Structural Testing of Geopolymer Pipe & Culvert Mortar Lining System

David Keaffaber, P.E. Midwest Region Manager
Milliken Infrastructure Solutions, LLC

Joseph Royer, PhD Development Manager
Milliken Infrastructure Solutions, LLC

Dan Koo, P.E., PhD Assistant Professor IUPUI
Construction Engineering & Management Tech.

Purdue Road School - March 2015
Overview of Trenchless Technology - Terminology and Methods:

- Non-Structural Sprayed Linings
- Robotic Repair
- FRP (Fiber Reinforced Plastic)
- Slip-Lining (Various Types)
- Spiral Wound
- CIPP (Cured in Place Pipe)
- **Centrifugally Cast Geopolymer**
 - Case Study on CMP Culvert

Testing of Centrifugally Cast Geopolymer Systems:

- Initial Cement Culvert Testing
- Queen’s University CMP Burial
- Advanced Testing with La Tech University

Conclusions and Recommendations
Overview of Trenchless Technology

Applications for Culvert Repair, Rehabilitation and Renewal
Trenchless Technology Overview

Definitions

• Trenchless Technologies

A family of methods, materials, and equipment capable of being used for the installation of new or replacement or rehabilitation of existing underground infrastructure with minimal disruption to surface traffic, business, and other activities (NASTT).

• Rehabilitation

All measures for restoring or upgrading the performance of an existing pipeline system (EN / ISO).
Definitions

• Partially Deteriorated Pipe (ASTM F1216 - CIPP Standard)
 - The original pipe can **support the soil and surcharge loads** throughout the design life of the rehabilitated pipe.
 - the soil adjacent to the existing pipe must provide adequate side support.
 - The pipe may have longitudinal cracks and up to 10% distortion of the diameter.

• Fully Deteriorated Pipe (ASTM F1216 - CIPP Standard)
 - The original pipe is **not structurally sound and cannot support soil and live loads** or is expected to reach this condition over the design life of the rehabilitated pipe.
 - This condition is evident when sections of the original pipe are missing, the pipe has lost its original shape or the pipe has corroded due to the effects of the fluid, atmosphere, soil, or applied loads.
Trenchless Technology Overview

Structural Condition Progress

- Pipe Installation
- Corrosion Initiation
- Partially deteriorated
- Fully deteriorated
- Complete Failure
- Semi-structural (sufficient lining stiffness)
- Structural (sufficient without existing structure)

- Class 1 & 2
- Class 3
- Class 4

- Polymer Lining
- Cement Lining
- Geopolymer Lining
- Sliplining
- Spiral Wound Lining
- CIPP
- Auger Boring
- Pipe Bursting
- HDD
- Microtunneling, etc

©2015 Milliken Infrastructure Solutions, LLC
Decision Factors

Many factors affecting a decision of technology selection.

- Capital (Budget)
- Man entry Requirement or Permissible.
- Existing Culvert / Pipe Size / Length
- Maximum Allowable Size Reduction
- Structural Condition / Assessment
- Hydraulic Condition / Assessment
- Job Schedule
- Groundwater Table

- Soil and Rock Properties
- Dead Loads and Live Loads
- Infiltration / Inflow / Exfiltration
- Flow Condition / By-pass Requirement
- Soil and Rock Properties
- Dead Loads and Live Loads
- Infiltration / Inflow / Exfiltration
- Flow Condition / By-pass Requirement
Choosing a method of renovation involves understanding the current status, size, type, intended service conditions and life expectancy of the pipe to be repaired.

Select Rehabilitation / Replacement Method

- **Undersized?**
 - Yes: Replace with Larger Pipe Bursting, Extraction, Dig & Replace
 - No
 - **Structurally Sound?**
 - Yes: Non-Structural Renovation or Structural Renovation if pipe is likely to become unsound in lifetime
 - No
 - **Spot Repair?**
 - Yes: Sectional / Spot Repair (Such as Robotic Repair, FRP)
 - No
 - **Small Diameter?**
 - Yes: CIPP / Fold and Form / Close Fit
 - No
 - **Can Bypass?**
 - Yes: Centrifugally Cast Pipe Structural Lining
 - No, but restricted flow: Spiral Wound Pipe / Sliplining
Non-structural pipe renovation are method that rely on the host pipe to meet integrity requirements. Main purpose of non-structural lining is to stop corrosion.

