Updating City Pavement Sections with ME-PDG

Mike Maurovich, American Structurepoint
Gary Pence, City of Westfield
Phil Sundling, City of Westfield
Why are we here?

• City of Westfield Growing
 – Ensure dollars being spent on pavement were allocated properly

• New pavement design methodology
 – More accurate prediction of service life
Outline

- ME Pavement Analysis
- Life Cycle Cost Analysis
- Savings Realized

- Local Perspective
- Case Study

Mike

Gary
Outline

- Audience Participation
- Candy Distribution
First Question...
ME Pavement Analysis

• What is ME-PDG?
ME Pavement Analysis

• What is ME-PDG?
 • Mechanistic Empirical Pavement Design Guide
ME Design Procedure

Climate

Structure

Traffic

Materials

Predicted IRI
Initial IRI: 63.0 in/mi

Pavement Ages (date)

IRI (in/mi)

Threshold Value
Specified Reliability
50% Reliability
Does Not Predict This Distress...

CHUCK NORRIS AS A CHILD
ME Pavement Analysis

• Methodology
 – Determine Program Inputs
 • Local
 • Collector
 • Arterial
 – Evaluation
 • Existing Section
 • Alternative Sections
 – Determine Life Cycle Costs
 – Select Optimum Thickness
ME Pavement Analysis

• Methodology
 – Determine Program Inputs
 • Local
 • Collector
 • Arterial
 Conservative values based on local experience
 – Evaluation
 • Existing Section
 • Alternative Sections
 – Determine Life Cycle Costs
 – Select Optimum Thickness
ME Pavement Analysis

• Methodology
 – Determine Program Inputs
 • Local
 • Collector
 • Arterial
 • Traffic based on Westfield traffic counts

– Evaluation
 • Existing Section
 • Alternative Sections

– Determine Life Cycle Costs
– Select Optimum Thickness
ME Pavement Analysis

• Methodology
 – Determine Program Inputs
 • Local
 • Collector
 • Arterial

 – Evaluation
 • Existing Section
 • Alternative Sections

 – Determine Life Cycle Costs
 – Select Optimum Thickness

Varied Pavement Thicknesses
ME Pavement Analysis

• Methodology
 – Determine Program Inputs
 • Local
 • Collector
 • Arterial
 – Evaluation
 • Existing Section
 • Alternative Sections

– Determine Life Cycle Costs
– Select Optimum Thickness
• “E.A.A.”
 • Construction Costs
Equivalent Annual Annuity (EAA)

- Calculates *constant annual cash flow* generated by a project over its lifespan as if it was an annuity
- Way of comparing different design lives
Equivalent Annual Annuity (EAA)

• Calculates **constant annual cash flow** generated by a project over its lifespan as if it was an annuity

• Way of comparing different design lives

\[C = \frac{r(NPV)}{1 - (1 + r)^{-n}} \]

- **C** = Equivalent Annuity Cash Flow
- **NPV** = Net Present Value
- **r** = rate per period
- **n** = number of periods
Life Cycle Cost Analysis

Cost of Arterial/Industrial Sections

- Construction Cost
- EAA

AMERICAN STRUCTUREPOINT INC.
Life Cycle Cost Analysis

Cost of Collector Sections

- Construction Cost
- EAA

C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12
Life Cycle Cost Analysis

Cost of Local Sections

- Construction Cost
- EAA

L1, L2, L3, L4, L5, L6, L7
Cost Savings per Lane Mile

<table>
<thead>
<tr>
<th>Construction Cost</th>
<th>Equivalent Annual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Local</td>
<td>Vs.</td>
</tr>
<tr>
<td>— $11,600</td>
<td>Section 1</td>
</tr>
<tr>
<td>— $105,000</td>
<td>Section 2</td>
</tr>
</tbody>
</table>

• Collector		
— $32,000	Section 1	— $6,600
— $50,800	Section 2	— $1,900

• Arterial		
— ($-2,700)	Section 1	— $7,500
— $16,000	Section 2	— $440
Building community. Connecting families.

Westfield’s Roadway System

Mayor Andy Cook
Quality of Life
Local Streets

2006 Design

- Option 1
 - 1” surface
 - 5” binder
 - 4” base
 - 8” comp agg.
- Option 2
 - 1” surface,
 - 4” binder
 - 6” comp agg.
 - 12” lime

Recommended Section

- Option 1
 - 1.5” surface,
 - 3” binder,
 - 6” comp agg on
 - Lime or 12” comp agg. subbase
Cost Savings per Lane Mile

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Collector</th>
<th>Arterial</th>
<th>Annual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$11,600</td>
<td>$32,000</td>
<td>(-$2,700)</td>
<td>$500</td>
</tr>
<tr>
<td></td>
<td>$105,000</td>
<td>$50,800</td>
<td>$16,000</td>
<td>$4,100</td>
</tr>
<tr>
<td>Annual Cost</td>
<td>$500</td>
<td>$6,600</td>
<td>$7,500</td>
<td>$440</td>
</tr>
<tr>
<td></td>
<td>$4,100</td>
<td>$1,900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vs.

- Section 1
- Section 2
Arterial and Industrial

2006 Design

• Option 1
 – 1” surface,
 – 2” binder,
 – 6” base (25mm),
 – 9” comp agg.

