
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-31-2012

Modeling Complexity of Enterprise Routing
Design
Xin Sun
Florida International University, xinsun@cs.fiu.edu

Sanjay G. Rao
School of Electrical and Computer Engineering, Purdue University, sanjay@purdue.edu

Geoffrey G. Xie
Naval Postgraduate School, xie@nps.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Sun, Xin; Rao, Sanjay G.; and Xie, Geoffrey G., "Modeling Complexity of Enterprise Routing Design" (2012). ECE Technical Reports.
Paper 438.
http://docs.lib.purdue.edu/ecetr/438

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F438&utm_medium=PDF&utm_campaign=PDFCoverPages

Modeling Complexity of Enterprise Routing Design

Xin Sun

Sanjay G. Rao

Geoffrey G. Xie

TR-ECE-12-10

October 31, 2012

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

Modeling Complexity of Enterprise Routing Design

Xin Sun
School of Computing and

Information Sciences
Florida International University

xinsun@cs.fiu.edu

Sanjay G. Rao
School of Electrical and
Computer Engineering

Purdue University
sanjay@purdue.edu

Geoffrey G. Xie
Department of Computer

Science
Naval Postgraduate School

xie@nps.edu

ABSTRACT

Enterprise networks often have complex routing designs given
the need to meet a wide set of resiliency, security and rout-
ing policies. In this paper, we take the position that minimiz-
ing design complexity must be an explicit objective of rout-
ing design. We take a first step to this end by presenting a
systematic approach for modeling and reasoning about com-
plexity in enterprise routing design. We make three contri-
butions. First, we present a framework for precisely defining
objectives of routing design, and for reasoning about how a
combination of routing design primitives (e.g. routing in-
stances, static routes, and route filters etc.) will meet theob-
jectives. Second, we show that it is feasible to quantitatively
measure the complexity of a routing design by modeling in-
dividual routing design primitives, and leveraging configura-
tion complexity metrics [5]. Our approach helps understand
how individual design choices made by operators impact
configuration complexity, and can enable quantifying design
complexity in the absence of configuration files. Third, we
validate our model and demonstrate its utility through a lon-
gitudinal analysis of the evolution of the routing design of
a large campus network over the last three years. We show
how our models can enable comparison of the complexity of
multiple routing designs that meet the same objective, guide
operators in making design choices that can lower complex-
ity, and enable what-if analysis to assess the potential impact
of a configuration change on routing design complexity.

1 Introduction

Recent studies [16, 20] show that routing designs of many
enterprise networks are much more complicated than the
simple models presented in text books and router vendor
documents. Part of the complexity is inherent, given the
wide range of operational objectives that these networks must
support, to include security (e.g., implementing a subnet level
reachability matrix), resiliency (e.g., tolerating up to two
component failures), safety (e.g., free of forwarding loops),
performance, and manageability. There is also evidence,
however, to suggest that some of the network design com-
plexity may have resulted from a semantic gap between the
high level design objectives and the diverse set of routing
protocols and low level router primitives for the operators

to choose from [23]. Often, multiple designs exist to meet
the same operational objectives, and some are significantly
easier to implement and manage than others for a target net-
work. For example in some cases, route redistribution may
be a simpler alternative to BGP for connecting multiple rout-
ing domains [16]. Lacking an analytical model to guide the
operators, the current routing design process is mostly ad
hoc, prone to creating designs more complex than necessary.

In this paper, we seek to quantitatively model the com-
plexity associated with a routing design, with a view to de-
veloping alternate routing designs that are less complex but
meet the same set of operational objectives. Quantitative
complexity models could enable systematic abstraction-driven
top-down design approaches [23], and inform the develop-
ment of clean slate network architectures [9, 13], which
seeks to simplify the current IP network control and man-
agement planes.

The earliest and most notable work on quantifying com-
plexity of network management was presented by Benson et
al. [5]. This work introduced a family of complexity metrics
that could be derived from router configuration files such as
dependencies in the defintion of routing configuration com-
ponents. The work also showed that networks with higher
scores on these metrics are harder for operators to manage,
change or reason correctly about.

While [5] is an important first step, it takes a bottom-up
approach in that it derives complexity metrics from router
configuration files. This approach does not shed direct light
on the intricate top-down choices faced by the operators while
designing a network. Conceivably, an operator could enu-
merate all possible designs, translate each into configura-
tions, and finally quantify the design complexity from the
configurations. However, such a brute-force approach may
only work for small networks where the design space is rel-
atively small. Additionally, this approach still requiresa
model to determine which designs actually are correct, i.e.,
meeting the design objectives.

In this paper, we present a top-down approach to char-
acterizing the complexity of enterprise routing design given
only key high-level design parameters, and in the absence
of actual configuration files. Our model takes as input ab-
stractions of high-level design objectives such as network

1

topology, reachability matrix (which pairs of subnets can
communicate), and design parameters such as the routing in-
stances [20] (see Section 2 for formal definition), and choice
of connection primitive (e.g., static routes, redistribution etc).
Our overall modeling approach is to (i) formally abstract the
operational objectives related to the routing design which
can help reason about whether and how a combination of de-
sign primitives will meet the objectives; and (ii) decompose
routing design into its constituent primitives, and quantify
the configuration complexity of individual design primitives
using the existing bottom-up complexity metrics [5].

A top-down approach such as ours has several advantages.
By working with design primitives directly (independent of
router configuration files), the model is useful not only for
analyzing an existing network, but also for “what if” analy-
sis capable of optimizing the design of a new network and
similarly, a network migration [24], or evaluating the poten-
tial impact of a change to network design. Further, our mod-
els help provide a conceptual framework to understand the
underlying factors that contribute to configuration complex-
ity. For example, reachability restrictions between subnet
pairs may require route filters or static routes, which in turn
manifest as dependencies in network configuration files.

We demonstrate the feasibility and utility of our top-down
complexity modeling approach using longitudinal configu-
ration data of a large-scale campus network. Our evalua-
tions show that our model can accurately estimate configu-
ration complexity metrics given only high-level design pa-
rameters. Discrepancies when present were mainly due to
redundant configuration lines introduced by network opera-
tors. Our models provided important insights when applied
to analyzing a major routing design change made by the op-
erators undertaken with an explicit goal to lower design com-
plexity. Our model indicated that while some of the design
changes were useful in lowering complexity, others in fact
were counter-productive and increased complexity. Further,
our models helped point out alternate designs that could fur-
ther lower complexity.

2 Dimensions of Routing Design

According to most computer networking textbooks, routing
design is nothing more than selecting and configuring a sin-
gle interior gateway protocol (IGP) such as OSPF on all
routers and setting up one or more BGP routers to connect
to the Internet. In reality, as one would quickly discover
from meetings and online discussion forums of the opera-
tional community, network operators consistently rate rout-
ing design as one of the most challenging tasks.

In this section, using a toy example, we briefly break down
the challenges of routing design along two structural dimen-
sions, each made of a distinct logical building block. The
goal is to identify the general sources of its complexity by
exposing the major design choices that operators must make.

Consider Fig. 1, which illustrates a hypothetical company
network that spans two office buildings. Assume that the

physical topology has been constructed, including three sub-
nets (Sales, Support and Data Center) in the main building
and two additional subnets in building 2.

2.1 Policy groups

An integral part of almost every enterprise’s security policy
is to compartmentalize the flow of corporate information in
its network. For the example network, there are two cate-
gories of users: Sales and Support. Suppose the Data Center
subnet contains accounting servers that should be accessible
only by the Sales personnel. A corresponding requirement
of routing design would be to ensure that only the Sales sub-
nets have good routes to reach the Data Center subnet.

We refer to the set of subnets belonging to one user cat-
egory and have similar reachability requirements aspolicy
group.We note that policy groups are similar to policy units
introduced in [6], though there are some differences (see
Sec. 9). A primary source of complexity for routing design
is to support the fine grained reachability requirements of
policy groups. This is particularly challenging since busi-
ness stipulations often imply that subnets of a policy group
may need to be distributed across multiple buildings, multi-
ple enterprise branches, or even multiple continents.

The operator faces several choices in designing networks
to meet these reachability requirements. The operator may
choose to deploy a single IGP over the entire network to
allow full reachability and then place packet filters on se-
lected router interfaces to implement the required reacha-
bility policy. This is a viable solution for small networks.
However, for medium to large networks, a large number of
filtering rules need to be configured, and on many router in-
terfaces. Doing so will likely introduce performance prob-
lems because packet filters incur per packet processing. In
addition, according to a recent study [23], proper placement
of packet filters in itself is a complex task, particularly when
the solution must be resilient against link failures and other
changes in the network topology.

Alternatively, the operator may choose to deploy a sepa-
rate routing protocol instance to connect the subnets of each
policy group. For the example network, two independent
OSPF instances (OSPF 10 and OSPF 20) may be used to join
the subnets of Sales and Support, respectively. Such a design
is not straightforward either. First, the operator must decide
which routers to include in each routing instance, subject to
additional requirements such as resiliency. Second, the oper-
ator must select a small number of routers as border routers
and configure connecting primitives [16, 19] to “glue” the
different routing protocol instances together. (The next sec-
tion has a detailed description of the tradeoffs involved in
this step.) Last but not the least, the operator may need to
configure route filters at the border routers to implement the
required reachability policy. For the example network, route
filters should be configured to prevent routes to Data Center
subnets from leaking into Support.