Cement mortars are highly alkaline and protect the host pipe against metallic corrosion. The relatively smooth internal surface of the liner reduces hydraulic roughness, improving the flow characteristics of the host pipe. The liner, when bonded with the wall of the host pipe, provides excellent protection against corrosion.

Epoxy, polyurethane, and polyurea spray-on liners, like cement mortar, protects the host pipe against corrosion and improves the flow characteristics of the host pipe.

Both liners are typically thinner than cement mortar liners. However, these liners are more expensive and require careful quality control during application and curing to ensure that the lining is free of defects that would allow corrosion to restart.
Epoxy, polyurethane, and polyurea spray-on liners
• Robotic repair is mainly used to eliminate cracks in pipe. The robot grinds and then filled the area with polymers such as epoxy mortar.

• Suitable for small diameter pipes.

• Can be used any shape of pipes.

• Tools and robots are expensive.
Fiber Reinforced Plastic (FRP) is the industrial term used to describe the use of carbon or other high strength fiber combined with an epoxy matrix to reinforce an existing structure. While this technique is classified as a structural repair and can be used to increase the structural integrity of the host pipe, it does rely on the host pipe to proved some of the structural requirement.

Carbon fiber strips are applied by hand or with machines almost like wallpaper with an epoxy matrix that is specially formulated to bond to the host pipe and create a composite structure. This technique is primarily advantages for spot repairs due to the material cost.
Trenchless Technologies
Structural Renovation (FRP)

Advantages

• Good for small section repair
• Minimal thickness
• Only small effects on hydraulics
• Can be used on any shape of pipe
• Can be used around large curves

Disadvantages

• Pipes must be larger than 900 mm at present.
• Requires by-pass
• Higher cost than other typical solutions for large sections
• Required dry pipe
Lining with a continuous pipe for which the cross section is reduced to facilitate installation and reverted after installation to provide a close fit to the existing pipe. Use flexible pipe materials such as PE or PVC.

- Sectional (Discrete) Pipes
- Continuous Pipes
Lining with a continuous pipe for which the cross section is reduced to facilitate installation and reverted after installation to provide a close fit to the existing pipe.
FORM reverted after installation to provide a close fit to the existing pipe.

Fold

Temp. Bending
Spiral Wound Lining

- Ribloc developed in Australia in 1980
- Originally formwork for cast in place pipe
- Mostly used for medium to large size sewer
- Low pressure rating
Spiral Wound Lining

Annular Space
Spiral Wound Lining Example

SWL for medium and large diameter circular / non-circular roadway culverts rehabilitation.
CIPP

- Most popular trenchless lining technology
- Invented in 1971 in the U.K. (Eric Wood)
- Lining with flexible tube impregnated with thermosetting resin
- Can be used for both partially and fully deteriorated condition
- Gap spanning

Images:
- Inversion Process
- Winch-Pulling Process
CIPP Technology Variants

Trenchless Technologies
Cured-In-Place-Pipe (CIPP)

CIPP Technology Variants

- **Tube Construction**
 - Resin Felt Composite
 - Resin Reinforced Felt Composite
 - Resin Glass Fibre Mat Composite
 - Resin Woven Glass Composite
 - Resin Carbon Fibre Composite

- **Installation Method**
 - Water Inversion Method
 - Air Inversion Method
 - Winch In Place & Inflate Method
 - Winch In Place & Calibrate

- **Cure Method**
 - Ambient Cure
 - Hot Water Cure
 - Steam Cure
 - Hot Water Showering Method
 - Ultra Violet Light Cure

- **Resin Type**
 - Polyester
 - Vinyl Ester
 - Silicate
 - Acrylate
 - Epoxy

©2015 Milliken Infrastructure Solutions, LLC
Trenchless Technologies
Cured-In-Place-Pipe (CIPP)

- May be installed to reduce infiltration/exfiltration
- May be installed to resist external load
- May be installed as a bonded lining for corrosion protection
- May be a *semi-structural* lining for hole and gap spanning
- May be a *fully structural* lining designed to support structural loads and restore fabric
- Performance will depend on bonding, thickness, and reinforcement
CIPP Installation Process

http://www.sakconst.com/cipp-projects.htm
Curing Processes

- Hot water curing
- Steam curing
- UV curing
Advantages

• Suitable for Round Pipes
• Cost effective solution for pipes less than 1.5 m
• Consistent in plant manufactured product
• Choice of resins to suit application
• Can negotiate offsets, transitions and multiple 90 degree bends (creating wrinkles)

Disadvantages

• Requires by-pass
• Higher cost and non-plant wet out for diameters above 1.5 m
• Larger diameters require excavation or entry pits.
• Styrene based chemistries
• Laterals require cutting the liner and introducing possible failure points
• Large on-site footprint
• Infiltration can move behind liner.
• Larger diameters become difficult to complete.
• Pipes must be round (or close to round)
Structural Renovation methods do not require the structured-wall of the host pipe to contribute to the ring stiffness needed to satisfy the integrity requirements of the finished renovation.