• Option 2
 – 1” surface
 – 2” binder
 – 4” base (25mm)
 – 6” comp agg.
 – 12” lime

Recommended Section

• Option 1
 – 1.5” surface
 – 2.5” binder
 – 2.5” base (19.0mm)
 – 3.5” base (19.0mm)
 – Subgrade treatment type 1

• Option 2
 – 1.5” surface
 – 2.5” binder
 – 5.0” base (25.0mm)
 – 6.0” comp agg.
 – Subgrade treatment type 1
Cost Savings per Lane Mile

Construction Cost

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Collector</th>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>$11,600</td>
<td>$32,000</td>
<td>$(-$2,700)</td>
</tr>
<tr>
<td>Section 2</td>
<td>$105,000</td>
<td>$50,800</td>
<td>$16,000</td>
</tr>
</tbody>
</table>

Annual Cost

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Collector</th>
<th>Arterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>$500</td>
<td>$6,600</td>
<td>$7,500</td>
</tr>
<tr>
<td>Section 2</td>
<td>$4,100</td>
<td>$1,900</td>
<td>$440</td>
</tr>
</tbody>
</table>
Question

• Why use 1.5” surface instead of 1” as previously proposed?
Answer

• Recommended minimum thickness for 9.5mm pavement is 1.0”
 – 2 x (max aggregate size)
• Variability in construction is +/- 0.5”
• 1.0” + 0.5” = 1.5”
Bonus Question

• What is the maximum aggregate size for 19.0mm pavement?
Answer

• 25.0mm
Collectors

2006 Design

• Option 1
 – 1” surface
 – 2” binder
 – 4” (25mm) base
 – 9” compacted agg.

• Option 2
 – 1” surface
 – 2” binder
 – 4” (25mm) base
 – 6” compacted agg.
 – 14” lime

Recommended Section

• Option 1
 – 1.5” surface
 – 2.5” binder
 – 2.5” base
 – Subgrade Treatment Type 1

– 14” lime
Cost Savings per Lane Mile

Construction Cost

<table>
<thead>
<tr>
<th>Type</th>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$11,600</td>
<td>$105,000</td>
</tr>
<tr>
<td>Collector</td>
<td>$32,000</td>
<td>$50,800</td>
</tr>
<tr>
<td>Arterial</td>
<td>$(2,700)</td>
<td>$16,000</td>
</tr>
</tbody>
</table>

Annual Cost

<table>
<thead>
<tr>
<th>Type</th>
<th>Section 1</th>
<th>Section 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$500</td>
<td>$4,100</td>
</tr>
<tr>
<td>Collector</td>
<td>$6,600</td>
<td>$1,900</td>
</tr>
<tr>
<td>Arterial</td>
<td>$7,500</td>
<td>$440</td>
</tr>
</tbody>
</table>
Collectors

2006 Design

• Option 1
 – 1” surface
 – 2” binder
 – 4” (25mm) base
 – 9” compacted agg.

• Option 2
 – 1” surface
 – 2” binder
 – 4” (25mm) base
 – 6” compacted agg.
 – 14” lime

Recommended Section

• Option 1
 – 1.5” surface
 – 2.5” binder
 – 2.5” base
 – Subgrade Treatment Type 1

This section was revised...
Why the revision??
Revised Section

Recommended Section

• Option 1
 – 1.5” surface
 – 2.5” binder
 – 2.5” base
 – Subgrade Treatment Type 1

Local Experience

• Early cracking of base by construction vehicles
Collectors

• Revised Section
 – Option 1
 • 1.5” surface
 • 2.5” binder
 • 3.5” (19mm) base
 • subgrade treatment type 1

 – Option 2
 • 1.5” surface
 • 2.5” binder
 • 2.5” (19mm) base
 • 6” comp agg.
 • subgrade treatment type 1

 • Increase Base to 3.5”

 OR

 • Add 6” Stone
Grand Park Boulevard Extension

- Actual project
- 2.95 lane miles
- Let Fall 2014
- Typical section

Full Depth HMA Pavement
165 #:SYS HMA Surface, Type B on
275 #:SYS HMA Intermediate, Type B on
275 #:SYS HMA Base, Type B
Subgrade Treatment, Type IB
Wheeler Road (INDOT Design)

• Pavement Section
 – 1.5” surface
 – 2.5” binder
 – 7.0” Compacted Agg.
 – 14” Subgrade Treatment
Cost per lane Mile Calculation

Unit Costs

• Surface
 – $75 /ton
• Binder
 – $59 /ton
• Base
 – $56 /ton
• #53 Stone
 – $25 /ton
• Lime
 – $5.50 /sys

Pavement Costs

• 2006 Design Section
 – $249,507
 – $258,879
• Proposed Pavement Section
 – $275,176
 – $196,504
• Wheeler Road Section
 – $207,870
• Westfield Revised Section
 – $215,283
 – $255,200
Grand Park Boulevard Pavement Costs

• 2006 Design Section
 – $736,046
 • $100,962 more

• New Proposed Section
 – $579,697
 • $55,397 less

• Wheeler Road Section (INDOT Design)
 – $613,217
 • $21,867 less

• Westfield Revised Section
 – $635,084 per lane mile
• What is the City of Westfield buying for the extra construction costs?
Asphalt Life Cycle Effects of Routine Maintenance

As you can see, you do not have to apply a preservative seal every year.
THINKING...

NEED TO USE ENGINEERING JUDGEMENT
THINKING...

• What factors should go into Pavement Design decisions?
Factors

- Initial construction costs
- Life cycle costs
- Amount of traffic anticipated in future
- Type of traffic
- Soils
- Cut or Fill section
- Is it a curb and gutter section
- Construction inspection/quality control
- Timeline/weather
THINKING...

• Make the right decision for the right roadway and right reasons
Goals

• Optimize pavement sections for best long term savings
 – Initial Construction Cost
 – Maintenance Cost

• Better align City pavement standards with latest technology and processes currently used by FHWA and INDOT
Questions?