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Abstract

We propose an analytical approach to study the ok integral operator, which

is valid for an arbitrarily shaped object with arbirary electric size. With this

analytical approach, we theoretically prove thatdgprescribed error bound, the
minimal rank of the interaction between two sepatatieometry blocks in an

integral-equation operator, asymptotically, is aastant for 1-D distributions of

source and observation points; grows very slowlthwiectric size as square root
of the logarithm for 2-D distributions; and scaliegarly with the electric size of

the block diameter for 3-D problems. We thus prtive existence of an error-
bounded low-rank representation of both surfaced &olume-based integral

operators for electromagnetic analysis, irrespectiw electric size and object
shape. Numerical experiments have validated thegsed analytical approach and
its resultant findings on the rank of integral agers. This work provides a
theoretical basis for employing and further devilgdow-rank matrix algebra for

accelerating the computation of electrically lapgeblems.
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Abstract—We propose an analytical approach to study the rah
of an integral operator, which is valid for an arbitrarily shaped
object with an arbitrary electric size. With this analytical
approach, we theoretically prove that for a prescthed error
bound, the minimal rank of the interaction betweerntwo separated
geometry blocks in an integral-equation operator, saymptotically,
is a constant for 1-D distributions of source and loservation
points; grows very slowly with electric size as sare root of the
logarithm for 2-D distributions; and scales linearly with the
electric size of the block diameter for 3-D problers. We thus
prove the existence of an error-bounded low-rank reresentation
of both surface- and volume-based integral operatasr for
electromagnetic analysis, irrespective of electrisize and object
shape. Numerical experiments have validated the ppmsed
analytical approach and its resultant findings on he rank of
integral operators. This work provides a theoretich basis for
employing and further developing low-rank matrix algebra for
accelerating the computation of electrically larggroblems.

Index Terms—Rank,
Analysis, One-, Two-,
Theoretical Analysis

Integral Operators, Electrodynamic
and Three-Dimensional Analysi

. INTRODUCTION

D RIVEN BY the design of advanced engineeringd
systems, there exists a continued need of redutiag
complexity of computational electromagnetic method<"

Recently, the H- and H?>

framework [1-2] has been introduced and furtherettaped to
accelerate both iterative and direct solutions hef integral
equation based analysis of electrodynamic prob[8ra§. The
resultant direct integral equation (IE) solver [4sbccessfully
solved electrodynamic problems of 96 wavelengthh wiore
than 1 million unknowns in fast CPU time (less tR@rhours in
LU factorization, 85 seconds in LU solution), madeemory
consumption, and with the prescribed accuracyfgadison a

single CPU running at 3 GHz. THe- and H*matrix based
mathematical framework [1-2] encompasses a famify

hierarchical low-rank matrix algebra that enablesnpact
representation and efficient computation of denatrioes.

It has been acknowledged that low-rank method4(712]
are applicable to electrically small or moderat®btems.
However, why the low-rank property can also be esqd to
accelerate the computation of electrically vergéaproblems?
The ACA-based low-rank solutions have also solved
electrically large integral equations with over 1lillion
unknowns [8-9]. Does an error-bounded low-rank
approximation of integral operators exist, regassllef electric
size?

It has been shown in [13] that electromagneticdfel
radiated or scattered by bounded sources, can headely
represented by a finite number of samples, coimtidéth the
number of degrees of freedom of the field, which is
independent of the observation domain and depemgoa the
source geometry. This study is performed based on a
representation thateparatessources from observers. In [14],
the section of theory based on [13] shows thatrdimé of the
interaction between two separated blocks in a 3ubase
scatterer scales quadratically with the electie sif the block
diameter. However, numerically by ACA and SVD, suh
qguadratic growth with electric size was not obsdnas stated
by the authors of [14].