2

SalesSales

SalesSales

SupportSupport
SupportSupport

Data-CtrData-Ctr

ISP
main

building
building 2

Figure 1: Example enterprise network spanning two offices

2.2 Routing instances

In several recent papers [4,16,20], researchers have revealed
the common use of multiple routing protocol instances in
one enterprise network. This is not surprising as the evo-
lution of an enterprise’s computer network parallels that of
its business. Networks of different routing designs are fused
at times of company mergers and acquisitions. Also, large
enterprises and universities are usually made of a group of
autonomous business units with quasi-independent IT staff;
each unit often has a large degree of freedom in managing its
part of the enterprise network, including the choice of which
routing protocol to use.

We adopt from these prior works the definition of a rout-
ing protocol instance, or simplyrouting instance, to refer to
a connected component of the network where all member
routers run the same routing protocol, use matching proto-
col parameters, and are configured to exchange routes with
each other. When dealing with a routing design with multi-
ple routing instances, the operator must weigh different op-
tions of joining the different routing instances together while
implementing the company’s security policy.

To illustrate, suppose the operator of the example network
of Fig. 1 has created a routing design with three routing in-
stances, as shown in Fig. 2. Each office building has its own
routing instance (OSPF 10 or OSPF 20) while the EIGRP 10
instance serves as the backbone of the network.

The operator has chosen to use BGP to connect to the In-
ternet. It is straightforward to configure an external BGP
(eBGP) peering session and mutual route redistribution (RR)
between the EIGRP and BGP instances to allow routes to be
exchanged between the enterprise network and its ISP. The
complexity increases significantly, however, if the operator
needs to configure route filters to reject certain incoming
and outgoing routes. The problem would be compounded
for multi-homed enterprise networks because of additional
policy requirements such as the designation of primary and
backup or load balancing.

For connecting the routing instances of OSPF 10 and the
backbone, the operator has chosen to use a single border
router (i.e., XZ1) that participates in both routing instances.
(For brevity, we do not consider the resiliency requirement
in this example.) This removes the need for BGP peering
to advertise routes across the boundaries of the instances.
However, the operator must still configure route redistribu-

XZ1 Z2

Z3

EIGRP 10

OSPF 10 OSPF 20

X1 X2

Y3

Y1 Y2

SalesSales

SalesSales

SupportSupport
SupportSupport

Data-CtrData-Ctr

ISP
eBGP

Figure 2: A design with multiple IGP instances

Si subneti Ri routeri
Ii routing instancei Zi policy groupi
MC connecting primitive matrix MR reachability matrix
MB border-router matrix MX route-exchange matrix
MA arc matrix Ti the internal routes thatIi has
Wi the entire set of routes thatIi

has
f(x) complexity of configuring a

route filter to allow a set of
routesx

|x| size of the setx Krr complexity of configuring one-
way route redistribution

Ksr complexity of configuring one
static route

Kbgp complexity of configuring a
BGP peering session on one
border router

Kobj complexity of configuring ob-
ject tracking for one static route

h(i, j) a binary function denoting
whether filtering is needed

MP eBGP-peering matrix Kdr complexity of configuring a de-
fault route

Table 1:Notation table

tion and possibly route filters to allow the injection of routes
between the two instances. Another complication is that
multiple routing instances may simultaneously offer routes
to the same destination at a border router. The operator must
implement the correct order of preference between the in-
stances, sometimes requiring an override of some protocols’
default Administrative Distance (AD) [4,18] values on a per
border router basis.

For connecting the routing instances of OSPF 20 and the
backbone, the operator has adopted a different approach.
Two border routers (i.e., Y3 and Z2) are used as in the case
of the ISP connection. However, instead of using a dynamic
protocol, the operator has configured two sets of static routes,
on the two border routers respectively, to achieve reachabil-
ity across routing instances. This design incurs considerable
amount of manual configuration on a per destination prefix
basis. For example, on Y3, static routes are required for des-
tination prefixes not only within EIGRP 10 but also within
OSPF 10. Clearly, due to its static nature, the design may
not bode well when the subnet prefixes frequently change or
dynamic re-routing is required. However, it has one advan-
tage over dynamic mechanisms like BGP or co-location of
routing processes in one border router: the packet forward-
ing paths across routing instances are much easier to predict
when hardcoded. In contrast, both BGP and RR can result in
routing anomalies in ways that are difficult to identify from
their configurations [18].

3 Abstractions for Modeling Routing Design
This section first presents a set of formal abstractions that
capture the routing design primitives, and design objectives

3

and constraints. These abstractions form the foundation for
modeling design complexity. We then describe the metrics
we used for quantifying the complexity of a given design
instance that makes use of a specific set of design primitives
and targets a specific network topology. Table 1 summarizes
the notations used in this and the following sections.

3.1 Abstracting essential elements of routing design

We useS1, S2, ... to denote the host subnets in the network.
Each subnet is assigned a unique IP prefix address (e.g.,
“192.168.1.0/24”). We useR1, R2, ... to denote the routers
in the network. Each subnet connects to a router and uses
that router as its gateway (i.e. the router routes all the pack-
ets generated by the subnet). A “route” is considered as
an IP prefix address, plus additional attributes (e.g., weight)
that may be used for calculation of a next-hop for the route.
A router always has routes to all the connected subnets for
which it is the default gateway. In addition, routes may be
manually injected into a router via configuration of static
routes (Sec. 5.3). Routers may exchange routes by running
one or more dynamic routing protocols. To participate in
each routing protocol, a router must run a separate routing
process. Each routing process maintains a separate Routing
Information Base, or RIB. The RIB contains all the routes
known to the routing process, each associated with one or
more next-hops. A router maintains a global RIB (also re-
ferred to as the forwarding information base, or FIB, in the
literature), and uses selection logic to select routes fromits
routing process RIBs, as well as routes to connected sub-
nets and statically configured routes, to enter the global RIB.
A router uses the global RIB to make forwarding decisions.
(Readers are referred to [20] for a more detailed description.)

We say that “a routerRi has a route to a subnetSj”, if
the prefix address ofSj matches a route in the global RIB
of Ri. Furthermore, we say that “a subnetSi is routable
from another subnetSj”, if the gateway router forSj has
a route toSi. Finally, since this paper concerns only the
routing design and uses routing as the only mechanism to
implement reachability, we use the terms “reachable” and
“routable” inter-changeably.

Let I = {I1, I2, ...} denote the set of routing instances
(Sec. 2.2), an essential routing design component that ab-
stracts route propagation in the network. As described in
Sec. 2.2, routing processes in the same routing instance ex-
change all their routes freely. As a result, all the routing
processes share the same set of routes. To change this behav-
ior, route filters are typically used to filter route updates be-
tween routing processes (Sec. 4). On the other hand, routing
processes in different routing instances do not exchange any
route. To change this behavior,connecting primitivesmust
be used (e.g., static routes, route redistribution and BGP).
The routers where connecting primitives are implemented
are termedborder routers.

We assume that we are given the set of routing instances
I and their member routers and routing processes. We are

Router 1

1. interface GigabitEthernet 1/1

2. ip address 10.1.0.1 255.255.255.252

3. !

4. router eigrp 10

5. distribute-list prefix TO-SAT out GigabitEthernet1/1

6. !

7. ip prefix-list TO-SAT seq 5 permit 192.168.1.0/24

8. ip prefix-list TO-SAT seq 10 premit 192.168.5.0/24

Router 2

1. interface FastEthernet1/1

2. ip address 192.168.1.1 255.255.255.0

3. !

4. interface FastEthernet2/1

5. ip address 192.168.5.1 255.255.255.0

6. !

Figure 3: Configuration snippets of two routers.

also given the connecting primitive matrixMC. Each cell
MC(i, j) specifies the connecting primitive used byIi and
Ij , to allow routes to be sent fromIi to Ij .

In this paper, we focus on the primary use of routing de-
sign: implementing reachability policies. The primary layer-
three mechanisms to implement reachability are the connect-
ing primitives and route filters. We do not model the se-
lection logic, which is used to prefer one routing path over
another, as this is typically used for traffic engineering pur-
poses, rather than implementing reachability.

3.2 Abstracting design objectives and constraints

The design objectives and constraints considered in this pa-
per include reachability and resiliency, as well as routing
path policies. First, to capture the reachability requirements,
it is assumed that we are given the reachability matrixMR.
Each cellMR(i, j) denotes whether the subnetSi can reach
the subnetSj . Note that in the routing design we only con-
sider reachability at the subnet level. We do not consider
host-level reachability as it is typically implemented by data
plane mechanisms such as packet filters.