Centrifugally Cast Pipe employs a similar spin casting process as a non-structural mortar lining, but cementitious materials is applied to a thickness that creates structural integrity of a whole new pipe within the host structure. Typical wall thickness of structural cementitious mortars range from 1½ inches to 4 inches depending on the specific design requirements and service application of the pipe.
Spray on Application Video

Typical Application Process
Trenchless Technologies
Geopolymer Structural Renovation

Advantages

• Low Cost
• Minimal thickness
• Only small effects on hydraulics
• Can be used on any shape of pipe
• Can be used around large curves
• Laterals are “feathered in”
• Moist pipe conditions are preferred
• Geopolymers don’t form cold joints
• By-Pass can be reduced in just a few hours.

Disadvantages

• Pipes must be larger than 900 mm at present.
• Requires by-pass
Rock Springs, Wyoming

Arched Culvert Case Study

Installation Completed
May 2014
GeoSpray Case Study
Rock Springs, Wyoming - USA

Project Details:

• Rock Springs, Wyoming

• Arched Storm Culvert
• 700 Linear Feet of CMP
• 48 Inch High
• 72 Inch Wide
• 126,000 lbs of GeoSpray Applied

• Contractor - IPR South Central
The initial culvert was in very poor shape with most of the invert corroded and lost with soil voids as deep as 2 ft below the pipe.

Significant damage also existed in the crown with some sections caved in.
Prior to repair the pipes required bracing for safe operation.

The finished culvert created a new structural system, integrated with the junction boxes.
The project was completed in under 1 week with no disruption to traffic along the roadway
Testing of Centrifugally Cast Geopolymer Linings
Applications for Culvert Repair, Rehabilitation and Renewal
Sirim QAS International Testing

Geopolymer liner applied to RCP

Testing Completed December 2013
• 4 new RCP pipes 1.7 m (~67 inch) outer diameter, 1.5 m (~59 inch) inner diameter with a wall thickness of 200 mm (~8 inch) and 1 m in length (~ 39 inch) were coated with GeoSpray geopolymer mortar under the following conditions:

 » Sample 1 - Control Pipe - No Coating
 » Sample 2 - 50 mm (~2 inch) nominal coating
 » Sample 3 - 38 mm (~1.5 inch) nominal coating
 » Sample 4 - 38 mm (~1.5 inch) nominal coating with additional reinforced wire mesh

• Test were conducted under the following Malaysian standard

 » MS 881: Specification for Precast Concrete Pipes and Fittings for Drainage and Sewerage.
 » Part 3: Specification for pipes and fittings with Ogee Pipes
 » Appendix F: Crushing strength test for pipes.
Sirim QAS International Testing
Test Conditions

4 New RCP Test Pipe Samples*

Outer Diameter = 1.7 M (~67 inch)
Wall Thickness = 200 mm (~8 inch)
Inner Diameter = 1.5 M (~59 inch)
Length = 1M (~39 inch)

*Coated with GeoSpray geopolymer

General Testing Apparatus and Configuration
Test Results

Sample 1
- **Control Pipe - No Coating**

Sample 2
- **50 mm (~2 inch) nominal coating**
- First Crack: +122%; UL: +268%

Sample 3
- **38 mm (~1.5 inch) nominal coating**
- First Crack: +98%; UL: +209%

Sample 4
- **38 mm (~1.5 inch) nominal coating with additional reinforced wire mesh**
- First Crack: +24%; UL: +277%

