The Summer Undergraduate Research Fellowship (SURF) Symposium
August 2016
Purdue University, West Lafayette, Indiana, USA

Sarah M. Libring^{a,b}, Hannah R. Kriscovich^{b,c}, James K. Nolan^{b,d}, Siddarth V. Sridharan^{e,b}, Jose F. Rivera^{e,b}, David B. Janes^{e,b}, Jenna L. Rickus^{b,d,f}

^a Biomedical Engineering Department, Rutgers University
^b Bindley Bioscience Center and Birck Nanotechnology Center, Physiological Sensing Facility, Purdue University
^c Biomedical Engineering Department, Georgia Institute of Technology
^d Agricultural and Biological Engineering, Purdue University
^e Electrical and Computer Engineering, Purdue University
^f Weldon School of Biomedical Engineering, Purdue University

ABSTRACT

Hydrogen peroxide is traditionally associated with cellular damage; however, recent studies show that low levels of H₂O₂ are released by cells as part of normal intercellular communication. The mechanisms of hydrogen peroxide transport, uptake and release, and biological effects are not yet well known but have important implications for cancer, stem cells, and aging. Standard H₂O₂ assays cannot make spatially or temporally resolved quantitative measurements at a cellular scale. Previously we developed a microelectrode array (MEA) and calibration methods for quantifying H₂O₂ gradients in space and time. The sensor was validated using artificial H₂O₂ gradients at subsecond and micrometer scale resolutions. The present study begins cellular work on H₂O₂ release to identify a cellular model system for MEA sensor testing. The morphology and H₂O₂ release from U937 human monocytes were analyzed after stimulation with ionomycin (1.2 μg/mL) and/or phorbol 12-myristate 13-acetate (PMA). Monocytes were stimulated with PMA (10 ng/mL to 150 ng/mL) for six hours. Hydrogen peroxide release was quantified over time using a traditional amplex red fluorometric assay method. Mouse pancreatic beta (MIN6) cells were also tested as a negative control. Monocytes stimulated with PMA alone produced, on average, three times more H₂O₂ than those stimulated with ionomycin or a combination. Monocytes without ionomycin released H₂O₂ at 18.34 pmol/min/10⁶ cells at 25 ng/mL of PMA. Ten, 25, and 100 ng/mL of PMA produced H₂O₂ significantly faster than the non-stimulated control. No significant difference was seen between PMA concentrations when ionomycin was added. These results indicate that PMA stimulated human monocytes may serve as a good model system for cellular validation of the H₂O₂ MEAs. In the future, biofunctionalization of the electrodes for additional molecular specificity will allow for the expansion of the method to other analytes, giving the sensor potential use in non-traditional lab environments with the ability to perform multiple assays autonomously.

KEYWORDS

Hydrogen peroxide, biosensor, cellular peroxide release, lab on a chip, electrode array, real time sensor