, only nitro-substituted
molecular species will be considered in this section. FTIR of
N-benz, 2M 4N-benz, and 2MO 4N-benz are shown in Fig.
12. The symmetric and asymmetric ��sym,�asym� NO2

stretches are clearly visible at 1350 and 1540 cm−1,
respectively.47–49 A C–C ring mode is evident near
1600 cm−1 for all samples. The amplitude of these modes is
much lower for the 2M 4N-benz spectrum than the others,
indicating that this molecular layer is less densely packed or
ordered differently. For the 2MO 4N-benz sample, some ad-
ditional C–C and CH ring modes are evident, likely due to
enhancement from the methoxy substituent. The Si–O optical
phonon mode can be located between 1200 and 1250 cm−1

depending on the thickness, composition, and ordering of the
oxide. In all samples, there is a very weak mode in the low
energy portion of this region indicating that there are trace
amounts of disordered, nonstoichiometric oxide present.

IV. CHARACTERIZATION OF METALLIZED
MOLECULES

The application of molecular layers to electronic devices
often requires postprocessing such as the deposition of metal
overlayers. It has been shown that such processing can dras-
tically affect the structural and chemical integrity of the mo-
lecular layers.50 As such, it is critical to develop and utilize
in situ spectroscopic methods to probe metallized molecular
layers and completed device structures. It is evident from
Sec. III that applying multiple techniques for characteriza-

tion of such layers is desirable because different methods
offer different informations about the molecular layer struc-
tural and chemical properties. Using multiple characteriza-
tion methods also allows for correlation of results, thereby
increasing certainty in the interpretation of the results.

A. p-polarized back side absorption infrared
spectroscopy

After metallization by soft evaporation of gold or cop-
per, infrared spectroscopy was performed using an in situ
back side technique using a thermo-Nicolet spectrometer
with a Pike technologies reflection module.51 After metalli-
zation, the sample back sides were cleaned by UV-ozone
cleaning and etching to remove the molecular adsorbate,
which would interfere with measurement of the metal/
molecule/silicon junction properties. Infrared radiation is in-
troduced through the back of the sample at the Brewster
angle of silicon, travels through the silicon substrate to the
metal-molecule interface where it interacts with the molecu-
lar layer, reflects off the metal, and travels back through the
silicon substrate to the detector.32,52 Peak collection and
analysis were performed using the methods described in Sec.
III D. Results for N-benz are shown in Fig. 13. Modes re-
lated to the benzene ring and NO2 headgroup are clearly
visible in the transmission spectrum. After deposition of gold
by soft evaporation, the molecular signal is largely un-
changed. A modest peak arises near 1200 cm−1 which is at-
tributed to a small amount of disordered, nonstoichiometric
silicon oxide, but otherwise the molecular layer appears
unperturbed.51 This is in contrast to prior results involving
direct evaporation of Au at room temperature, which exhib-
ited significant degradation of the p-polarized back side ab-
sorption infrared spectroscopy �pb-RAIRS� signal.51 Deposi-
tion of copper by soft evaporation significantly attenuates the
amplitudes of modes related to the nitro headgroup. A pho-
non mode consistent with significant oxidation of the silicon
surface arises near 1230 cm−1. Modes at 1250 and 2960,
which are indicative of molecular decomposition and methyl
formation, are also present. Collectively, these suggest that
copper deposition perturbs the molecular layer. In contrast,
metallization by soft evaporation of gold induces little
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FIG. 13. Infrared spectra of as deposited �transmission� and metallized
N-benz on Si. Cu significantly alters the molecular spectrum, whereas mo-
lecular features are preserved after Au deposition.
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change in the vibrational spectrum of the N-benz, indicating
that soft gold is a promising electrode material for molecular
electronic devices.