Table: Test Results

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>Weight (kg)</th>
<th>Proof Load (kN)</th>
<th>Ultimate Load (kN)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C1 - Untreated Precast Concrete Pipe</td>
<td>1875</td>
<td>45</td>
<td>53</td>
<td>The width of 0.5 mm crack is identified at the bottom side</td>
</tr>
<tr>
<td>2. C2 - Precast Concrete Pipe Treated with 50 mm thickness of GeoSpray</td>
<td>2842</td>
<td>100</td>
<td>195</td>
<td>The width of 0.26 mm crack is identified at the bottom side</td>
</tr>
<tr>
<td>3. C3 - Precast Concrete Pipe Treated with 38 mm thickness of GeoSpray</td>
<td>2663</td>
<td>80</td>
<td>164</td>
<td>The width of 0.06 mm crack is identified at the top and bottom sides</td>
</tr>
<tr>
<td>4. C4 - Precast Concrete Pipe Treated with 38 mm thickness of GeoSpray and Reinforced with wire mesh</td>
<td>2565</td>
<td>56</td>
<td>200</td>
<td>The width of 0.02 mm crack is identified at the top and bottom sides</td>
</tr>
</tbody>
</table>

Source: Sirim QAS International Test Report No: 2013-CB4822
Sirim QAS International Testing
Test Results - Conclusions

• A 38 mm (~1.5 inch) thick unreinforced GeoSpray geopolymer liner increased the initial crack resistance of the original RCP pipe by nearly 100% and increased the ultimate load capacity of the original pipe by over 200%. Ultimate load capacity of 164 kN (~37,000 lbs-force)

• A 50 mm (~2 inch) thick unreinforced GeoSpray geopolymer liner increased the initial crack resistance of the original RCP pipe by over 120% and increased the ultimate load capacity of the original pipe by over 250%. Ultimate load capacity of 195 kN (~44,000 lbs-force)

• A 38 mm (~1.5 inch) thick wire reinforced GeoSpray geopolymer liner increased the initial crack resistance of the original RCP pipe by approximately 25% while increasing the ultimate load capacity of the original pipe by over 250%. Ultimate load capacity of 200 kN (~45,000 lbs-force)
Queen’s University Testing

GeoSpray™ geopolymer liner applied to CMP

Testing Completed November, 2013
3 damaged and deteriorated CMP culverts were excavated from the E407 Toll Road in Ontario, Canada.

Two - 1200 mm (~48 inch) in diameter, 7 m (~23 ft) long culverts were assembled and buried in the laboratory under controlled soil fill conditions.

The assembled culverts were tested under Canadian Highway single axel loads standards under a burial depth of 1200 mm (~48 inches)

The 2 culverts were then repaired with GeoSpray geopolymer mortar lining with nominal thickness of 50.8 mm (~2 inches) and 76.2 mm (~3 inches).

The culverts were allowed to cure for 28 days.

Testing of the culverts was performed under single and double axel loads with buried depths of 1200 and 2100 mm (~48 and 83 inches) respectively.

Finally, the culverts were loaded to the maximum available load conditions 1200 kN (~270,000 lbs-force).
Assembled and instrumented culverts prior burial and testing
Queen’s University Testing
Test Conditions

Time lapsed view of culvert burial to 1200 m depth
The initial samples had significant deterioration in the field.

- There were significant perforations along the strips of steel at the levels of the waterlines, with perforations covering from 5% to 60% of those regions.
- Up to 30% of the steel thickness was lost from corrosion in the region between the haunches across the invert.

An initial load was applied to the un-lined buried culverts to test the response of the backfill in the laboratory.

- 203 kN - Single Axle Load - 1200 mm fill (~45,600 lbs-force)

Maximum measured strains of the pipes due to back fill were approximately 10% of the yield strain.

Measured diameter changes were on the order of 1mm
Series of images showing in laboratory repair of culverts
Image of completed culvert repair - in laboratory
• The GeoSpray geopolymer mortar lined culverts were tested under the calculated service loads:

 » 203 kN - Single Axle Load - 1200 mm fill (~45,600 lbs-force)
 » 308 kN - Tandem Axle Load - 2100 mm fill (~69,200 lbs-force)
 » 325 kN - Tandem Axle Load - 1200 mm fill (~73,000 lbs-force)

• Under these conditions, data as to deflection and culvert response was collected.

• No damage was observed or measured under any of the above conditions for either liner thickness.