To capture the resiliency requirement, we assume that we
are given the border-router matrixMB. Each cellMB(i, j)
specifies the set ofIi’s border routers that enableIi to adver-
tise routes toIj . Note that a routing instance may use differ-
ent border routers to communicate with different neighbor-
ing instances.

To capture the path policies, it is assumed that we are
given the route-exchange matrixMX. Each cellMX(i, j)
specifies the set of routes thatIi should advertise toIj to
meet the reachability requirement. We assume that the routes
in the matrix is in the most aggregated form. Clearly the set
of externalroutes thatIi has may be calculated as

⋃
j MX(j, i).

LetTi denote the set ofinternalroutes thatIi has (i.e., routes
originated by subnets insideIi). LetWi denote the entire set
of routes thatIi has, which may be calculated as follows:

Wi = (
⋃

j

MX(j, i))
⋃

Ti (1)

4

3.3 Measuring complexity

Using these abstractions, we are able to precisely define the
objectives, or the correctness criteria, of a routing design,
and reason about how a combination of routing primitives
(e.g., routing instances, static routes, route filters, etc.) will
meet the objectives. We then leverage metrics developed by
previous work to measure how the choice of different rout-
ing primitives may impact the complexity of the resulting
network.

The particular metric that we use is proposed by [5], which
captures the complexity in configuring a network by count-
ing the number ofreference linksin the device configuration
files. Basically a reference link is created when a network
object (e.g., a route filter, a subnet) is defined in one con-
figuration block, and is subsequently referred to in another
configuration block, in either the same configuration file or a
different file. As an example, consider Fig. 3 that shows con-
figuration snippets from two routers. The referential links
are shown in italics. In line 5 in Router 1’s configuration, a
route filter named TO-SAT is applied to the interface Giga-
bitEthernet1/1 to filter two routes in the outgoing direction.
This line introduces two reference links: one to the name of
filter (defined in line 7-8), and the other to the name of the
interface (defined in line 1). Moreover, the definition of the
route filter (lines 7-8) introduces two reference links to the
two subnet prefixes, which are defined in Router 2’s config-
uration file (line 2 and 5). Clearly, the existence of refer-
ence links increases the configuration complexity as it intro-
duces dependencies between configuration blocks either in
the same configuration file or in different configuration files.

We choose to use this metric because it has been exten-
sively validated in [5] through operator interviews. Our own
interaction with operators also suggests that the metric re-
flects operator perceived complexity reasonably well. We
note that other complexity metrics have been proposed in
[5] such as the number of routing instances, and the number
of distinct router roles. Many of these other metrics are rel-
atively straight-forward to estimate from the design. For ex-
ample, the number of distinct router roles could be estimated
based on the insight that border and non-border routers play
different roles. Further, we have observed in our evaluation
settings that the reference link metric shows the most varia-
tion across designs, making it particularly useful in facilitat-
ing comparisons.

4 Modeling Intra-Instance Complexity

This section presents a framework for estimating complexity
existingwithin a routing instance. We first show that such
complexity results from the need to install route filters in-
side the routing instance, in order to implement the differ-
ent reachability requirements of different subnets. We then
present models to quantify the complexity associated with
such route filters. In doing so, our models determine the
route filter placement and the filter rules.

to AS2

S1

S2

S3

S4

R1

R2

R3 R4

R5

R6

R7

routing instance I1

S1 S2 S3 S4 AS2

S1 Y Y Y N Y

S2 Y Y Y N Y

S3 Y Y Y Y N

S4 N N Y Y Y

AS2 Y Y N Y Y

(a) An example network and reachability policy. The matrix has
one row (column) per subnet. Y (N) indicates the subnets can
(cannot) reach each other.

R1

R2

R3 R4

R5

R6

R7

Z1

Z2

Z3

AS2

V
R V

B

V
Z

V
X

(b) The per-instance routing graph of routing instance I1

Figure 4: Illustrating need for route filters.

4.1 Source of intra-instance complexity

The complexity within a routing instance primarily comes
from the route filters installed inside the instance. By defini-
tion, all routing processes of the same routing instance have
the same routing tables. This means that all the subnets con-
necting to those routing processes will have the same reach-
ability toward other subnets. If this is not desired, route fil-
ters must be used to implement reachability policies insidea
routing instance.

As an example, consider the example network shown in
Fig. 4a. Routers R1-R7 and subnets S1-S4 are placed in rout-
ing instance I1. Border router R2 runs eBGP with another
autonomous system AS2 and injects eBGP learned routes to
I1. The figure also shows the desired reachability matrix.
To implement the reachability matrix, route filters must be
carefully placed. For example, to prevent S1 and S2 from
reaching S4, while permitting S3 to reach S4, route filters
must be installed between R3 and R5, and between R3 and
R6. Similarly, a route filter must be installed between R1
and R4 to prevent S4 from reaching S1 and S2. In addition,
another route filter must be installed between R3 and R7, to
prevent S3 from reaching the external routes of I2.

In general, the degree of diversity in terms of reachability
among subnets of the same routing instance directly impacts
the amount of filtering required, which in turn determines
the complexity inside that instance. To capture this degreeof
diversity, we leverage the notion ofpolicy groupsdiscussed
in Sec 2.1.
Policy groups: Formally, letZ = {Z1, Z2, ...} denote the
set of policy groups in a network. A policy groupZi ∈
Z is a set of subnets that (i) can reach each other, and (ii)
are subject to the same reachability treatmenttoward other
subnets (e.g., if a subnetsa ∈ Zi can reach another subnet

5

sb ∈ Zj , then all subnets inZi must be able to reachsb as
well). Clearly, policy groups divide the set of all subnets,
and each subnet belongs to one and only one policy group.
The set of policy groups of a given network can be easily
derived from the reachability matrixMR. In the example in
Fig. 4a, S1 and S2 forms a policy group, while S3 and S4
each constitute a separate policy group.

By definition, there is no need for filtering within a pol-
icy group. Thus if a routing instance contains only a single
policy group, the intra-instance complexity is zero. On the
other hand, if a routing instance contains subnets of multiple
policy groups, route filters must be installed among them to
implement their different reachability constraints, and thus
incur complexity.

4.2 Modeling the complexity

Intuitively, the degree of complexity of a given routing in-
stanceIa depends on two factors:
• The number of route filters installed insideIa, as each in-
stallation of a filter creates a reference link to the name of
that filter (e.g., line 5 of router 1 in Fig 3).
• The complexity associated with each filter, which is mea-
sured by the number of rules in each filter, as each rule cre-
ates a reference link to a prefix address (e.g., lines 7-8 of
router 1 in Fig 3).

Below we model the two factors separately.

4.2.1 Estimating number of filters

In order to estimate the number of route filters needed to be
installed inside a given routing instanceIa, we first introduce
an undirected graphGa(VR, VZ , VX , VB, E) , called theper-
instance routing graphof Ia. We then show how we use this
graph to do the estimation for different network topologies.
Per-instance routing graph: The purpose of the per-instance
routing graph is to model how policy groups are inter-connected.
There are four types of nodes in the graph for a given routing
design:VR, VZ , VX andVB. VR denotes the set of routers
that participate in this routing instance.VZ denotes the set
of policy groups that are placed inside this routing instance.
VX denotes networks external to this routing instance (i.e.,
other routing instances in the same AS and external ASes as
well), whose routes are injected into this routing instanceby
one or more border routers. Finally,VB denotes the set of
border routers of this routing instance.
E denotes the set of edges. First, there is an edge between

two nodesvi, vj ∈ VR if the two routers are physically con-
nected, and the corresponding routing processes running on
them areadjacent, i.e., can exchange routing updates [20].
Second, there is an edge betweenvi ∈ VZ andvj ∈ VR if
one or more subnets in policy groupvi connect to the rout-
ing process running onvj . Finally, there is an edge between
vi ∈ VX andvj ∈ VB , if the border routervj injects the
routes of the external networkvi.

For example, the per-instance routing graph ofI1 in Fig. 4a
is shown in Fig. 4b.

Determine filters needed for one policy group:Using the
per-instance routing graph, we determine the route filters
needed for implementing the reachability of a policy group
vi ∈ VZ toward other subnets. First, consider every policy
groupvj ∈ VZ . If vj contains one or more subnets thatvi
can not reach, then a route filter must be placed on every
possible path betweenvi andvj on the per-instance routing
graph, to filter out routing updates corresponding to those
subnets before they reach any gateway router ofvi. Sim-
ilarly, consider every external networkvk ∈ VX . If there
exist one or more subnets invk thatvi cannot reach, a route
filter must be placed on every possible path betweenvi and
vk to filter routing updates corresponding to those subnets as
well.
Upper and lower bounds on the number of filters:In both
cases described above, theupper boundon the number of
route filters needed for policy groupvi is the total number
of paths betweenvi andvj (vk), summed over allvj andvk
for which filtering is needed. The upper bound can always
be achieved by placing the filters on the on gateway routers
of vi. The lower boundis the number of links in the small-
est edge-cut set betweenvi andvj (vk), summed over all
vj andvk for which filtering is needed. However, the lower
bound may not always be achievable, as some links may be
included in the smallest edge-cut sets between multiple pairs
of policy groups. For example, in Fig. 4b routing updates of
Z3 must be filtered before they reachZ1, asZ1 is not al-
lowed to reachZ3. While one smallest edge-cut set between
Z1 andZ3 is the linkR1 − R3, we cannot place the filter
on that link, as doing so would wrongfully preventZ2 from
getting those routing updates.