B. Inelastic electron tunneling spectroscopy

IETS is a vibrational spectroscopic method in which vi-
brational modes are detected by their influence on electronic
conduction in a tunnel junction.53 Most tunneling of elec-
trons through a barrier occurs elastically, therefore the elec-
trons traverse the junction at a constant energy. Inelastic tun-
neling occurs when an electron interacts with a vibrational
mode or phonon during the tunneling process and energy
transfer takes place. This conduction process can only occur
when the electron energy is greater than the vibrational en-
ergy. It can be detected as a change in slope in the current
voltage characteristics which corresponds to a step in the
conductance characteristics or a peak in the derivative of
conductance. Experimentally this effect is measured directly
by applying a dc bias and a small ac probe signal. The sec-
ond harmonic of the ac signal is measured as a function of dc
bias and vibronic modes appear as peaks in this spectrum.
The voltage at which these peaks occur corresponds to the
vibrational mode energy which can easily be expressed as a
wavenumber. Due to thermal broadening considerations, this
measurement must be performed near liquid helium tempera-
tures, which in turn requires the use of degenerately doped
silicon substrates. This technique has the advantage that it
offers a direct measurement of molecular vibronic structure
in a transport device architecture. The fabrication and inelas-
tic electron tunneling spectroscopy �IETS� characterization
of gold/molecule/p+ silicon structures for several molecular
species has been reported recently, demonstrating that this
technique can resolve molecular vibronic features for ali-
phatic and substituted aromatic molecules.31 The IETS spec-
tra from N-benz are shown in Fig. 14 along with the corre-
sponding pb-RAIRS data for comparison. Peak assignments
were made based on comparison of the spectra with infrared
and Raman spectra from the literature. The peak marked “ *”
could not be unambiguously assigned. The observation of
peaks associated with the molecular headgroup �NO2� and
ring modes such as the C–C stretch ��CC� confirm the pres-

ence of the molecular layer. The Si–H stretch mode indicates
the contribution of the Si contact in this measurement.

C. Comparison of in situ spectroscopic measurements

IETS and pb-RAIRS of gold/molecule/silicon structures
should be considered simultaneously and compared to offer
the most complete description of the system possible. As
illustrated by the infrared and tunneling spectra of a N-benz
molecular layer �Fig. 14�, the vibrational spectra obtained by
the two methods exhibit similarities and differences which
can be considered in some detail. For the IR spectrum,
modes related to the NO2 headgroup and silicon oxide are
very prominent. The peaks are quite sharp and well defined.
There are no clear features in the expected spectral regions
for vibrations related to the carbon in the molecular layer or
to silicon-hydrogen species. The IETS, on the other hand,
has prominent modes related to the benzene ring and Si–H
stretches, weak modes related to the NO2 headgroup, and no
detectable silicon oxide signal. The IETS peaks are relatively
broad compared with the peaks in the IR spectrum. These
similarities and differences can be understood by considering
differences between the selection rules for the two experi-
ments. IR spectroscopy is sensitive to strongly dipolar bonds,
therefore the oxygen-containing modes are well resolved.
Since it is an electronic measurement, IETS is sensitive to
vibronic or coupled electronic-vibrational modes. Although
the selection rules for such coupled modes are not well char-
acterized, there is some evidence that vibrational modes
which interact strongly with the contacts are most readily
resolved.54 The observation that Si–H and benzene modes
are most prominent in the IETS is consistent with this de-
scription of the selection rules. These observations illustrate
the value of applying multiple characterization techniques to
the same system and illustrate the need to develop additional
methods to characterize the structural and chemical compo-
sitions of metallized molecular layers.

The difference in peak widths between IETS and pb-
RAIRS is due to the different probes and the physics by
which they interact with the vibrational modes. In pb-
RAIRS, light is used as a probe, therefore the intrinsic line-
width of the measurement is very small and the peak width
closely reflects the actual distribution of vibrational energies.
In IETS, an ac current is used to probe the molecular vibra-
tions. In this case, there are broadenings associated with the
thermal distribution of electrons and the ac modulation am-
plitude in addition to the intrinsic linewidth of the
measurement.53 Collectively, these effects are responsible for
the broader observed peak widths.

V. CONCLUSION

A series of substituted aryl-diazonium salts have been
grafted to hydrogen-terminated �111�-orientation silicon sur-
faces and characterized using a variety of techniques. Collec-
tively, these measurements suggest that Br-, OCH3-, and
N�C2H5�2-substituted molecules form relatively ideal, ap-
proximately single monolayer films. These samples show a
slight amount of substrate oxidation and some hydrocarbon
contamination on the sample surfaces. NO2-substituted mo-
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lecular layers exhibit relatively less-ideal behavior with a
higher degree of substrate oxidation and some evidence of
NHx headgroup formation. Characterization of metallized
molecular layers shows that soft evaporation of gold yields
relatively unaltered vibrational spectra, whereas copper sig-
nificantly degrades the molecular signature. The simulta-
neous analysis of infrared and tunneling spectroscopies of-
fers complimentary evidence suggesting that N-benz layers
are not significantly perturbed by soft evaporation of gold.
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