Given an accuracy requirementit has been proven that the
rank+ representation R) generated from singular value
ecomposition (SVD) is a minimal rank approximatufrthe
original matrixM that fulfils [M —R|L<¢[15]. The SVD based
inimal-rank approximatiodoes not separatgbservation and
source coordinates. It treats the entire matrixa aghole and

-matrix based mathematical finds a minimal number of vectors, and hence rémkepresent

the matrix with prescribed accuracy. Our numerical
experiments show that methods that do not genaratmimal
rank approximation such as the interpolation [3yldr series
expansion, and plane-wave expansion based separatio
source and observation coordinates can resultrémla that is
much higher than the minimal rank required by aacyr The
rank also scales with electric size at a rate hitfemn linear, as
observed in existing fast IE solvers that relylemdeparation of
source and observation coordinates. To be momfEpén a
gource-observer separated representation of thegrait

operator, the Green’s functiog(| T —T '|), which originally

is the function of thelistancebetween sourc& ' and observer
I", becomes a function of the complete coordinates ‘afind
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In [5], through a singular value decomposition (9\ased
analysis, it is numerically shown, for large elecsizes (over
100 wavelengths) and various scatterers, the rémkroatrix

such an analytical approach. In this approach, weeahle to
make a connection between an SVD analysis and aidfou
analysis. By utilizing the relationship between tive analyses

block of sizeN formed between two geometrically separateth a linear and shift-invariant system, we succeiad

groups, arising from the surface integral equatimased
electrodynamic analysis, scales @\°°). As a result, the
block has a low rank. However, no theoretical proa$ been
developed to support this numerical finding.

An SVD analysis is humerical, which makes it natsible to
find the actual rank required by accuracy for aitearily large
electric size. As a result, an analytical approadhich is not
restricted by computational resources and is Valicarbitrary
shape, becomes necessary to develop a
understanding on the rank’s dependence with etesize.

The contribution of this work is such an analytiapproach.
With his approach, we theoretically prove thatrithinimal rank
of the interaction between two separated geomédgkb in an
integral-equation based analysis of general 3-zabj for a
prescribed error bound, scalegarly with the electric size of
the block diameter. For 2-D distributions of sowsrcand
observers, the minimal rank grows very slowly wétllectric
size as square root of the logarithm of the eledtize of the
block diameter; for 1-D distributions, the minimank is a
constant. These findings also agree with our figain the rank
of the inverse finite element matrix [18]. The pospd proof is
applicable to various integral operators in eletyramic
analysis such as electric field, magnetic fieldnbined field,
surface-, and volume-based integral operators.eSine rank
scales linearly with the electric size of the bldémeter, while
the number of unknowns in a surface- and volumédBed
analysis scales with electric size in a quadratici cubic way
respectively, we prove the existence of the ermrAded
low-rank representation of both surface and volinegral
operators for electromagnetic analysis, irrespectitelectric
size and problem shape.

A. Problem Description
The integral equation based analysis of electradyo
problems results in a dense linear system of egusiti
Zl =V . (1)
ConsiderZ'®, an arbitrarym x n off-diagonal block of the

THEORETICAL STUDY

analytically revealing the rank of the integral cggers and its
dependence with electric size.

B. Relationship between SVD and Fourier Analysis in a
Linear Shift-Invariant System

A linear system can be modeled by:

b=Hf, )

theoretigdleref andb are vectors, anH is a linear operator. We can

perform SVD orH to obtain

b=VzZU" f, 3
where superscriptH’ denotes a complex conjugate transpose,
Y is the diagonal matrix comprising singular valuasd V
andU are matrices comprising singular vectors. SiviandU
are both unitary, we have

Vib=x(U"f) . (4)
which can be written compactly as
b’ =xfY, (5)
where
bY =v'p fY=U"f. (6)

Multiplying a unitary matrix by a vector can be tight of as
projecting this vector onto the orthonormal setirdef by the
matrix. Thus, (5) can be viewed as representingebponsé

in theV basis @), the inpuff in theU basis (f ), and relating

these two projections by a diagonal matri)

When the operatoH is both linear and shift invariant
(LSIV), SVD turns to Fourier analysis [16]. Moreegfically,
the singular vectors of an LSIV system are weigtfedrier
basis functions (complex exponentials) and thewargralues
are the absolute values of the Fourier transforth@&ystem’s
point spread function (impulse response functids), [L7]. To
see this more clearly, let's consider an LSIV systBecause
an LSIV system operator is a convolution operafd],[ the
responsd in space domain is a convolution of the inpufith
an impulse responge

b(r) = f(r)*h(r) , )

system matrixZ, which describes the interaction between twd Which I denotes an arbitrary point in space. The above
separated groups 4nds) of the scatterer being analyzed. The&onvolution can be converted to a simple multigiaa by

objective of this work is to theoretically study ether there
exists an error-bounded low-rank representation Zdf
irrespective of electric size and scatterer shapd, if such a
representation exists, how the rank scales witttrédesize, and
hence the number of unknowNs