The lower bound can be achieved for a special type of star
topology, which we believe is typical in many enterprise net-
works. In this type of topology, any path between a pair of
policy groups, or between a policy group and an external net-
work, always goes through the core router. This ensures that
the paths between the core tier and different policy groups do
not share any common router. Given this special topology,
it may be shown that (i) the core-tier will have the complete
set of routes, and (ii) it is sufficient to place the route fil-
ters between the core tier and each policy group. Hence it is
now feasible to place the filters on the smallest edge-cut set
between the core tier and each policy group.

4.2.2 Estimating number of rules in each filter

Consider using a route filter to implement a policy group
vi’s reachability constraint toward another policy groupvj .
The number of rules in this filter depends on the number of
routes to be blocked fromvj to vi, as one route translates to
one filter rule (see Fig. 3 for an illustration).

For example, as we have discussed above, a route filter
must be installed between Z1 and Z3 in the toy network
(Fig. 4b), to prevent the routes of S1 and S2 from being
advertised to S4. The number of rules in this filter will be
two, as there are two prefixes to be blocked. (Note that the

6

S1

S2

R1 S3

R3

I2 (EIGRP 20) S1 S2 S3

S1 Y Y N

S2 Y Y Y

S3 N Y Y

I1 (OSPF 10)

R2

Figure 5: A toy network with two routing instances.

number of rules may be reduced, if several prefixes can be
aggregated into a larger prefix. For simplicity we do not con-
sider such route aggregation in this work.)

5 Modeling Inter-Instance Complexity
This section presents a framework for estimating the inter-
instance complexity. We show that this complexity results
from the use of connecting primitives. We then present mod-
els for estimating the complexity for the three typical con-
necting primitives described in Sec. 2.2: route redistribution,
static and default routes, and BGP.

5.1 Source of inter-instance complexity

The inter-instance complexity comes from the need for con-
necting primitives to connect multiple routing instances.Con-
sider the toy network shown in Fig. 5 as an example. There
are two routing instances: I1 running OSPF with process ID
10, and I2 running EIGRP with process ID 20. I1 contains
subnets S1 and S2, and I2 contains S3. The reachability pol-
icy specifies that S1 and S2, as well as S2 and S3 can reach
each other, but S1 and S3 can not. Given the network as
such, I1 and I2 cannot exchange any route, and thus cannot
communicate. To change this behavior and implement the
reachability between S1 and S3, one or more border routers
must be deployed to physically connect the two routing in-
stances, and in addition, a connecting primitive must be con-
figured on each border router to enable route exchange.

An important factor that impacts the degree of inter-instance
complexity is the resiliency requirement (Sec. 3.1), which
specifies the number of border routers (Sec. 3.2) each rout-
ing instance should have. While having more border routers
improves the resiliency of the design, it also introduces po-
tential anomalies (e.g., routing loops) and complicates the
configuration, as we will show in the next section.

In this section we focus on the basic scenario with a sin-
gle border router for each routing instance (i.e., minimum
resiliency). We discuss the case with multiple border routers
in the next section.

5.2 Route redistribution

The first connecting primitive we consider is route redistri-
bution, which dynamically sends routes from one routing in-
stance to another. Using route redistribution to connect two
routing instances requires having a common border router
that runs routing processes in both routing instances. The
border router then is configured to redistribute routes from
one routing instance to the other, and vice versa. (Note
that route redistribution must be separately configured for
each direction.) For example, Fig. 6a illustrates the design
using route redistribution for the network shown in Fig. 5.

S1

S2

R1 S3

R3

I2 (EIGRP 20) S1 S2 S3

S1 Y Y N

S2 Y Y Y

S3 N Y Y

I1 (OSPF 10)

R2

R4

(a) The network design using route redistribution.

Router 4

1. router ospf 10

2. redistribute eigrp 20

3. !

4. router eigrp 20

5. redistribute ospf 10 route-map OSPF-TO-EIGRP

6. !

7. route-map OSPF-TO-EIGRP permit 10

8. match ip address 1

9. !

10. access-list 1 permit S2

(b) Configuration snippet of the border router R4

Figure 6: Design using route redistribution for the network
shown in Fig. 5.

Router R4 is the border router and is configured to redis-
tribute routes between I1 and I2.

Fig. 6b shows the relevant configuration snippet of R3 in
Cisco IOS syntax, with referential links highlighted in ital-
ics. Line 1 and 4 create two routing processes, one partici-
pate in each routing instance. Line 2 and 5 redistribute routes
from I1 to I2 and from I2 to I1 respectively.

We note that by default, route redistribution will redis-
tributeall the active routes from one instance to the other [17].
For example, in Fig. 6a, R4 will redistribute routes of both
S1 and S2 to I2. This enables S3 to reach both S1 and S2,
which does not conform to the reachability policy as shown.
To change the default behavior, a route filter (in the form of
a route-map) must be used in conjunction with route redis-
tribution, as shown in line 5 in Fig. 6b. Such a filter permits
a subset of routes specified by the filtering rules (line 8 and
10), and blocks the rest routes.
Modeling complexity: Consider route redistribution from
Ii to Ij . Route redistribution in the other direction may be
modeled similarly and separately. As shown above, the con-
figuration may include two components: (i) configuration of
the route redistribution itself, and (ii) configuration of the
route filter, which is required if only a subset ofIj ’s routes
should be redistributed. LetKrr denote the complexity of
configuring the route redistribution itself. Let the function
f(x) denote the complexity of configuring and installing a
route filter withx rules (i.e., the filter allowsx routes). We
note thatf(x) includes (i) the complexity of configuring the
filtering rules, which is linear to the number of rules, and
(ii) the complexity of installing the filter by referring to its
name, which is a constant factor. In addition, we leth(i, j)
be the following binary function that denotes whether a filter
is needed: (Recall that a filter is not needed if all the routes
Ii has, i.e.Wi, can be redistributed intoIj .)

h(i, j) = 0, if MX(i, j) = Wi; (2)

h(i, j) = 1, otherwise. (3)

7

S1

S2

R1
S3

R3

I2 (EIGRP 20) S1 S2 S3

S1 Y Y N

S2 Y Y Y

S3 N Y Y

I1 (OSPF 10)

R2

R4 R5

(a) The network design using either static routes or BGP.

Router 4

1. router ospf 10

2. redistribute static

3. !

4. ip route S3 R5

Router 5

5. router eigrp 20

6. redistribute static

7. !

8. ip route S2 R4

(b) Configuration snippets of the border routers using static
routes.

Figure 7: Design using static routes for the network shown
in Fig. 5.

The overall complexity denoted byCrr(i, j) can be calcu-
lated as follows:

Crr(i, j) = Krr + f(MX(i, j)) ∗ h(i, j) (4)

5.3 Static routes

Another way to connect the two routing instances in Fig. 5 is
to use static routes, which can be viewed as manually entered
routing table entries. This design is shown in Fig. 7a. Each
routing instance now must have its own border router (R4
and R5) that participates in only that routing instance. Static
routes are configured on the border routers and point to desti-
nation subnets in the other routing instance. One static route
is needed for every destination subnet. Further, the static
routes are redistributed into the respective routing instance
so that internal routers in the routing instance also have those
routes.

Fig. 7b shows the relevant configuration snippets of the
two border routers, with referential links highlighted in ital-
ics. On R4, a static route is configured and installed in line
4. The static route points to S3 as the destination, and speci-
fies R5 as the next-hop to reach the destination. Having this
static route installed, R4 now has a route to S3. Further, line
2 redistributes any static route configured on the router into
I1, so that other routers of I1 (i.e., R1 and R2) also have a
route to reach S3. Similarly, a static route to S2 is configured
on R5 (line 8) and redistributed (line 6) to I2.
Modeling complexity: Consider using static routes to allow
Ij to reach a set of subnetsMX(i, j) in Ii. Let |MX(i, j)|
denote the size ofMX(i, j). Since one static route is needed
for each route inMX(i, j), there will be|MX(i, j)| static
routes to configure. LetKsr denote the complexity of con-
figuring a single static route. The total complexity denoted
byCsr(i, j) can be calculated as follows:

Csr(i, j) = |MX(i, j)| ∗Ksr (5)

Router 4

1. router ospf 10

2. redistribute bgp 64501

3. !

4. router bgp 64501

5. neighbor R5 remote-as 64502

6. neighbor R5 distribute-list 1 out

7. redistribute ospf 10

8. !

9. access-list 1 permit S2

Router 5

10. router eigrp 20

11. redistribute bgp 64502

12. !

13. router bgp 64502

14. neighbor R4 remote-as 64501

15. redistribute eigrp 20

16. !

