Purdue University

Purdue e-Pubs

Birck and NCN Publications Birck Nanotechnology Center

8-2009

Strain relaxation in Si/Ge/Si nanoscale bars from
molecular dynamics simulations

Yumi Park
Purdue University - Main Campus, park201 @purdue.edu

Hasan Atkulga
Purdue University - Main Campus

Ananth Y. Grama
Purdue University, ayg@cs.purdue.edu

Alejandro Strachan
Purdue University - Main Campus, strachan@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub

b Part of the Nanoscience and Nanotechnology Commons

Park, Yumi; Atkulga, Hasan; Grama, Ananth Y.; and Strachan, Alejandro, "Strain relaxation in Si/Ge/Si nanoscale bars from molecular
dynamics simulations” (2009). Birck and NCN Publications. Paper 451.
http://docs.lib.purdue.edu/nanopub/451

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fnanopub%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nano?utm_source=docs.lib.purdue.edu%2Fnanopub%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=docs.lib.purdue.edu%2Fnanopub%2F451&utm_medium=PDF&utm_campaign=PDFCoverPages

JOURNAL OF APPLIED PHYSICS 106, 034304 (2009)

Strain relaxation in Si/Ge/Si nanoscale bars from molecular dynamics

simulations

Yumi Park," Hasan Metin Atkulga,® Ananth Grama,? and Alejandro Strachan

1,3,a)

'School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
2Departmem‘ of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
3Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA

(Received 31 January 2009; accepted 12 June 2009; published online 6 August 2009)

We use molecular dynamics (MD) with the reactive interatomic potential ReaxFF to characterize the
local strains of epitaxial Si/Ge/Si nanoscale bars as a function of their width and height. While the
longitudinal strain (along the bars length) is independent of geometry, surface relaxation leads to
transverse strain relaxation in the Ge section. This strain relaxation increases with increasing height
of the Ge section and reduction in its width and is complete (i.e., zero transverse strain) for roughly
square cross sections of Ge leading to a uniaxial strain state. Such strain state is desirable in some
microelectronics applications. From the MD results, which are in excellent agreement with
experiments, we derive a simple model to predict lateral strain as a function of geometry for this
class of nanobars. © 2009 American Institute of Physics. [DOI: 10.1063/1.3168424]

I. INTRODUCTION

Strained heterostructures are ubiquitous in microelec-
tronic and optoelectronic applications. Thin-body strained-Si
and strained-Ge materials are attractive for metal-oxide-
semiconductor field effect transistors (MOSFETs). In two-
dimensional strained-Si channels, biaxial tensile strain en-
hances electron mobility by reshaping the band structures
leading to a reduction in the electronic effective mass and the
rate of intervalley phonon scattering;lf3 consequently, such a
structure is desirable for n-MOSFETs while the relatively
low hole mobility enhancement limits its use for
p—MOSFETs.4 Buried Si;_,Ge, channels grown on Si, which
are compressively strained, exhibit enhanced hole mobility
due to the reduction in intervalley scattering and the lack of
Si/SiO, interface scattering.” The use of pure Ge (x=0) is
attractive for p-MOSFETs because of the high hole
mobility.6’7 In recent years structures with nonhomogeneous
in-plane strain states have attracted significant interest due to
improved electronic properties. 168

Accurate measurements of strain in nanostructures pose
significant experimental c::hallenges6 and only average values
are typically obtained; strain gradients, which can affect
electronic properties, are hard to quantify. Atomic-level mod-
eling and simulations can fill this gap and provide valuable
information to help design and optimize
strained-heterostructures.” In this paper we use molecular dy-
namics (MD) with an accurate, first-principles-based inter-
atomic potential to characterize the local stresses in strained-
Si/strained-Ge/strained-Si  (s-Si/s-Ge/s-Si) nanobars as
functions of the bar width and height of the Ge section
(Hge); see Fig. 1 for a snapshot of one of our bars. We
quantify the relaxation of lateral and vertical strains that oc-
curs as the width of the bar is decreased or the height of the
Ge section is increased. We find that the average strain state
in the Ge section is approximately uniaxial (only along the
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axial direction) when the width of the bar is reduced to about
Hg, section, i.e., for roughly square Ge cross sections.