Given an accuracy requiremesit as shown in [15], the
rank+ representationR) generated from SVD is a minimal
rank approximation of the original matr™ that fulfils |M —
R|b < e. However, an SVD analysis is numerical. Restridigd
computational resources, it cannot be used to tiredactual
rank required by accuracy for an arbitrarily lagjectric size.
As a result, an analytical approach, which is mmitéd by
computational resources and is valid for an arbjitshape,
becomes necessary to develop a theoretical unddistaon
the rank’s dependence with electric size. This pgpevides

Fourier analysis. Thus we have
F(b(r)) =7 (h(r)).~(f()) , (8)
where /—"( ) denotes d&ourier transform. We can rewrite (8)
as
b(F)™ =7 (h(R) ("™, 9)
where b(f)™ is the representation df(F) in the Fourier basis,

and f ()™ is the representation off (F) in the Fourier basis.

In other words, we represent the input in a unithasis
(Fourier basis), we also represent the resporaeinitary basis

(Fourier basis), and relate the two 15 (h(F)) . From (5) and

(9), the relationship between SVD and Fourier agialgan be
clearly seen. The Fourier bases may be differemmn fthe



SVD-generated bases. However, if the system isafirand
shift-invariant, the two bases are both Fourierebafl6].
Therefore, the Fourier analysis accomplishes thB 8kalysis
of a linear shift-invariant system.

C. Rank Revealing via Fourier Analysis of the Integral
Operator

There exist many integral equation based formuatifor
analyzing 3-D electrodynamic problems. Examplesetaetric
field integral equation, magnetic field integral uatjon,
combined field integral equation, each of which che
formulated in a surface- or volume-based form. Wiheéerlying
integral operators are all linear and shift invarial herefore,
we can use Fourier analysis to analytically studyrank of the
integral equation based system matrix.

The point-spread function in IE-based operatorGrieen’s
function. Without loss of generality, an integrguation based
operator can be expressed as the convolutioneftain source
f with Green'’s functiory as the following:

b(7) = [g(I7~7"Df ¢ W ", (10)

where responsb is the field at observation poimt, andr'
denotes a source point. Thig'is a short notation ddl (line

Now consider an arbitrary source domaih, that is

geometrically disconnected from an arbitrary obaton
domain Q, . The number of degrees of freedom in the source

domain is denoted hy, while that in the observation domain is
denoted byn. The matrix block corresponding to the
interaction betweef), and Q, is an off-diagonal block in the

system matrixZ resulting from an IE-based analysis of an
electromagnetic problem. Denote this blockZly. Thus, we
have

b =) [ (16)
in which the subscripts denote the dimension of th
corresponding vector or matrix. Given a prescribeduracy,
the minimal rank ofZ"® can be numerically determined by
SVD. Next, we show how to analyze the ranEbfanalytically
by the Fourier analysis of the integral operator.

From (14), theB vector in (15) can be written as:

Bl bl
B b
2 —_ 2 _
- Bpxm - pxm -~ mx1 (17)
B

P m

integral), dS (area integral)dV (volume integral) over the whereB _ isthe pxm matrix that projects the observations

source domain, respectively, for one-,
three-dimensional distribution of the sources.

two-,

Multiplying both sides of (10) bye"'m, and integrate over

the observation domain , we obtain

[ome ™ dr=[[ [ g0 T-7Df ¢ 0 e dr a1
which can be further written as

[b(rye ™™ di =

J‘ f (r')e_jm'd? -J‘ g(| -7 |)e-jEEﬂr—r') d(T' -7 -), (12)
and thereby
B(k) = G(k)F(k), (13)
where
B(K) = [ (T *" d
F(k) =] f(F)e™ ™ dr o aa

G(k) =[ g T-F D™ d(t-7))
inwhich i =k @ +k j+k2. The B(k), F(k), andG(k) are

the Fourier transforms of the souréesbservation fieldb, and
Green'’s functiorg respectively.
Eqgn. (13), in a discrete form, can be written as:

Bl Gl 'Fl

BQ = G2 P;

B a llFl (15)
r r r

whereG,, F;, andB; are, respectively@(k), F(k), and B(k)

ang onto the space of Fourier modes.ijlith matrix element can

be readily identified from (14) as
Bi’j:jje‘jkimd”r, Ki<p,Ejsm, (@18)

where the integral is evaluated on the domain decuby the
j-th observer. For 1-, 2, and 3-D distribution of thbservers,
such a domain is a segment, an area, and a vokspeatively.