Figure 8: Configuration snippets of the border routers using
BGP, for the network shown in Fig. 7a

Default routes: A default routeis a special case of static
routes, which injects a default gateway to the router it is
configured on. A default route has a constant complexity
(denoted asKdr). For example, in Cisco IOS syntax the
command to configure a default route is “ip route 0.0.0.0
0.0.0.0next-hop-IP”. This is essentially the same command
for configuring static routes, except that the destination pre-
fix takes the special form “0.0.0.0 0.0.0.0”, which will match
any IP address. Clearly the complexity of this command is
one, as it creates a single referential link to the address ofthe
next-hop router.

5.4 BGP

A third connecting primitive is BGP, which is a dynamic
routing protocol that allows routes to be exchanged among
routing instances. BGP typically requires each routing in-
stance to have its own border router. The design using BGP
for the same example network is shown in Fig. 7a. Again R4
and R5 are the border routers for I1 and I2 respectively. In
addition to running the respective IGP routing process, R4
and R5 each also runs a separate BGP routing process. A
BGP peering relationship is established between R4 and R5,
so that R4 can advertise S2 to R5, and R5 can advertise S3
to R4. R4 and R5 also redistribute the learned BGP routes to
their respective routing instance, so that other routers inthe
routing instance have those routes too.

Fig. 8 shows the relevant configuration snippets of R4 and
R5. Configuring R4 involves: (i) starting a BGP routing pro-
cess (line 4); (ii) redistributing routes from the IGP into the
BGP process (line 7); (iii) establishing a BGP peering ses-
sion with the neighboring border router (R5), and exchang-
ing routes with it (line 5); (iv) installing an optional route
filter to restrict the routes to be advertised (line 6); and (v)
redistributing the learned BGP routes into IGP (line 2). Sim-
ilar configuration is done on R5 too. We wish to note two
things here. First, the BGP process does not have any route
by default, and hence routes must be explicitly redistributed
from the IGP to the BGP, i.e., the step (ii) above. Second,

8

S1

S2

R1 S3

R3

I2 (OSPF) I1 (RIP)

R2

R4

R5

Figure 9: Both border routers R4 and R5 are performing
mutual route redistribution between I1 and I2. Assume full
reachability among all subnets.

BGP advertises all its routes to neighbors by default. If this
is not desired, a route filter must be used to restrict routes to
be advertised, i.e. the step (iv) above.
Modeling complexity: Consider thatIi advertises a set of
routes toIj using BGP. The complexity of configuring BGP
on Ii’s border router consists of three components: (i) the
complexity of configuring the BGP session itself, includ-
ing configuring the BGP process and the peering relation-
ship with a neighbor; (ii) the complexity of configuring two-
way route redistribution between the IGP and the BGP pro-
cesses; and (iii) the complexity of configuring a route filter,
if it is needed (i.e., only a subset ofIi’s routes can be adver-
tised). LetKbgp denote the complexity of configuring the

BGP protocol itself. Letf(x) andh(i, j) be the same func-
tions as defined in Sec. 5.2. The total complexity denoted by
Cbgp(i, j) can be calculated as follows:

Cbgp(i, j) = Kbgp+ 2 ∗Krr + f(MX(i, j)) ∗ h(i, j)

(6)

6 Complexity With Multiple Border Routers
We now consider designs where a routing instance uses mul-
tiple border routers to connect to another routing instance.
An example of such a design is shown in Fig. 9, where both
R4 and R5 are configured to perform two-way route redis-
tribution between I1 and I2. The main benefit of using mul-
tiple border routers is increased resiliency, i.e., even ifone
border router in Fig. 9 fails, I1 and I2 can still communicate
through the other one. On the other hand, using multiple
border routers can cause anomalies such as routing loops.
To prevent the anomalies, additional configuration will be
required, which may introduce more referential links and in-
crease complexity.

In this section, we model the additional complexity re-
sulting from both thesafetyandresiliencyrequirements with
multiple border routers:
• Safety: the routing must function correctly when all the
border routers are alive and running, e.g., no routing loop
will occur;
• Resiliency: when one or more border router and/or link is
down, the routing must be able to adapt and re-route traffic
though live routers and/or links.

We examined all three connecting primitives and found
that (i) for route redistribution, additional mechanisms are
required to ensure safety; (ii) for static routes, additional
mechanisms are required to ensure resiliency; and (iii) for
BGP, no additional mechanism is needed. Below we model

the complexity of each of these connecting primitives.

6.1 Ensuring safety with route redistribution

Consider a design scenario where route redistribution is con-
figured on multiple border routers to redistribute routes from
Ii to Ij . The complexity of this design depends on what con-
necting primitive is used to send routes in the reverse direc-
tion (i.e., fromIj to Ii), as we discuss below.

On the one hand, if no connecting primitive or a differ-
ent connecting primitive than route redistribution is usedin
the reverse direction, the complexityCrr is simply the single
border-router complexity (Sec. 5.2) multiplied by the num-
ber of border routers, i.e.,

Crr(i, j) = (Krr + f(Mx(i, j)) ∗ h(i, j)) ∗ |MB(i, j)|
(7)

Recall thatMB(i, j) denotes the set of border routers that
Ii uses to reachIj , which is an input to our framework
(Sec. 3.2).|MB(i, j)| denotes the size of this set, i.e., the
number of border routers.

On the other hand, if route redistribution is also used in
the reverse direction, then a potential anomaly calledroute
feedbackmay occur. Route feedback happens when a route
is first redistributed fromIi to Ij by one border router, but
then is redistributed back fromIj to Ii by another border
router. For example, in the network in Fig. 9, S1 may be first
redistributed from I1 (RIP) to I2 (OSPF) by router R4. So
router R5 learns the route from both RIP and OSPF. If R5
prefers the OSPF-learned route, it will redistribute the route
back to RIP. Route feedbackcan lead to several problems
such as routing loops and route oscillations [17]. Clearly
route feedback can happen only when mutual route redistri-
bution is conducted by multiple border routers between two
routing instances.

As a common conservative solution to this issue, a route
filter is used in conjunction with route redistribution to pre-
vent any route from re-entering a routing instance where it
originally came. In the above example, a route filter should
be installed on R4 and R5 to allow only the route S3 to enter
I1, and prevent routes of S1 and S2 from re-entering I1. Note
that such a filter may be already in place to implement reach-
ability as described in Sec. 5.2 (i.e., to only allow a subset
of routes ofIj to be sent toIi, and block all other routes).
In such case, there is no additional complexity introduced.
Only in the case where the filter is not needed otherwise (i.e.
MX(j, i) = Wj), a route filter needs to be configured for the
sole purpose of preventing route feedback. To summarize, in
the mutual route redistribution case, the total inter-instance
complexity of using route redistribution to send routes from
Ii to Ij is:

Crr(i, j) = (Krr + f(Mx(i, j))) ∗ |MB(i, j)| (8)

The complexity on the reverse direction can be similarly
modeled.

9

S1

S2

R1
S3

R3

I2 (EIGRP 20) I1 (OSPF 10)

R2

R4

R7R5

R6

Figure 10: Static routes are configured on all border routers
R4 - R7. Assuming full reachability among all subnets.

6.2 Ensuring resiliency with static routes

Consider a design scenario where a routing instanceIi uses
static routes to reach a set of destination subnets inIj , as
is the case for routing instances I1 and I2 in the example
network in Fig. 10. On each border router ofIi (e.g., R4
in Fig. 10), and for each destination subnet inIj (e.g., S3),
multiple static routes may be defined, each using a different
border router ofIj as the next-hop. For example, two static
routes may be configured on R4 to reach S3, one using R6
as the next-hop, and the other using R7. We assume that
we are also given as input anarc matrixMA, where each
cell MA(i, j) specifies the set of arcs from the set of border
routers inIi to the set of border routers inIj . An “arc”
is said to exist from one border routerRa ∈ MB(i, j) to
another border routerRb ∈ MB(j, i), if there exists a static
route onRa that usesRB as the next hop.

One limitation with static routes is that they may not be
able to automatically detect the failure of the next-hop router
or the link in between, and will continue to try to route traffic
to the bad path, even when other valid paths exist. This will
result in packets being dropped. For example, In Fig. 10,
when there is no failure, R4 will load balance the two static
routes and use both R6 and R7 to route traffic to I2. R5 will
do the same thing. However, if R6 fails, R4 and R5 will
not be able to detect the failure or cancel the corresponding
static route that uses R6 as the next-hop. Instead, they will
continue to try to route half of the traffic to R6, resulting in
those packets being dropped.

A common solution to this problem is usingobject track-
ing [10] along with each static route. In doing so, each static
route involves referring to an object tracking module. At a
high level, object tracking will periodically ping the desti-
nation subnet of the static route, using the same next-hop
router as specified in the static route. When a failure occurs
and the destination is no longer reachable via the particular
next-hop, the static route will be removed from the RIB at
that point.