This paper is organized as follows: Sec. II describes our
computational approach including details of the atomistic
models employed and interatomic potential. In Sec. III, we
present the resulting strains as a function of bar geometry,
and Sec. [Vdiscusses the implications of our work. Finally,
conclusions are drawn in Sec. V.

Il. SIMULATION DETAILS
A. Atomistic models of s-Si/s-Ge/s-Si nanobars

Figure 1 shows a snapshot of one of our Si/Ge/Si
nanobars. To build the heterostructures, we start with a dia-
mond unit cell (eight-atom cubic cell) and replicate it along
the x, y, and z directions to achieve the desired size of the
bar. In all cases the cell is replicated six times along the y
axis, which is the longitudinal direction of the bar, and peri-
odic boundary conditions are imposed along this direction;
this leads to [010] oriented nanobars. The number of unit
cells in the x (transverse) and z (vertical) directions are var-
ied to study the role of width and height on strain relaxation.

[001], Vertical
[010], Longitudinal

[100], Transverse _afiiiiitiaranamaiaitn

Height (H)

Fixed {

Width (W)

FIG. 1. (Color online) A snapshot of s-Si/s-Ge/s-Si nanobar oriented along
[010].

© 2009 American Institute of Physics
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The lattice parameter in the x and y directions of the initial
cell is 5.4284 A (so initially Si is 2% in biaxial tension and
Ge ~2% in biaxial compression). As shown in Fig. 1, the
bottom three and top two unit cells along the vertical direc-
tion are made of Si atoms and the central region is Ge. The
atomic positions of the bottom Si unit are kept fixed at the
initial values to simulate the strong interaction of the bar
with an oxide substrate. This setup leads to coherent struc-
tures with defect-free interfaces and is designed to reproduce
bars fabricated by Hashemi et al.’ using a bond and etch-
back technique. Hashemi et al. grew the s-Si/s-Ge/s-Si het-
erostructure on relaxed SiGe virtual substrates. After bond-
ing with the handling wafer, mechanical grinding and
chemical processes are used to remove all its parts except the
s-Si/s-Ge/s-Si on SiO, substrate. To study the effects of bar
width, these structures are patterned into nanoscale gratings
of different sizes using electron-beam lithography.6’10 The
resulting structures have the same orientation as our compu-
tational models.

B. Interatomic potential: ReaxFF

We use the first-principles based interatomic potential
ReaxFF'" in our MD simulations. ReaxFF uses the concept
of partial bond orders to model bond breaking and formation.
It has been parametrized for Si using extensive ab initio
simulations'” and then extended."” We choose ReaxFF be-
cause it has been designed and parametrized to describe large
strains including the process of bond breaking and formation,
and consequently is expected to provide an accurate descrip-
tion of structures involving large deformations. This force
field has been successfully used to describe crack propaga-
tion in Si (Ref. 13) and predict the structures of Si
nanotubes.'* In order to describe the interactions between Ge
atoms, we make a simple extension of the Si force field
where every distance parameter is increased by a factor of
1.0417; i.e., Ge is approximated as Si with a larger lattice
parameter. Combination rules are used to calculate the Si-Ge
covalent interactions and van der Waals cross interactions
between Si and Ge atoms are described with Si parameters;
the ReaxFF force field parameter file is included as supple-
mentary material."®

In addition to ReaxFF, variety of many body interatomic
potentials have been developed during the past decades for
Si; the most widely used are the Stillinger—Webber (SW),!®
Tersoff,'”  environment dependent interatomic potential
(EDIP),"® and modified embedded atom models.'”* These
potentials have been extensively applied to Si but a compre-
hensive study of their relative accuracy has not been carried
out. SW has been reported to provide a more accurate de-
scription of reconstruction of (100) surfaces than Tersoff*!
and EDIP.”

Our choice of ReaxFF is based on the fact that it has
been parametrized to describe large deformations including
bond breaking and formation and its ability to describe
oxides'? and other material combinations. These features are
critical for our future work that includes coherency limit cal-
culations and passivated surfaces.

J. Appl. Phys. 106, 034304 (2009)
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FIG. 2. (Color online) Potential energy vs time during MD procedure to find
fully relaxed Si/Ge/Si. First MD runs at 7=10 K under NVT conditions
provide initial relaxation; 7=300 K run enables surface atoms to recon-
struct; final 7=10 K relaxes the structure back to low temperature for more
precise strain calculations.