• Measured diameter changes under these conditions were on the order of 0.2 mm.
50.8 mm (~2 inch) liner thickness - Calculated Full Service Load 552 kN (~lbs-force):

» First observed crack observed 650 kN (146,000 lbs-force)
» Larger cracking observed 750 kN and 800 kN respectively (168,000 and 180,000 lbs-force)
» Circumferential Crack observed 1150 kN (261,000 lbs-force)
» Maximum applied load was 1200 kN (270,000 lbs-force)

76.2 mm (~3 inch) liner thickness - Calculated Full Service Load 552 kN (~lbs-force):

» First observed crack observed 800 kN (180,000 lbs-force)
» Additional cracking was observed at 850 and 900 kN respectively (191,000 and 202,000 lbs-force)
» Maximum applied load was 1200 kN (270,000 lbs-force)
• 50.8 mm (~2 inch) liner thickness:

Initial signs of damage to the culvert under load were first observed at 650 kN (146,000 lbs-force) or 18% higher than the fully factored design load of 552 kN (~124,000 lbs-force)

• 76.2 mm (~3 inch) liner thickness:

Initial signs of damage to the culvert under load were first observed at 800 kN (~180,000 lbs-force) or 45% higher than the fully factored design load of 552 kN (~124,000 lbs-force)

• Full reports are now available.
Further Testing with La Tech Trenchless Technology Testing

GeoSpray™ geopolymer liner applied to CMP, RCP, SonoTube Thickness and Ovality Explored

Testing Completed August 2014
Test increasing pipes sizes with liner thickness scaling as the size of the pipes increase.

Types of Pipe: RCP, CMP, Cardboard
Pipe Diameters: 24”, 36” & 48” (ID)
Liner Thickness: 24” (0.66” & 1.3”)
 36” (1”, 1.5” & 2”)
 48” (1.33” & 2.66”)
Ovality (CMP): Tested 0, 4, 6, 8, 10 & 12%
Preparation: All RCP Pipes were D-Loaded prior to repair with liner.

Full Factorial Experimental Design Performed with Replicates
Advanced Testing
Pipe Preparation
Advanced Testing

Load Frame
Advanced Testing
QC on Materials Conducted by 3rd Party
Advanced Testing
Spraying of CMP (Vertical)
Advanced Testing
Spraying RCP - Vertical
Advanced Testing
Close Up of Sprayed RCP
Advanced Testing
Load Frame Ready to Go
Advanced Testing
Completed Testing Pipes

The Land of Destruction
Advanced Testing

RCP Pipe Data (Quick Analysis)

<table>
<thead>
<tr>
<th>24” RCP</th>
<th>Control 1</th>
<th>Control 2</th>
<th>0.66” Liner</th>
<th>0.66” Liner</th>
<th>1.33” Liner</th>
<th>1.33” Liner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load @ Break</td>
<td>17,400</td>
<td>11,800</td>
<td>12,500</td>
<td>10,800</td>
<td>21,700</td>
<td>15,100</td>
</tr>
<tr>
<td>% of Control</td>
<td>N/A</td>
<td>N/A</td>
<td>-17%</td>
<td>-4%</td>
<td>48%</td>
<td>81%</td>
</tr>
</tbody>
</table>

Within experimental error, which all of the RCP pipe that were repaired (independent of liner thickness) were as strong as the original pipe and above the ASTM acceptance standards for new pipe.
Conclusions

RCP, CMP and Cardboard Tubes were Tested after 28 days curing.

RCP Pipes tested as good as new pipes with as little as 0.66 inch coating, suggestion that if the reinforcing steel is still good only material thickness of original is needed. If cracking is heavy a thicker lining can be used to restore original strength.

Analysis of CMP pipe is ongoing, but structural performance was observed and little to no effect with oval structures was observed.

The university is conducting further analysis on the results with the intent of publishing peer review models based on the data for assistance in lining design.
Conclusions
Conclusions

• Trenchless pipe/culvert repair is often a cost effective alternative to traditional dig and replace construction - specifically if a valuable assets exists above the pipe (Road or Structure) or if easements are difficult to obtain.

• Centrifugally Cast Geopolymer Liner are an alternative to CIPP or Slip-lining that require less equipment and a smaller footprint and are generally less expensive solution for pipes larger than 36”.

• Geopolymer liners are structural solutions for various host pipe materials including RCP and CMP.

• Structural testing have confirmed that these materials can be used with confidence.
Thank You
Please visit our both in the exhibit hall for additional information

David Keaffaber, P.E. Midwest Region Manager
Milliken Infrastructure Solutions, LLC

Joseph Royer, PhD Development Manager
Milliken Infrastructure Solutions, LLC

Dan Koo, P.E., PhD Assistant Professor IUPUI
Construction Engineering & Management Tech.

Purdue Road School - March 2015