Similarly, from (14), thd- vector in (15) can be written as:

F h
k, f;
2 — 2 _
- FI)X'% - pxn,f;JXI ! (19)
E, A

where F. is the p x n. matrix that projects the sourckeento

the space of Fourier modes. iftsh matrix element can also be
readily identified from (14) as

£,z ] enmar,

where the integral is evaluated on the domain decupy the
j-th source.
Substituting (17) and (19) into (15), we obtain
Bb = G(Ff) , (21)
whereG in boldface denotes the diagonal matrix compoged o
the Fourier coefficients of Green’s function shawi(15). If B
is unitary, then

ki<p,kjsn, (20

b=(B"GF)f . (22)
In the context of matrix computation, the sourced an
observation domain represented by an off-diagotaikbare
both finite. In addition, they may not span a perissed for

at discreteIZI (i=0,1, ..), andp denotes the number of evaluating the discrete Fourier transform. Althougburier

frequency points in Fourier transform.

bases are unitary, if a subset of these bases$enlat selected
source and observation points, neitBenor F is unitary. In
this case, (21) can be written as



b= (BHB)_1<BHGF>f . (23) ng + k()zg — (23.7_ ; J'J'J' q IQD 2[ ékx(x—x') é(y(y-y') éz(z— Z)] qj( qk q‘
With p chosen to be larger tham, (B"B) is invertible. If L
(B"B) is not invertible, we can also wriBas +(2n)3 'mkoze( k) @00 ot gl g ik gk
B=U_2 V/ ) (24) _ 1 2 2 jky (x=x) Jky, (Y=Y) i, (z-2)
which is the SVD o8. Ther?, vie ?ave " (2n) m(_k th)Gk e © ¢ dk d gk
b=(V,Z'UIGF)f . (25) (33)
where

Therefore, we obtain 2 2 12, 12
Z = (V5 U'GF). (26) K=k+k+k . (34)

Thus, it is clear that iB andF are unitary, then the singular Since (33) is equal to (31), we obtain the Fouriansform of

values ofZ"® are nothing but the absolute values$ entries, Green's function as the following

which are the Fourier expansion coefficients of &bie G(K) = 1

function. In general cases wheéBeandF may not be unitary, k2 —k* - (35)
although the singular values are not the Fourieffmients any The above approach was actually one of the metheed to
more, the rank oZ"* is still bounded by the rank of diagonalderive Green’s function in history, also known as
matrix G since therank of a matrix product is no greater tharohm-Rayleigh method [19, p. 30].

any of the matrices being multiplied. Therefore,ome analyze | both source points’' and observation points are
the Fourier transform of Green'’s function to anabfty study distributed in a 2-D domain, without loss of getieyaassume

t
the rank oz z=7 . From (33), since the term operated on BY is
e vt 1 we obtain
D. Rank Determined from an Analytical Fourier Analysis k2= K2+ KZ (36)
the Green’s Function '

The Green’s function for a general 3-D problem d¢@n
written as:

Notice that the above does not suggest éhalz = 0 because
when the right hand side of (32) is integrated oug, obtain
ik I 1 o(z- 2) . It simply means for 2-D distribution of observarsl
gr-r')=——m 27y sources, there is no need to introduce Fourier matthe third
A |r -1 '] 27) = . ; . ;
N ) ~7 dimension to represent Green’s function. If bothirse points
where " denotes a source poirtt, denotes an observation ¢+ and observation points are distributed in a 1-D domain

point, ky is the wave number corresponding to a frequen%tisfymg z=7 andy=y', from (33), we have
being studied. Let K? = K2 (37)

Again, the above does not suggest t@dtoy=0/dz=0
because when (32) is integrated out, we obtain
o(y-y)o(z— 2). As can be seen from the above derivation,

(29 the Fourier transform of Green’s function for 1-, @and 3-D
, . - _ distributions of source points and observation {ims the

_The above Green's function satisfies the followpaytial o516 form as that shown in (35). The only diffeeeis the
differential equation |n2an m;‘lnlte space difference ink.