LetKobj denote the complexity of installing object track-
ing to one static route. The total complexity of using static
routes to enableIj to reachIi can be modeled as follows,
assuming each arc contains static routes to reach all subnets
in MX(i, j):

Csr(i, j) = |MA(i, j)| ∗ |Mx(i, j)| ∗ (Ksr+Kobj) (9)

That is, the total complexity is the single arc complexity
(which includes both the complexity of configuring the set of
static routes, and the complexity of installing object tracking

S1

S2

R1
S3

R3

I2 (EIGRP 20) I1 (OSPF 10)

R2

R4

R7R5

R6

Figure 11: BGP is configured on all border routers R4 - R7.
Assuming full reachability among all subnets.

to each static route), multiplied by the total number of arcs
from Ii to Ij (denoted by|MA(i, j)|).

6.3 The case with BGP

Consider a design scenario where BGP is used to enable two
routing instancesIi andIj to exchange routes. An example
of such design is shown in Fig. 11. Each border router runs
eBGPpeering sessions with one or more border routers of
the other routing instance, and runsiBGP peering sessions
with each border router of the same routing instance. For
example, R4 in Fig. 11 runs eBGP peering sessions with R6
and R7, and an iBGP peering session with R5.

We assume that we are also given as input aneBGP-peering
matrix MP, where each cellMP(i, j) specifies the set of
eBGP peering sessions between border routers ofIi andIj .
For the example network shown in Fig. 11,MP(1, 2) is 4.
In addition, we assume that each border router runs an iBGP
session with every other border router in the same routing in-
stance, which is required for iBGP to work correctly. Hence
each border router ofIi runs(|MB(i, j)|−1) iBGP sessions.

The complexity of configuringIi’s border routers consists
of three parts: (i) the complexity of configuring the eBGP
sessions with border routers ofIj , which includes configur-
ing route filters if needed to restrict routes to be advertised;
(ii) the complexity of configuring the iBGP sessions among
border routers ofIi; and (iii) the complexity of configuring
the route redistribution between the BGP process and the
IGP process. Hence the total complexity may be calculated
as follows:

Cbgp(i, j) = (Kbgp+ f(MX(i, j)) ∗ h(i, j)) ∗ |MP(i, j)|+

Kbgp∗ |MB(i, j)| ∗ (|MB(i, j)| − 1)+

2 ∗Krr ∗ |MB(i, j)| (10)

7 Evaluation

In this section, we evaluate our framework using configu-
ration files of a campus network of a large U.S. university
with tens of thousands of users. Our data-set includes mul-
tiple snapshots of the configuration files of all switches and
routers from 2009 to 2011. It also includes multiple snap-
shots of the complete layer-two topology data, each col-
lected using Cisco CDP at the same time each configura-
tion snapshot was collected. The network has more than
100 routers and more than 1000 switches, all of which are
Cisco devices. It also has tens of thousands of user hosts,
and around 700 subnets, most of which are /24.

10

Krr Ksr Kdr Kbgp Kobj f(x)
1 2 1 2 1 |x|+ 2

Table 2: Realizing framework parameters

DATA RSRCH GRID INT
DATA - H-1 × X

RSRCH X - X X

GRID × H-1-1 - ×
INT D-1 H-1-1 × -

Table 3: Each cell (row, column) shows whether the policy
groupcolumncan be reached by the policy grouprow. X/×
means full/no reachability.D-1, H-1 andH-1-1each denotes
a subset of the subnets inDATAandRSRCH, which can be
reached by the correspondingrow. H-1-1 is in turn a subset
of H-1.

7.1 Framework validation

We first evaluate the accuracy of our framework in estimat-
ing complexity. In doing so, we run the framework on one
of the configuration snapshots, and compare the predicted
complexity numbers with the actual numbers obtained from
measuring the configuration files directly.

7.1.1 Inferring model parameters and framework in-
puts

We only need to calculating the model parameters for the
Cisco IOS platform, as this platform is exclusively used by
the campus network. Obtaining these parameters is straight-
forward, as we just need to run the heuristics proposed in [5]
on corresponding configuration blocks that relate to each pa-
rameter, and count the number of reference links introduced.
The results are shown in Table 2.

To infer the inputs as described in Sec. 3.2, we used a
methodology that combines reverse-engineering the config-
uration files and discussions with operators. We were able
to identify the inputs as follows. Table 3 shows the policy
groups and the reachability policies among them. Fig. 12a
shows the topology and what policy groups each routing in-
stance contains. In particular the campus network has two
routing instances denoted as EIGRP and OSPF. There are
also two policy groups in the network denoted asDATAand
RSRCH. In addition, two external AS-es (denoted as GRID
and INT) peer with this campus network. Each external AS
can be viewed both as a single policy group and as a sin-
gle routing instance. Finally, theMX matrix, i.e., the set of
routes exchanged between every pair of routing instances, is
shown in Table 4.

7.1.2 Estimating intra-instance complexity

First, according to our framework, only the EIGRP instance
will incur intra-instance route filters as it is the only instance
that contains multiple policy groups.

Second, the EIGRP instance employs the typical star topol-
ogy (Sec. 4.2.1), as shown in Fig. 12b. The border routerR1

also serves as the core router and connects the two policy

EIGRP OSPF GRID INT
EIGRP - all H-1-1 D-1, H-1-1
OSPF all - - -
GRID all - - -
INT all - - -

Table 4: Each cell (row, column) shows the set of routes
that routing instancerow should advertise to routing instance
column. “All” means thatrow should advertise all its routes
(both internal and external ones) tocolumn.

EIGRP OSPF GRID INT
EIGRP 7 1 6 30
OSPF 1 0 - -
GRID 1 0 - -
INT 2 - - -

Table 5: Estimated complexity for the original design. Each
non-diagonal cell (row, column) shows the inter-instance
complexity of advertising routes fromrow to column. The
cells on the diagonal show the intra-instance complexity. “-”
indicates that the two instances are not directly connected.

groups:DATAandRSRCH. R1 also directly connects to the
other bordersR2, R3 andR4. Note that there is no direct
link between the two policy groups, or between either policy
group andR2/R3/R4.

From the reachability matrix (Table 3), it is easy to see that
intra-instance filtering is needed between the core routerR1

and theDATApolicy group as only a subset of routes from
R1 can be sent toDATA, and in particular, the routes learned
from GRID cannot be exposed toDATA. Using the model
presented in Sec. 4, the route filter placement is determined
and shown in Fig. 12b. Route filtering is not needed between
the core routerR1 andRSRCH, becauseRSRCHcan reach
every other policy group. The predicted complexity is shown
by the diagonal cells in Table 5.
Comparing with the actual configuration: We measured
the actual configuration complexity in the configuration files.
The result in shown in the diagonal cells in Table 6. As pre-
dicted, only the EIGRP routing instance incurs intra-instance
route filters, and the filter placement is exactly as predicted.
Furthermore, the measured complexity numbers also match
the estimated value well.

7.1.3 Estimating inter-instance complexity

Using the models presented in Sec. 5, we estimate the inter-
instance complexity, and show results in Table 5.
Comparing with the actual configuration: We compare
the predicted inter-instance complexity with the complex-
ity measured in the configuration files. The differences are
shown in Table 6. We see that the majority of the predicted
numbers match well with the actual configuration. There is
a mismatch in the case of filtering routes between GRID and
EIGRP. The measured value is greater than the prediction,
which makes sense as the prediction is the minimum neces-
sary complexity. The actual configuration may incur higher

11

GRID

(GRID)
BGP

BGP

redistribution

INT (INT)

EIGRP (DATA, RSRCH)

OSPF (RSRCH)

BGP

R1

R2

R3 R4

R5

R6 R7

(a) Instance-level topology of the original de-
sign.

R1

R2

R3 R4

DATA RSRCH

EIGRP

(b) Detailed topology of EIGRP in the
original design.

GRID

(GRID)

BGP

BGP

static routes

INT (INT)

EIGRP (DATA)

OSPF (RSRCH)

BGP

R2

R3 R4

R5

R6 R7

R1

R9

default routedefault route

static routes

(c) Instance-level topology of the new design.

Figure 12: The original and new routing designs.

EIGRP OSPF GRID INT
EIGRP ǫ = 0 ǫ = 0 ǫ = −6 ǫ = 0
OSPF ǫ = 0 ǫ = 0 - -
GRID ǫ = −3 ǫ = 0 - -
INT ǫ = 0 - - -

Table 6: Difference between complexity estimated using our
models and the actual complexity measured from the config-
uration files for the original design.

EIGRP OSPF GRID INT
EIGRP δ = −7 δ = 7 δ = −6 δ = 0
OSPF δ = 29 δ = 0 δ = 6 -
GRID δ = −1 δ = 1 - -
INT δ = 0 - - -

Table 7: Increase in the intra- and inter-instance complexity
after the redesign.

complexity, for example, due to redundant configurations or
suboptimal configurations.