C. MD simulations: Structure relaxation and surface
reconstruction

In order to produce fully relaxed structures for our wires,
we use a procedure that consists of three steps (see Fig. 2):
(i) First, we perform MD simulation using isothermal MD
(NVT ensemble) for 20 ps at 10 K to relax the initial struc-
tures. (ii) We then increase temperature to 300 K and run an
additional 20 ps of NVT dynamics. (iii) Finally, using the T
=300 K structure, we decrease the temperature back to T
=10 K and evolve the system an additional 20 ps. In all
cases we use a time step of 0.5 fs to integrate the equations
of motion. The initial 7=10 K run relaxes the structure, but
for such a low temperature we find that the surface does not
reconstruct (only relaxation is observed). At T=300 K there
is enough thermal energy for the surface to reconstruct and
the final 7=10 K run is used to remove thermal energy and
produce structures that can be compared with those relaxed
but not reconstructed surfaces. We used both the thermostats
of Berendsen et al.>} and Nose—Hoover** and, as expected,
found no noticeable differences.

D. Local strain calculations

To characterize the strain relaxation in our Si/Ge/Si bars,
we compute local strain using the following approach. We
calculate the distance between every pair of neighboring at-
oms and project it along the x, y, and z; based on these
projections and using the corresponding values for the unde-
formed crystals (1.331 A for Si and 1.386 A for Ge), we
calculate the bond strain. We compute the strain on each
atom by averaging the associated bond strains. These are
further averaged dividing the x-y plane in square bins mea-
suring 1.34 X 1.34 AZ2. This provides an accurate description,
except for atoms on the surface that undergo large motion
during reconstruction; such atomic rearrangement that in-
volves the formation of new bonds and changes in topology
cannot be described in terms of strain. Average strain on the
Ge and Si sections is calculated from the atomic strains; only
nonsurface atoms (i.e., those with four nearest neighbors) are
considered for such averages.
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FIG. 3. (Color online) Average strains along the x, y, and z axes for (a) Si
and (b) Ge as a function of bar width for bars with Ge height Hg,
=6.39 nm.

lll. RESULTS
A. Role of bar width on strain relaxation

We fully relaxed and characterized the local strains of
bars with widths from ~2 to ~60 nm and Ge sections with
heights from ~1 to ~10 nm. We provide geometric details
of all the bars as supplementary material." Figure 3 shows
the average strain of the Si and Ge sections as a function of
width for bars with Hg.=6.39 nm. Figure 4 shows the local
strain maps on the bars’ cross sections; the maps on the left
[Figs. 4(a)—4(e)] show the transverse strain and those on the
right [Figs. 4(f)-4(j)] show the local strains along the longi-
tudinal direction. The local strain maps show both the Si and
Ge sections; the Si top and bottom layers are in tension (and
appear dark in the maps) and the Ge central region is in
compression (and is denoted by a lighter color). Figure 3
shows that the strain along the longitudinal direction is inde-
pendent of bar geometry and determined by the initial lattice
parameter. Coherent epitaxial integration of Si and Ge and
the fact that the bars are periodic in this direction (very long
in the real material) precludes longitudinal strain relaxation.
However, relaxation of (100) surfaces enables the Ge section
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FIG. 4. Local strain maps over cross sections of bars with different widths
but the same height of Ge (Hg.=6.39 nm). Panels (a)-(¢) and (f)—(j) show
the transverse and longitudinal strains, respectively.
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FIG. 5. (Color online) Average strains along x, y, and z axes for (a) Si and
(b) Ge as a function of the bar width for bars with Ge height Hg,
=3.19 nm.