Dg+kg=o0(t-T1) . (30)  Now, we are ready to determine the ranksdh (26). TheG
Its Fourier transform can be analytically obtainasl the is the diagonal matrix shown in (15), the entriésvhich are
following. given in (14), which are the Fourier coefficients @reen’s
First, we represent the right hand side of (30)t®yourier function

transform G(k) :J' o T-F DR d(E-7). (38)
J(F_r—.):(zjr)s ”’jejkx(x—x')eiky(y*y')ejkz(z-z) dk di dk 31) For a finitg source_-olzseryatipr? domain, the g_edlirmtr
Similarly, we write Green's functiog as |dent|t_y defined by(r—r") is finite. Ta_kg a 3_—D(r -7
1 o O e domain as an example, (3:32 can be explicitly wmitis
@7 J[Te e cm o™ & d di dh(32) G(k) =j"’2j:2jR2i KR Bsingdrd ¢,  (39)
Where G(k) is the.Fourier transform (g Substituting (32) where the uppér ;nz Ié(l)]\ijer limits describe the negiat
into the left hand side of (30), we obtain (F-F') occupies. If (F-F") has multiple disconnected

regions, then the matrix block corresponding to hsuc
source-observation interaction is the union ofrtragrix block
in each separated region. Then for each separatgdn; we
can analyze the rank of the corresponding matdglblia (39).

R=7-7'=RR (28)
with R being the magnitude of the distance ved®and R a
unit vector alongr —r' direction, (27) can be further written as

g R
R) =
9R=7—=.

o(f-r)=



The sum of the rank of the matrix block for eacpasated
region is the upper bound of the rank of the emtiedrix block
associated with the interaction betwegnand 1 .

Let  (4.¢,)=(0.271) . (§.6,)=(0m) ., and
R - 0,R - . Then (39) becomes (35), and hence
_ 1
A Tl (40)
where
2mr _mir
k><| = m—=—
D a
K = n2n_ nr
Y (@1)
2 _ pr
“=Pp T .

in whichm, n, p are integer numberg) is the maximal size of
the problem along-, y-, andzdirection, anda is half ofD. In
what follows, we use (40) and its corresponding a+d 1-D
forms to analytically analyze the rank®fbecauséhe rank of

Since the maximum cﬁ./‘ki2 - koz‘ occurs at the minimum of

‘Kz - koz‘ , (42) can be written as

Uk, @3)
Lk -k].,,
Let
B =LK =K (44)
We have
LSS Y N-—S (45)
with
K =[ (M) + ()? + ()] & (46)
k? =[ (> +(m)*]/ & (47)
k?=[(mm)*]/ & (48)

for 3-, 2-, and 1-D distribution of sources and efsrs
respectively.
To determine the rank from (45), we can find obé t

a smaller(r —r"") domain determined by (39) is bounded byaximum displacemem, >0 satisfying
k

the rank dictated by (40).

Without performing a detailed quantitative anaydrom
(40), we already can predict the existence of a-ramk
representation of Green’'s function. The reason

straightforward. Given &, not all of the Fourier modes have

a large Fourier coefficient, only those whose wanenber

square k*) are the closest t&; have the largest Fourier

coefficients, while others can be truncated based tlee
magnitude of their Fourier coefficients and a pribsd
accuracy. The total number of Fourier modes reptesg a
function defined on a surface and that defined olame is,
respectively, proportional to (electric sizend (electric sizé)
Thus, the total number of Fourier modes is linepriyportional
to N. However, Green'’s function is different from amitary
function that depends or, y, and z, due to itsR-only
dependence, its Fourier transform has a special &rown in
(40). As a result, only a subset of Fourier modesds to be
used to represent the Green’s function for a gi@ecuracy,
while the rest can be discarded without sacrificitige
prescribed accuracy. Hence the rankCois less tharN, thus
being low rank. In addition, (40) also reveals vihg rank of a
2-D problem is, in general, less than that of a @idiribution of
sources and observers. This is because in the fprthe
Fourier modes are distributed on a 2-D grid asbeageen from
(36) and (41), while in the latter; the Fourier raedare
distributed on a 3-D lattice. Thus, the number afiffer modes
satisfying a prescribed accuracy in a 2-D casemialler than
that in a 3-D case. The above analysis is conckptat, we
provide a quantitative analysis of the rank @&f and its
dependence with electric size.

Given an accuracy requiremegthe rank of diagonal matrix
G is the number of Fourier coefficienG = G(k) satisfying

the following criterion
2 _ 12

G . Uk-k] (42)

max{G} max{1/|k’ -k}

(k+8,) -k <A, /€, (49)
.and then compute the number of modes that can lexigteen
IR, andk, +A, . For the modes satisfying (45) and havikg

smaller thank?, a similar analysis can be performed.

