Controlling Air Content in Concrete That is Being Pumped, A Synthesis Study

Charles F. Scholer
Jay Grossman

August 1998

Indiana Department of Transportation
Purdue University
Final Report

FHWA/IN/JTRP-98/11

Controlling Air Content in Concrete That is Being Pumped, A Synthesis Study

by

Charles F. Scholer
Professor of Civil Engineering
Purdue University
West Lafayette, Indiana

and

Jay Grossman
Graduate Research Assistant
School of Civil Engineering
Purdue University
West Lafayette, Indiana

Joint Transportation Research Program
Project No: C-36-61N
File No: 5-14-14

Prepared in Cooperation with the
Indiana Department of Transportation and
the U.S. Department of Transportation
Federal Highway Administration

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration and the Indiana Department of Transportation. This report does not constitute a standard, specification or regulation.

Purdue University
West Lafayette IN 47907
August 1998
FHWA/IN/JTRP-98/11

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
Controlling Air Content in Concrete that is Being Pumped. A Synthesis Study

5. Report Date
August 1, 1998

6. Performing Organization Code
FHWA/IN/JTRP-98/11

7. Author(s)
Charles F. Scholer and Jay Grossman

8. Performing Organization Name and Address
Joint Transportation Research Program
1284 Civil Engineering Building
Purdue University
West Lafayette, Indiana 47907-1284

9. Work Unit No.

10. Contract or Grant No.
SPR-2202

11. Type of Report and Period Covered
Final Report

12. Sponsoring Agency Name and Address
Indiana Department of Transportation
State Office Building
100 North Senate Avenue
Indianapolis, IN 46204

13. Sponsoring Agency Code

14. Supplementary Notes
Prepared in cooperation with the Indiana Department of Transportation and Federal Highway Administration.

16. Abstract
Changes in the air content of fresh concrete that is being pumped can occur at a number of places. These locations include the initial loading of the concrete into the pump hopper, as it passes through the pump line, and when it exits the line. This synthesis reviews the findings of recent research studies which deal with air content change in pumped concrete and summarizes methods of reducing air loss caused by handling.

Three main mechanisms by which air content is lost in fresh concrete that is being pumped have been noted. These factors include the high-pressure dissolution of air voids, the bursting of air voids by vacuum, and the loss of air content due to impact force. Entrained air content can be retained by proper attention to the pump operation and set-up. Keeping steeply descending sections of pump line to a minimum, using kinks, elbows, or reducers at the end of the line to slow the rate of concrete flow, and pumping the concrete at the lowest pressure possible will keep air content losses to a minimum. Further beneficial actions include not allowing rain water to enter the pump's hopper, and minimizing the distance that the concrete must fall from the end of the pump line to the placement surface. Testing the air content of concrete at the point of placement will yield the most indicative results of the concrete in the finished structure.

17. Key Words
Air content, air-entrained concrete, entrained air, pumping, air voids.

18. Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service. Springfield, VA 22161

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
12

22. Price

Form DOT F 1700.7 (8-89)
Contents

1 Introduction .. 1
2 Changes in Air Content at Delivery ... 1
3 Air Losses in the Pump Line .. 2
 3.1 High Pressure Dissolution of Air Voids ... 2
 3.2 Bursting of Voids by Vacuum .. 3
 3.3 Impact Force .. 4
 3.4 Controlling Air Loss .. 4
4 Testing for Air Content ... 6
5 Conclusion .. 7
6 Implementation .. 7
7 Recommended Further Activity ... 8
1 Introduction

Changes in the intentionally entrained air content of fresh concrete can occur at a number of places in the pumping process. These locations include as the concrete is initially being loaded into the pump hopper, as it passes through the pump line, and when it exits the line. This synthesis reviews the findings of recent research studies which deal with air content change in pumped concrete and summarizes methods of reducing entrained air loss caused by handling.

2 Changes in Air Content at Delivery

Some change of air content in concrete being delivered to the site and loaded into the pump has been noted. Yazdani (1996) reports that, “a small amount of air appears to mix with the concrete when the concrete first enters the pump due to the pressure present in the pump line.” He further notes that:

The concrete and the pump should be protected from adverse weather. If pumping has to occur during rain, a method should be implemented to keep excess water from building up in the pump’s hopper. This water can increase the concrete air content because the excess water which does not hydrate eventually evaporates and causes air voids.