to expand laterally, leading to strain relaxation in the trans-
verse direction. Regions of lateral strain relaxation can be
seen in Figs. 4(a)-4(e) at the free (100) surfaces and appear
darker than the central Ge region. These figures show that
the extent of the regions that exhibit local strain relaxation is
generally independent of bar width; figures with additional
details on the size of the relaxation regions versus bar width
are included in the supplementary material."> As the width of
the bar is reduced, this relaxation plays an increasingly im-
portant role and the overall lateral strain of the Ge section
decreases, see circles in Fig. 3. For bars with H=6.39 nm,
we predict relatively little lateral relaxation (~23%) for a bar
width of 60 nm (with an aspect ratio W/H ~9.4); transverse
strain relaxation increases to about 55% (strain of —1%)
when the aspect ratio is reduced to W/H~3 (for W
=20 nm), and the lateral strain in Ge is essentially zero for
an aspect ratio of 1. In the vertical direction, the Si and Ge
sections are free to relax independently to zero stress. Figure
3 shows that Ge exhibits tensile strain in the vertical direc-
tion due to Poisson’s effect and this vertical strain changes in
response to the lateral relaxation. For bars with large widths,
we can approximate the mechanical state of Ge as biaxial
strain along the [100] and [010] directions (g, =¢,,=
—2.09%) and zero stress along the (vertical) [001] direction.
Linear elasticity predicts &,.,=—4.18v/(1-v)=1.47% for the
Poisson ratio of our Ge description, »=0.260; 25 this number
is in good agreement with the MD result even though large
strains are involved. As the bar width and the lateral strain
decrease, so does the vertical strain. For a bar with W
=7.60 nm, when the average lateral strain is roughly zero
(and the longitudinal strain remains at 2.08%), the vertical
strain is 0.64%.

Figure 5 shows average strains as a function of width,
but for a bar with a thinner Ge section H=3.19 nm. Com-
paring Figs. 3 and 5, we see that strain relaxation is more
pronounced in bars with thicker Ge sections. For the H
=3.19 nm bars, we find zero average transverse strain when
the width is reduced to 3.26 nm (this number was 7.60 nm
for H=6.39 nm).

B. Role of Ge thickness on strain relaxation

Figure 6 shows how increasing the height of the Ge sec-
tion for bars with width W=20.09 nm leads to transverse

Downloaded 21 Oct 2009 to 128.46.220.88. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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FIG. 6. Average transverse Ge strain as a function of height of Ge for bars
with width W=20.09 nm. The dashed line is a guide to the eye.

strain relaxation in Ge. Figures 7(a)-7(d) display the corre-
sponding local strain maps and show the role of Ge thickness
on the area affected by lateral strain relaxation. As the Ge
thickness is increased, the strain-relaxed area grows toward
the center of the bar reducing the average Ge strain; the
extension of the relaxation is more pronounced near the top
Si layer than the bottom one where the atomic positions of
the bottom third of the atoms are fixed to represent their
interaction with the substrate.

C. Role of surface reconstruction on strain relaxation

In order to quantify the role of surface reconstruction in
the average strain relaxation in Ge, we compute strain for
relaxed bars but without surface reconstruction. To this end
we use the initial runs at 10 K where only surface relaxation
is observed. Figure 8 shows the average strain in Ge for
relaxed but not reconstructed (full squares) and reconstructed
(open circles) surfaces as a function of width for two Ge
heights. As shown in the Fig. 8, a significant fraction of
strain relaxation occurs without surface reconstruction. For
Si/Ge/Si nanobars with Hg.=6.39 nm, surface reconstruc-
tion accounts for less than ~6% on total surface relaxation.
However, surface reconstruction in thicker bars (with Hg,

i i 4

I n|

== et b b aeen il
(a)Hg, =1.06nm

()Hg, =3.19nm

(d)Hg, =9.58nm

FIG. 7. Local strain maps over cross sections of bars with different Ge
heights and the same width W=20.09 nm.
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FIG. 8. (Color online) Average transverse Ge strain for relaxed but not
reconstructed (full squares) and reconstructed (open circles) surfaces as a
function of width for (a) Hg.=6.39 nm and (b) Hg.=9.58 nm. The insets
show the local strain map of the Si/Ge/Si bar with W=20.09 nm and Hg,
=9.58 nm.

=9.58 nm) leads to an additional strain relaxation of up to
~16%. The local strain maps shown as insets of Fig. 8 show
the origin of this enhanced relaxation. As the thin top Si
layer reconstructs, it is able to further expand laterally releas-
ing the strain of the top region of Ge. These results under-
score the importance of an atomistic description in nanoscale
device simulations where the details of surface processes can
play a dominant role; note that finite element simulations in
Ref. 6 underestimate the strain relaxation in Ge.