In 1-D cases, sincg — mr

a
adjacent wave numbe is a constant. The number of Fourier

, the distance between two

modes betweerk;, and k, +A, is thus proportional tQ\, .
Therefore, the rankin 1-D cases can be written as:
k|1D - Ak ' (50)
In 2-D cases, since the number of Fourier modesnbaa
wave number betweek, and k, +A, is proportional to the
area of a ring with inner radius &f and outer radius ¢ +A,
. Thus, the rank in 2-D cases can be written as:
2
Ko ~(k+0,)" — I =2kA, +4,% (51)
In 3-D cases, the number of Fourier modes havingaee
number betweerk, andk, +A, is proportional to the volume
of a spherical ring with inner radius &f and outer radius of
k,+4, . Thus,

k|3D~(k0+Ak)3_kg:3KfAk+3koAk2+Ak3' (52)
From the above, it can be seen that the rank'em#gnce
with electric size is determined by tife 's dependence with

electric size. This question has been thoroughiglist in [18].
In fact, the Fourier transform of Green’s functioss a direct
relationship with the inverse of the finite elemenatrix by
comparing (35) to the inverse of the finite elememitrix

shown in [18]. It is proved in [18] thak, for 1-, 2-, and 3-D
modes satisfying (49), for a givenscale with frequency in the
following way:

A, ~OWM). (53)



A, ~OG/logk, /k) (54)
A, ~O@/k). (55)

Substituting them into (50-52), we obtain
Rank = =constan. (56)

Rank, ~ Q./log k)
Rank,, ~ @ §)-

Thus, for 1-D problems, for a prescribed error lihithe rank
is a constant; for 2-D problems, the scaling rdtéhe rank is
less than linear; while for 3-D problems, the ran&reases
linearly with the electric size of the problem. Ttheoretical
results shown in (56-58) have also been numerieaitified by
finding out the number of modes having wave numkamsvn
in (46-48) and meanwhile satisfying (45) [18].

E. Implication on the Complexity of IE-Based Compuatati

The rank’s scaling rate with electric size hasraad impact
on the complexity of low-rank based methods

electrodynamic computation. Take tHé matrix based method

as an example [2-3], due to itestedow-rank representation,
with the rank scaling with electric size lineantya general 3-D
problem, the storage and the matrix-vector muttagion of a
dense matrix, resulting from a surface IE-basedyait both
have a complexity o®(NlogN), with N being matrix size. The
detailed complexity analysis is given below.

In an H*-based representation of a dense mafrjxeach

block that characterizes the interaction betweersoarce
domain that is geometrically separated from an asion
domain is called an admissible block. Consider ehitrary

admissible blockZ"*. It is represented by a factorized low-rank

form V'SV with V being nested in ak*-representation. The

(kg )* niy is the cost of storing the coupling matg%* for each

admissible block at levél In the second row of (59), we utilize
the fact that the matrix size at levels 2N, and the rank
scales as the square root of it, thws=+/2"' N. We also utilize

the fact that the number of admissible blocks atllé is

(57) proportional to the number of nodes (clusters)hég tevel,
(58) hencenh = O(2). In the first row of (59), we add the cost of

storing both the transfer matricésand the coupling matricés
to compute the total cost. As for the cost of siphi”** at leaf
clusters, it is linear since there @&N) leaf clusters, and each
leaf V™ has a cost dD(leafsizexleafsiz), which is constant.
To summarize, when ascending an inverted binarg, tat
each tree level, the number of matrix blocks isioed by half,
and the cost of storage as well as a matrix-veutdtiplication
is doubled since the cost scales as the squahe odibk, and the
rank scales as the square root of the matrix sizesurface IE
based analysis. As a result, the computational ¢exitp is the
sameO(N) at each tree level. Since there areNdgvels, the

iotal complexity iSO(NlogN) for electrodynamic computation.

This is the complexity of a conventiorif-based method for
electrodynamic computation. A further acceleratioh the
H?-based method is possible with the understandinghef
rank’s actual growth rate with electric size. Ird#ign, neither
prevailing fast multipole based nor FFT-based mashbave
utilized the low-rank property of the electrodynarkernels. If

this property is utilized, these methods may beth&mr
accelerated.