In particular, the outgoing routes from EIGRP to GRID
are subject to filtering as only a subset of EIGRP routes can
be sent to GRID. We note that the filtering may be config-
ured either at the redistribution point (i.e. permitting only
the subset of routes to enter BGP), or within the BGP ses-
sion (i.e. permitting only the subset of routes to be adver-
tised to GRID). However, in the actual configuration, the
exact same filtering is implemented atbothplaces. This is
redundant configuration, and results in unnecessary increase
in the complexity. Further, GRID can advertise all its routes
to EIGRP, so there is no route filter needed. However, in
the actual configuration, an unnecessary filter is configured,
which simply allows all routes to pass. As a result, three
extra reference links were created.

Overall, these results confirm that our framework can ac-
curately estimate the complexity of a given routing design.

7.2 Case study of a routing design change

The campus network experienced a major design change re-
cently. The change was primarily motivated by the need to
increase the resiliency of the original design. Thus as the
second part of the evaluation, we apply our framework to

compare the new routing design with the original one. We
first use our framework to analyze the change in complexity
due to the redesign. We then consider whether alternative
designs could have met the same resiliency objectives but
with lower complexity.

7.2.1 Impact of redesign on complexity

Fig. 12c illustrates the new instance-level graph after the
network redesign was completed. The primary purpose of
the redesign was to increase resiliency. In particular, the
number of border routers connecting the OSPF instance to
EIGRP was increased to two. In addition, two other changes
were made: (i) the connecting primitive between EIGRP and
OSPF was changed from route redistribution to static routes
(configured on the EIGRP side) and default routes (config-
ured on the OSPF side); and (ii) the subnets of the policy
groupRSRCHthat were in the EIGRP instance were moved
to OSPF. As a result, in the new design, EIGRP only contains
subnets of the policy groupDATA, while OSPF contains all
subnets of the policy groupRSRCH. Finally, we note that the
policy groups and the reachability matrix were unchanged
after the redesign.

Table 7 presents the change in complexity estimated by
our framework. Overall, the total complexity in the new de-
sign increased. This is in part due to the fact that the re-
silience of the new design also increased, i.e., it used two
border routers for the OSPF routing instance, compared to
one in the old design. We note that the new design eliminated
the intra-instance complexity in the EIGRP routing instance,
as now EIGRP only contained a single policy group. On the
other hand, the inter-instance complexity between EIGRP
and OSPF increased in the new design, caused by the need
to implement the different reachability requirements for the
two policy groupsRSRCHandDATA.

7.2.2 Could alternative designs lower complexity?

In the previous section, we noted that while the primary goal
of the redesign was to improve resiliency, operators made
two additional changes that were not strictly necessary to
achieve this goal: (i) changing the connecting primitive be-
tween OSPF and EIGRP from redistribution to static/default
routes; and (ii) moving all subnets of the RSRCH policy

12

EIGRP (DATA)

OSPF (RSRCH)

redistribution R2 redistribution

Hypothetical design 1 (HD-1) Hypothetical design 2 (HD-2)

EIGRP (DATA, RSRCH)

OSPF (RSRCH)

R1

R9R2

static route static route

default route default route

R1

Figure 13: The two hypothetical designs.

0 %

50 %

100 %

150 %

200 %

250 %

new HD-1 HD-2

Co
m

ple
xit

y r
ela

tiv
e

to
 th

e
to

ta
l c

om
ple

xit
y

of
 o

ld
de

sig
n

intra-instance complexity
inter-instance complexity between EIGRP and OSPF

total complexity

Figure 14: Comparison of complexity of different designs.

group to OSPF. We hypothesized these changes may have
been made to lower complexity. To isolate the impact of
each of these changes, we considered two hypothetical de-
signs termedHD-1 andHD-2, as shown in Fig. 13. Both de-
signs use two border routers for OSPF, to achieve the same
resiliency requirement as the new design.HD-1 uses static
and default routes to connect EIGRP and OSPF, and rep-
resents a design where only the first of the two additional
changes above were made.HD-2 involves a rearrangement
of policy groups and represents a design where only the sec-
ond of the two additional changes above were made. Route
redistribution is used to connect the instances.

We apply our framework to estimate the complexity for
both hypothetical designs. The results are shown in Fig 14.
For ease of comparison, we normalized all bars to the to-
tal complexity of the original campus design. We see that
whileHD-1 is a worse alternative design as its total complex-
ity (third bar) increases compared to the actual new design,
HD-2 is a better alternative as its total complexity decreases
compared to the actual new design.

We next seek to better understand whyHD-1 has higher
complexity than the actual new design. The main differ-
ence between the two designs is whether the policy group
RSRCH is placed entirely in the OSPF routing instance
(new design), or split across both OSPF and EIGRP (HD-
1). We observe that by placingRSRCH entirely in OSPF,
the address space of OSPF is more unified, which allows
better aggregation of its routes. This results in a reduction of
the size ofMX(EIGRP,OSPF) from 9 to 3, which trans-
lates to fewer static routes needed, and thus results in less
inter-instance complexity (second bar in Fig. 14). In addi-
tion, HD-1 incurs significant intra-EIGRP complexity (first
bar), while the actual new design eliminates that complexity.

Next, we compare the actual new design andHD-2. The
main difference between the two is the connecting primitive

static route redistribution BGP
default route 38 20 25
redistribution 38 20 25
BGP 43 25 26

Table 8: Complexity associated with different choices of
connecting primitive between EIGRP and OSPF. Each cell
(row, column) shows the complexity of the design that uses
the row(column) to send routes from EIGRP (OSPF) to
OSPF (EIGRP).

used to connect OSPF and EIGRP. We found that using route
redistribution (i.e.HD-2) lowers the complexity compared to
using static routes (i.e., the actual new design). This indi-
cates that by changing the connecting primitive from redis-
tribution to static/default routes during the redesign process,
the operators introduced unnecessary design complexity.

Given these insights, we next want to find out whether
mutual route redistribution is the best connecting primitive
to use to connect EIGRP and OSPF, and if alternative prim-
itives could further lower complexity. For this purpose, we
enumerate all possible connecting primitives, and apply our
framework to estimate the complexity associated with each
alternative design choice. The results are shown in Table 8.
Note that it is not feasible to use static routes (default routes)
to send routes from EIGRP (OSPF) to OSPF (EIGRP), so
the corresponding column and row as omitted. The table
shows that mutual route redistribution indeed achieves the
minimum complexity. A similar complexity could have also
been obtained through a design that uses a combination of
default routes and route redistribution. We also see that dif-
ferent choices of connecting primitive may lead to signifi-
cant difference in resulting complexity.

In summary, these results show that (i) the design change
of moving subnets of the policy groupRSRCH from EIGRP
to OSPF greatly reduced both intra- and inter-instance com-
plexity; and (ii) the change of connecting primitive actually
made the network more complex and thus should have been
avoided; and (iii) different design choices may result in sig-
nificantly different complexity. Overall, this case study high-
lights the power of our framework in systematically compar-
ing multiple design alternatives and in guiding operators to-
wards approaches that lower complexity while meeting the
same design objectives.

7.3 Operator Interview

We discussed the above results with the operators of the
campus network, and they were able to confirm many of our
observations. In particular, they confirmed that moving the
RSRCH subnets from EIGRP to OSPF significantly reduced
the management complexity. In fact, the motivation of that
change was to make the RSRCH network more unified and
simplify the network design. In addition, the operators also
acknowledged that our hypothetical design 2 (Fig. 13) that
uses route redistribution instead of static routes could indeed
be a less complex design. The primary reason they decided

13

to use static routes in the new design was because this partic-
ular operator team consisted of people with varying expertise
and skill levels (including senior operators, part-time student
workers, and new hires), all of whom could potentially alter
configuration files. While configuring static routes did not
require extensive prior knowledge, configuring route redis-
tribution required greater knowledge and expertise, partic-
ularly given the potential for routing loops. The operators
indicated however that they would prefer route redistribu-
tion if only a small number of senior operators managed the
network. Overall, these results confirm that our framework
provides useful guidance to operators. An open question for
future work is whether current complexity metrics must be
refined to take operator skill levels into account.

8 Discussion and open issues

Incorporating other design objectives and constraints:In
putting together a routing design, operators must reconcile a
variety of objectives and constraints such as performance,
complexity, hardware constraints etc. This paper focuses on
the design complexity, given that it is very important, is dif-
ficult to quantify, and has received limited attention from the
community. In future, it would be interesting to also factorin
other important requirements. For example, hardware con-
straint may restrict the number of route filters that a router
can support. Such restriction may in turn impact both intra-
and inter-instance route filter placements. We believe our
framework can be easily enhanced to systematically deter-
mine the best filter placements, so that the hardware con-
straint is honored, while the total design complexity is min-
imized. In addition, it may be interesting to consider other
design objectives such as performance (e.g., measured as av-
erage hop counts between any two subnets), and costs (re-
stricting the number and hardware capacity of devices that
can be used). While some of these objectives and constraints
may not be critical in a typical over-provisioned enterprise
environment, they are nevertheless worthwhile to consider.