IV. DISCUSSION

Figure 9 summarizes our results regarding average strain
relaxation in the transverse direction as a function of width,
for various heights. Here, the symbols represent data ex-
tracted directly from our MD simulations. We can see that
for all cases significant lateral relaxation is obtained as the
width of the bar is reduced to a value approximately equal to
Hg, sections, i.e., bars with square cross sections exhibit
close to uniaxial strain states. Our bar with width of 30 nm
and Ge height of 6.4 nm is very similar in size to those built
by Hashemi er al. and reported in Ref. 6. Using Raman spec-
troscopy, they estimated a 45% of transverse strain relaxation

051 4 H 1.06 nm
® 2.13nm
A A 3.19 nm
00r ou” v 639mm
~
X 05}
N’
£
g 10|
-
/7]
-15F
2.0
2.5 1 1 L L 1 L

0 10 20 30 40 50 60 70
Bar width (nm)

FIG. 9. (Color online) Average transverse Ge strain as a function of bar
width for various Ge heights. The symbols represent data extracted from our
MD simulations and the solid lines show our model [Eq. (2)] parametrized
using the MD data.
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FIG. 10. Model parameter W, obtained from fits to the MD data as a
function of the height of the Ge section.

for that geometry; this number is in excellent agreement with
our theoretical prediction of 44.5%, providing a very impor-
tant validation to our predictions.

To model the dependence of average transverse strain on
bar width, we divide the Ge section into three regions, as
shown in the Fig. 4(k): a central one, far from the free (100)
surfaces, with a local strain of 2.09% (given by the lattice
parameter of the fixed Si layer) and two regions adjacent to
the (100) free surfaces that exhibit strain relaxation. We can
now write the average transverse engineering strain of Ge as

(1 + 00209)(W0 - 2Wrel) + (1 + Srel) X 2Wre| - WO

(6= V.

(1)

where W, is the strain-free width of the Ge section, W, is
the width of each relaxed region, and ¢, is their average
strain. The first term of the numerator of the right hand side
of Eq. (1) represents the width of the central region, the
second one is the width of the two relaxed regions, and the
engineering strain is calculated using its standard definition.
We assume that the widths of the relaxed regions are inde-
pendent of W, and further simplify our model (and reduce
the number of free parameters) by taking &,,=0 (this is
equivalent to defining W, to a value such that the average
strain of the relaxed regions is zero). With these simplifica-
tions, Eq. (1) reduces to

W,
(e)=0.0209 - 2 X 0.0209vm, (2)
0

with strain relaxation inversely proportional to the width of
the bars. The solid lines in Fig. 9 show the proposed model
[Eq. (2)] fitted to our MD data. Since the model is not ex-
pected to be valid for very small average strains, we only fit
data with average strain <-0.5%. Our simple model de-
scribes the MD well showing the largest discrepancies for
very large relaxation or very thin Ge sections. The fitted
parameter W, is shown as a function of Hg, in Fig. 10; as
expected W, increases with the height of Ge and its numeri-
cal value is very similar to Hg,. Thus, approximating W, as
Hg., we obtain a parameter-free model to estimate strain
relaxation in Si/Ge/Si heterostructures. Our simple model

J. Appl. Phys. 106, 034304 (2009)

overestimates strain relaxation for bars with small widths but
it could be a useful to provide initial estimates in device
design and optimization.

V. CONCLUSIONS

We studied strain relaxation in epitaxial Si/Ge/Si hetero-
structures, which are good candidates for channel material
for p-MOSFETs, using MD simulations. We characterize
how surface relaxation leads to transverse strain relaxation as
a function of geometry. Our simulations show that the lateral
strain in the Ge section is relaxed as the bar width is reduced
or the Ge height is increased. Approximately uniaxial strain
occurs for bars with square Ge cross sections. Our results
show large strain gradients in the nanostructures that could
have an important effect on their electronic response; we are
currently investigating these effects. Based on our extensive
MD results (in excellent agreement with experiments), we
derived a simple model to estimate the average strain in this
class of heterostructures that could be useful in early device
design or optimization processes. All our structures exhibit
coherent, defect-free interfaces; the presence of interfacial
dislocations will lead to additional strain relaxation and we
are currently investigating their effect.
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