I1l. NUMERICAL VALIDATION OF THE PROPOSED ANALYTICAL

APPROACH FOR RANK STUDY
We first quantitatively validate the proposed analytical

entire unknown set & is partitioned into two subsets level byapproach for analyzing the rank of the IE operators

level until the leaf level is reached based onedptermined

constanteafsize Each node in the resulting binary tree is called

a cluster. Sinc® is nested, we only need to star&* at leaf
clusters, and for each nonleaf cluster, we stamsfer matrices
E¥* Here, #denotes the number of unknowns in clustand
k is the rank. The coupling matri®** is stored for each

admissible block at each tree level. The storagedi*-based

A. Example 1

The first example has a 1-D distribution of soureesl
observers. The source domain is in the range of
x'0(-1.5A,-0.5A", while the observation domain is located

at x(1(0.5A,1.5A). It is clear thatr —r'=(x —x',0,0) with
x—=Xx'0(A3A). The wavelengtih = 1 m, thusk, =27 in

representation o, which is also the cost of a matrix-vectorgreen’s function. TheA is chosen as M A uniform

multiplication,hence can be evaluated as the following:

Storag€Z) = CogZ )/:IZ:;[( Kb [QZI + n)J]
cacf[of (27 vz s ol )2

=0O(Nlog N)
In the abovey denotes an arbitrary vectd?,is the tree depth,
kh is the rank of the admissible blocks at tree Iévahd nh

is the number of admissible blocks at tree Idvdbue to a
binary tree, the number of clusters Isa2levell, wherel = 0
represents the root level of the inverted binagg tin the first

(59)

row of (59),(|<l;,)2 2' is the cost of storing the transfer matrix

E"“ of each nonleaf cluster at levelwherek = kfy, while the

discretization along is used with a space step/sf1/50\.

The Fourier transforms shown in (14) for sources,
observations, and Green’s function are performetthénsame
range of(a,a,) with a =-3A and a, =3A. Hence, we
have

B(k) = L b( ) €%* dx

F(k) =L1 f(x) e dx

(60)
G(k) =" oll x- XD d x
with
Fii, i=0£1t2,.. (61)
(a,-a)
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Fig. 2. Comparison between the matrix generateadn fithe
proposed approach and the original matrix for &eptxample. (a)
Real part of the 998-th column &f (b) Imaginary part.

—ikylz =t
9 . . . . Zv = A, (64)
0 50 100 150 200 250 N A |z - x|
Row Index (i) ! J
) In Fig. 1, we plot the first column of the matriktained from

Fig. 1. Comparison between the matrix generatedn fithe (63) in comparison with that of the original matskown in
proposed approach and the original matrix for a tmample. (a)  (64). An excellent agreement can be observed. Tdmees
Real part of the first column &. (b) Imaginary part. agreement is observed in all the other columnse* matrix.
To assess the entire matrix error of (63), we eataluhe

The interval for integratio is chosen to carry out the
g 3, 3,) Y following

discrete Fourier transforms of observatidnssourcesf, and i .
Green’s functiong in a common range. Thie b, andg are _ “ZJ -z ” (65)
padded with zeros in the range beyond where they ar error = :

t,s
originally defined. _ _ _ oril
From (60), the diagonal matri® is obtained with Fourier in which 2-normis used. The error is shown to 4€4& Hence,

mode index O (-ns/2+1,ns/ 2), wherensis the number of the accuracy of the factorized form shown in (&3yalidated.

sampling points along, whichisns=(a - g)/A+1. TheB Asa result, the rank d&’* is bounded from above by the rank

matrix andF matrix are constructed based on (18) and (205)_fdiagonal matrbG.

Specifically, theiiij-th element for this example is
B, =e ip, R, = e A, (62) B. Example 2
where x and x' are, respectively, thith observation and  1he second example is two separated plates that are
o b i ) horizontally displaced. One is located at ¢0 <A, Oy’ <A,
source point, whilé denotes the index of the Fourier modezto), the other at (&< x < 4A, 0<y <A, z=0). It is clear that

