Uncertainty-Based Tradeoff Analysis for Integrated Transportation Investments

Integrated Solutions for Transportation: Perspectives and Practices

NEXTRANS @ JTRP Road School
March 25, 2008

Samuel Labi
Purdue University School of Civil Engineering

Contents of this Presentation

- Introduction and background
- Integration of Transportation Investments
- Trade-off analysis
- Uncertainty
- Summing up …
Part 1.
Introduction and Background

Root of the Problem

- Typical highway manager at state/county/city oversees several different facility types:
 - Pavements
 - Bridges and Culverts
 - Road-side Appurtenances
 - Road-way Appurtenances, etc.
Often need to evaluate investment options and make decisions

- involving several facilities of same/different types
- on the basis of multiple performance objectives

Uncertainty-Based Tradeoff Analysis for Integrated Transportation Investments

Root of the Problem

- Often need to evaluate investment options and make decisions
 - involving several facilities of same/different types
 - on the basis of multiple performance objectives

Part 2.
Integration of Transportation Investments

Integrating the Various Program Areas

Integrating the Various Performance Measures/Objectives
Integration of Transportation Investments

Integrating the Various Performance Measures/Objectives

- Pavement Preservation
- Bridge Preservation
- Roadside Improvement
- Etc.

SAFETY MOBILITY ECON DEV. ETC
Uncertainty-Based Tradeoff Analysis for Integrated Transportation Investments

Integrating the Various Performance Measures/Objectives

Question:
Consider packing stuff in your bag this morning.
What factors did you consider?

<table>
<thead>
<tr>
<th>Usefulness to my person</th>
<th>Item weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item volume</td>
<td></td>
</tr>
</tbody>
</table>

Usefulness to the day’s business

The Knapsack problem - conceptual illustration
“Project” selection - conceptual illustration

<table>
<thead>
<tr>
<th>Decision Variables</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>X_6</th>
<th>X_7</th>
<th>X_8</th>
<th>X_9</th>
<th>X_{10}</th>
<th>X_{11}</th>
<th>X_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEMS</td>
<td></td>
</tr>
<tr>
<td>Reward</td>
<td>r_1</td>
<td>r_2</td>
<td>r_3</td>
<td>r_4</td>
<td>r_5</td>
<td>r_6</td>
<td>r_7</td>
<td>r_8</td>
<td>r_9</td>
<td>r_{10}</td>
<td>r_{11}</td>
<td>r_{12}</td>
</tr>
<tr>
<td>Cost</td>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>c_4</td>
<td>c_5</td>
<td>c_6</td>
<td>c_7</td>
<td>c_8</td>
<td>c_9</td>
<td>c_{10}</td>
<td>c_{11}</td>
<td>c_{12}</td>
</tr>
</tbody>
</table>

“Reward”, usefulness, benefit, or utility, could be:
- Your degree of satisfaction

“Cost”, disbenefit, or disutility, could be:
- The volume of the item (b’cos the knapsack space is limited)

Here, each item is a “project”
Each different alternative constitutes a “portfolio”
Possible portfolios are:

Selection based on following performance measures:
- Overall usefulness to you
- Overall usefulness to business
- Overall weight of all items
- Overall space taken by all items

\{ benefits \}
\{ costs \}
Generally, for the Knapsack problems...

<table>
<thead>
<tr>
<th>Item or Project</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>...</th>
<th>Item N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reward</td>
<td>r_1</td>
<td>r_2</td>
<td>r_3</td>
<td>...</td>
<td>r_N</td>
</tr>
<tr>
<td>Cost</td>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>...</td>
<td>c_N</td>
</tr>
</tbody>
</table>

Total Cost = $\sum_{i=1}^{N} X_i c_i$

Total Reward = $\sum_{i=1}^{N} X_i r_i$

Average Cost = $\frac{1}{N} \sum_{i=1}^{N} X_i c_i$

Average Reward = $\frac{1}{N} \sum_{i=1}^{N} X_i r_i$

Possible Objectives

- Maximize total benefits
- Minimize total cost
- Maximize benefit cost ratio
- Maximize Net Present Value
- Etc.
Generally, for the Knapsack problems, ...