Joint optimization of multiple design tasks: This work
builds upon a “divide and conquer” network design strat-
egy that is commonly practiced by the operational commu-
nity [23]. In particular, such a design process consists of four
distinct stages: (i) wiring and physical topology design; (ii)
VLAN design and IP address allocation; (iii) routing design;
and (iv) deployment of services such as VoIP and IPsec. We
further break down the task of routing design into two se-
quential steps: (1) creating routing instances and determin-
ing the set of routes to be exchanged between each pair of
these instances, and then (2) configuring policy groups and
the necessary glue logic. Step (1) is relatively straightfor-
ward, typically influenced by factors such as the proximity
of routers (e.g., in the same building, city, etc.), administra-
tive boundaries (e.g., different network segments are man-
aged by different operators), and equipment considerations
(e.g., EIGRP is available only on Cisco routers). Therefore,
this work focuses on the second step while assuming that

the first step has been accomplished. In future, it should
be beneficial to consider multiple design stages and steps
in one framework and explore ways to improve routing de-
sign further through joint optimization of all pertinent design
choices.
Complexity-aware top-down design:The complexity mod-
els presented in this paper pave the way for complexity-
aware top-down routing design. Such top-down design takes
as input the high-level design objectives and constraints,and
seeks to minimize design complexity while meeting other
design requirements. In doing so, our complexity models
can be used to guide the search of the design space to system-
atically determine (i) how policy groups should be grouped
into routing instances; (ii) optimum placement of route fil-
ters; and (iii) what primitives should be used to connect each
pair of routing instances. We defer the development of such
a top-down design framework to future work.
Emerging architectures and configuration languages:In
recent years, researchers have started investigating new net-
work architectures based on logically centralized controllers
(e.g., software defined networking [2]), and declarative con-
figuration languages (e.g., Frenetic [11]). These approaches
have the potential to simplify network management by shift-
ing complexity away from the configuration of individual
devices to programming of the centralized controllers. While
these approaches have much potential, hard problems remain
such as the need to update network devices in a consistent
fashion [22], and building appropriate coordination mecha-
nisms across multiple controllers. Further exploration ofthe
opportunities and challenges of utilizing these new architec-
tures to simplify network design complexity is an important
area of future work.

9 Related Work

In recent years, there has been much interest in both in-
dustry [1], and academia [5] in developing formal metrics
to capture network configuration complexity. We have dis-
cussed in detail how our work differs from [5] in Sec. 1.
Similarly, our work also differs from other research [7, 15]
that measures the configuration complexity in longitudinal
configuration data-sets in a bottom-up fashion. There is a
considerable amount of prior work on modeling individual
routing protocols, particularly BGP [3, 8, 12, 14], and also
OSPF [21], to ensure correct, safe, and efficient behaviors
from these protocols. There is also recent progress on safe
migration of IGP protocols [24] and on modeling the inter-
action between multiple routing algorithms deployed in the
same network [4]. In contrast, our work analyzes how spe-
cific routing protocols and primitives should be combined to
meet a given set of design objectives, and the focus is on
minimizing the complexity of the resulting design. Our no-
tion of policy groups is similar to policy units introduced in
[6], but has some differences in that (i) we require subnets
within the same policy group to be full reachable to each
other; and (ii) we restrict our definition to reachability re-

14

strictions on the routing plane since our focus is on routing
design, (i.e., we do not consider data-plane mechanisms like
packet filters, firewalls, etc.). Algorithms to extract policy
units from low-level configuation files were introduced in
[6]. In contrast, our focus is on estimating the number of
route filters and filter rules, and consequently the resulting
configuration complexity, when multiple policy groups are
present in a routing instance.

10 Conclusion and Future Work

In this paper, we present a top-down approach to character-
izing the complexity of enterprise routing design given only
key high-level design parameters, and in the absence of ac-
tual configuration files. Our overall modeling approach is to
(i) formally abstract the routing specific operational objec-
tives which can help reason about whether and how a com-
bination of design primitives will meet the objectives; and
(ii) decompose routing design into its constituent primitives,
and quantify the configuration complexity of individual de-
sign primitives using bottom-up complexity metrics [5]. We
have validated and demonstrated the utility of our approach
using longitudinal configuration data of a large-scale cam-
pus network. Estimates produced by our model accurately
match empirically measured configuration complexity met-
rics. Discrepancies when present were mainly due to redun-
dant configuration lines introduced by network operators.
Our models enable what-if analysis to help evaluate if al-
ternate routing design choices could lower complexity while
achieving the same objectives. Analysis of a major routing
design change made by the operators indicates that while
some of their design changes were useful in lowering com-
plexity, others in fact were counter-productive and increased
complexity. Further, our models helped point out alternate
designs that could further lower complexity.

Overall, we have taken an important first step towards en-
abling systematic top-down routing design with minimizing
design complexity being an explicit objective. Future work
includes modeling a wider range of routing design objec-
tives and primitives (such as selection logic), developingal-
gorithms for automatically producing complexity-optimized
routing designs in a top-down fashion, and using similar
models to capturing complexity of other enteprise design
tasks.

11 Acknowledgments

This material is based upon work supported by the National
Science Foundation (NSF) Career Award No. 0953622, NSF
Grant CNS-0721574, and Cisco. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily re-
flect the views of NSF or Cisco. We thank Brad Devine for
his insights on Purdue’s network design. We thank Michael
Behringer, Alexander Clemm, Ralph Droms and our shep-
herd Vyas Sekar for feedback that greatly helped improve
the presentation of this paper.

12 References

[1] IRTF Network Complexity Research Group.
http://irtf.org/ncrg.

[2] Open Networking Foundation.
http://www.opennetworking.org.

[3] C. Alaettinoglu, C. Villamizar, E. Gerich,
D. Kessensand, D. Meyer, T. Bates, D. Karrenberg,
and M. Terpstra.Routing Policy Specification
Language (RPSL). Internet Engineering Task Force,
1999. RFC 2622.

[4] M. A. Alim and T. G. Griffin. On the interaction of
multiple routing algorithms. InProc. ACM CoNEXT,
2011.

[5] T. Benson, A. Akella, and D. Maltz. Unraveling the
complexity of network management. InProc. of
USENIX NSDI, 2009.

[6] T. Benson, A. Akella, and D. A. Maltz. Mining
policies from enterprise network configuration. In
Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference, pages 136–142,
2009.

[7] T. Benson, A. Akella, and A. Shaikh. Demystifying
configuration challenges and trade-offs in
network-based isp services. InProc. of ACM
SIGCOMM, 2011.

[8] H. Boehm, A. Feldmann, O. Maennel, C. Reiser, and
R. Volk. Network-wide inter-domain routing policies:
Design and realization. Apr. 2005. Draft.

[9] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Take control of
the enterprise. InProc. ACM SIGCOMM, 2007.

[10] Cisco Systems Inc. Reliable static routing backup
using object tracking.http://www.cisco.com/
en/US/docs/ios/12_3/12_3x/12_3xe/
feature/guide/dbackupx.html.

[11] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: a
network programming language. InProceedings of the
16th ACM SIGPLAN international conference on
Functional programming, pages 279–291, 2011.

[12] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang.
Automated provisioning of BGP customers. InIEEE
Network Magazine, Dec. 2003.

[13] A. Greenberg, G. Hjalmtysson, D. A. Maltz,
A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and
H. Zhang. A clean slate 4D approach to network
control and management.ACM Computer
Communication Review, October 2005.

[14] T. G. Griffin and J. L. Sobrinho. Metarouting. InProc.
ACM SIGCOMM, 2005.

[15] H. Kim, T. Benson, A. Akella, and N. Feamster. The
evolution of network configuration: A tale of two
campuses. InProc. of ACM IMC, 2011.

[16] F. Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang.

15

Shedding light on the glue logic of the Internet routing
architecture. InProc. ACM SIGCOMM, 2008.

[17] F. Le, G. G. Xie, and H. Zhang. Understanding route
redistribution. InProc. International Conference on
Network Protocols, 2007.

[18] F. Le, G. G. Xie, and H. Zhang. Instability free
routing: Beyond one protocol instance. InProc. ACM
CoNEXT, 2008.

[19] F. Le, G. G. Xie, and H. Zhang. Theory and new
primitives for safely connecting routing instances. In
Proc. ACM SIGCOMM, 2010.

[20] D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson,
and A. Greenberg. Routing design in operational
networks: A look from the inside. InProc. ACM
SIGCOMM, 2004.

[21] R. Rastogi, Y. Breitbart, M. Garofalakis, and
A. Kumar. Optimal configuration of ospf aggregates.
IEEE/ACM Transaction on Networking, 2003.

[22] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In
Proceedings of the ACM SIGCOMM, 2012.

[23] E. Sung, X. Sun, S. Rao, G. G. Xie, and D. Maltz.
Towards systematic design of enterprise networks.
IEEE/ACM Trans. Networking, 19(3):695–708, June
2011.

[24] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure. Seamless network-wide IGP
migrations. InProc. ACM SIGCOMM, 2011.

16

	Purdue University
	Purdue e-Pubs
	10-31-2012

	Modeling Complexity of Enterprise Routing Design
	Xin Sun
	Sanjay G. Rao
	Geoffrey G. Xie