These air voids are not intentionally entrained, are not in a bubble form, and therefore do not contribute to freeze/thaw durability. Other changes in the air content may take place if the delivering trucks must wait a long time to unload. Continuous mixing of concrete containing micro-silica or fly ash may shift the void size finer, which an air meter might interpret as a loss of air content (Hover 1989).
3 Air Losses in the Pump Line

Air void losses in the pump line have been attributed to three main causes. These causes are: dissolution by high pressure, bursting due to vacuum, and mechanical rupture by impact (Yingling et al. 1992, Boulet et al. 1997).

3.1 High Pressure Dissolution of Air Voids

Boulet et al. (1997) report at length on the factors influencing the dissolution (loss in volume and number) of air voids by high pressure in the pumping process. High pressure forces the air voids in concrete to become smaller or disappear, from which they don’t entirely recover when the pressure returns to lower levels. Dissolution affects the smaller air voids much more so than larger ones. These are normally the entrained bubbles needed for freeze/thaw durability. Therefore, the loss of air through this effect is potentially more detrimental to concrete durability than air lost through the vacuum or impact effect.

In the research performed by Boulet et al., when concrete was exposed to a 5.5 MPa (800 psi) pressure the number of voids decreased by a factor of 100, and all of the voids less than 100\(\mu\)m disappeared. This led to a decrease of the specific surface of the air voids as obtained from the ASTM C457 microscopical examination of the concrete. Furthermore, the ASTM spacing factor of the air voids was shown to increase linearly with pressure as the flow length increased exponentially. Normal pumping pressures rarely exceed 3.5 MPa (500 psi).
The influence of pressure was found to affect all types of concrete in the same manner. Changes in the water/cement ratio, or in the types of admixtures used did not affect the basic relationship of pressure to air loss.

Dissolution of the air bubbles was noted in the very first seconds after the concrete was subjected to pressure. The calculated spacing factor and flow length (distance excess water must travel to escape a freezing capillary pore) increased significantly in this time and then remained stable. Since this process occurs very quickly, increasing the pumping rate to reduce the time that the concrete is under pressure is not thought to be an effective means of lowering the amount of damage to the concrete’s air void structure.

3.2 Bursting of Voids by Vacuum

When concrete is pumped down a descending section it may overcome the effects of friction, slide, and create a vacuum. This condition can lead the larger air voids to burst due to their internal pressure. The bursting of voids through this process can lead to significant detected air loss (Hover 1989, Yingling et al. 1992, Yazdani 1996). However, the loss of the larger air voids is reported by Boulet et al. (1997) as having little effect on the air void spacing factor.

Hover (1989) found in his study that:

The angle of the concrete pipeline had a significant and consistent effect on the loss in air content. Placing concrete close to a truck-mounted boom pump such that the concrete was first pumped up at a steep angle, and then down the far side at a steep angle, consistently resulted in a loss of 4% air
When the placement had progressed so that the pump angle was nearly horizontal, air loss in pumping for the same concrete was consistently 2%.

His analysis of this phenomena was that, “pumping ‘downhill’ may result in a pressure drop in the fluid concrete in the pipeline which may favor the escape of entrained and entrapped air.”

3.3 Impact Force

Yingling et al. (1992) report that the air loss mechanism in pumped concrete may largely be the impact of rapidly moving concrete contacting stationary objects and thus breaking the internal air voids through mechanical action. It was found that a significant portion of the initial air content—20 to 40%—could be lost by the effect of impact. Other researchers have found similar results.

Hover and Phares (1996) noted from their research that:

A long vertically descending pump line is in reality a long tremie, or elephant trunk, and ... the impact of fresh concrete on the walls, joints, and finally the deck knocks air out of the system.

From the same study they report that, “Pumping with unimpeded free-fall generally reduced air content by 0.5 to 2 percentage points.”

3.4 Controlling Air Loss

To reduce the amount of air loss in the pump line due to the three mechanisms mentioned above, a number of suggestions have been proposed. The first is to avoid pumping down