<table>
<thead>
<tr>
<th>Decision Variables</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>⋯</th>
<th>X_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item or Project</td>
<td>Item 1</td>
<td>Item 2</td>
<td>Item 3</td>
<td>⋯</td>
<td>Item N</td>
</tr>
<tr>
<td>Reward</td>
<td>r_1</td>
<td>r_2</td>
<td>r_3</td>
<td>⋯</td>
<td>r_N</td>
</tr>
<tr>
<td>Cost</td>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>⋯</td>
<td>c_N</td>
</tr>
</tbody>
</table>

Possible “Cost” constraints

- Total “cost” of all items must be less or equal to some maximum threshold, c^*
 \[\sum_{i=1}^{N} X_i c_i \leq C^* \]
- Average “cost” of all items must not exceed some maximum threshold, c^{**}
 \[\frac{1}{N} \sum_{i=1}^{N} X_i c_i \leq c^{**} \]
- Cost of any individual item must not exceed some maximum threshold, c^{***}
 \[c_i \leq c^{***} \]

Possible “benefit” constraints

- Total “benefit” of all items must not be less than some minimum threshold, b^*
 \[\sum_{i=1}^{N} X_i b_i \geq B^* \]
- Average “benefit” from all items must not be less than some minimum threshold, b^{**}
 \[\frac{1}{N} \sum_{i=1}^{N} X_i b_i \geq b^{**} \]
- “Benefit” from any individual item must not be less than some minimum threshold, b^{***}
 \[b_i \geq b^{***} \]
What are the possible trade-offs?

<table>
<thead>
<tr>
<th>Decision Variables</th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>...</th>
<th>X_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item or Entity</td>
<td>Entity 1</td>
<td>Entity 2</td>
<td>Entity 3</td>
<td>...</td>
<td>Entity N</td>
</tr>
<tr>
<td>Reward</td>
<td>r_1</td>
<td>r_2</td>
<td>r_3</td>
<td>...</td>
<td>r_N</td>
</tr>
<tr>
<td>Cost</td>
<td>c_1</td>
<td>c_2</td>
<td>c_3</td>
<td>...</td>
<td>c_N</td>
</tr>
</tbody>
</table>

By implementing a project instead of another,

- what do I benefit?
- what do I lose?

In terms of the various performance measures (cost, safety, durability, mobility, etc.?)

Uncertainty-Based Tradeoff Analysis for Integrated Transportation Investments

Applying the Knapsack Concept to Highway Facilities Management

Optimizing Discrete Investment Decisions for a Network of Systems for purposes of preservation
Selecting projects from a vast pool of projects - what kind of projects?

- Reconstruction
- Rehabilitation
- Minor Maintenance
- Major Maintenance
- Minor Maintenance
- Major Maintenance
- Initial Cost
- Added durability of the Facility
- Life-cycle cost
- Safety
- Economy
- Environment
- Congestion Mitigation
What about Uncertainty?
- For each project, impacts shown below are not fixed (certain) but have a range of values (uncertainty)

<table>
<thead>
<tr>
<th></th>
<th>Initial Cost</th>
<th>Life-cycle cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Economy</td>
<td>Safety</td>
</tr>
<tr>
<td>Added durability of the Facility</td>
<td>Congestion Mitigation</td>
<td>Environment</td>
</tr>
</tbody>
</table>

Evaluation and Decision making based on multiple objectives has potential to:
- Enable analysis of trade-offs among performance measures
- Enable analysis of trade-offs among facility types
- Include more stakeholders (users, community, etc.) in decision-making process
- Enable more direct inclusion of stakeholder concerns
- Reduce biased/subjective/parochial decision-making
Questions?