With G, B, F obtained, we constru&" based on (23), thus r-r'=(x-x,y-y'0) with (x-x)0((2A4A) and
Z"” =(B"B)"(B"GF). (63) (y-y)O(-AA). The wavelength is 1 m, thikg =277 in
To assess the accuracy of the proposed approaeh, @reen's function. Thé is chosen as 1 wavelength. A uniform

compare (63) with the original matrix that is ditgc
constructed from the following




discretization along botk andy is used with a space step _ (e Lok Y iz

A=1/40A. B(k) jo jbl_[ b(x Yo(z h &* & d* dxdydz
The Fourier transforms shown in (14) for sources ("> o _ 0 alkax alkeY' mkaz’

observations, and Green’s function are performedddammon F(k) jo L& .[al F(x', y)o(z-0)e™ e™ ev* dk dy dz

range of(a,, a,) = (0,4A), and(b,b,) = (-A A. Thus, we o kol (- P2 27

nave by o2 Skox =ik o= '['[ L \/(X x)2+(y-y) +(z- 2)?
B(k) =Iq Li b(x y) e & dxdy Tk 0X) G Iy (YY) 5 k(2 2) dx dy ydz ¥

o(z-7- hx

b 2 Cikoxt <Ky
F(k)= f(x, y)ek g™ dx dy (70)
(k) Jbl -[ai (. y) Y The above can be further evaluated as
o B() = e [*[* 1 x y & & dxdy
% ' V5 Ky (x=x) ZiKyi (Y=Y ) &
[, 1, 9x=xly-y' pehem e d e pdy » po e iy
_ 2 1 N & iK' 5 IKyi \ ]
(66) F(Ig)—jbl jal f(x,y)ek " dx dy
where . . o ko4 (g
kg=m———, ki=n——, mmE0xlt2,.. (67) G(K)_elz'j I
(az VR T NI
Based on (66), the diagonal matri is obtained with s (X=X o Ky (V=)
Fourier mode index mO(-nx/2+1,nx/2) , and € e dx= R dy (71)
nO(-ny/ 2+1,ny/2), wherenx is the number of sampling Different from (69), now the original matrix becosne
points alongx which is nx=(a - g)/A+1, andny is the PN U PO
: : S Z = A’ (72)
number of sampling points alongy which is orig.ij ‘

—1)\2 1 \2 2
ny=(b-Q)/A+1 . The B matrix and F matrix are 477\/(:@ Ty my )k

constructed based on (18) and (20). Specificalgjrtij-th

element for this example is 26710 . ,
—ikx - kY, Sk X - kY — Original
Bi’j =) TkyiXj JkylyJAZ’ I:Iql —e Tk X = iK; yJAZ. (68) edatebafadidog,
‘ 24f AT R I AR R 2 )
We then construcZ”’ based on (23), thus -;'“m"": ey ﬂ',ll‘,
s _ - —  WHRILES BEEEbA:
7" = (B"B)"(B"GF). 222 ‘!\ j ]

To assess the accuracy of the proposed approaeh, v ; I "}‘
compare the above with the original matrix thatdisectly T, : :
constructed as the following &

t,s € 2 181 -
Z(/J.’/l”lgi] = A : (69) ’
i a1 \2 a1 \2
. 477-\/(1‘2 ) j) * (yl Y j) 1'BI] 5lI)I] 1UIUI] 1500 2000

In Fig. 1, we plot a randomly selected column (cahu998) of Row Index (i)

the matrix obtained from the proposed approaclomparison (a)

with that of the original matrix shown in (69), axcellent X107 . .

agreement can be observed. In addition, we com{fifk to

- Propose

assess the entire matrix error, which is showret@.8%.

C. Example 3

We also consider the same two plates as simulatele
above example but displaced normally2#y Thus, one plate is
located at (8 X’ <A, Oy’ <A, z’=0), while the other is at {Ox
<A, 0Ky<A, z=2A. This is a 3-D configuration of sources and
observers. It is clear thaf -r'=(x-x,y—Vy,h) with

(x-x)O(-AA) and (y-y)O(-AA) . The other

Imag[Z(:,800)]

500 1000 1500 2000

parameters are the same as used in the above exampl 0 Row Index (i)
The Fourier transforms shown in (14) for sources, (b)

observations, and Green’s function are performeddaammon Fig. 3. Comparison between the matrix generatedn fithe

range of(a,a,)=(-A A, and(b,b)=(-A A, and (0, proposed approach and the original matrix for taeoad plate

h=2A). Hence, we have example. (a) Real part of the 800-th columrZof(b) Imaginary
' ' part the 80-th column olZ.



In Fig. 3, we plot a randomly selected column (catu800) of
the matrix obtained from the proposed approaclmparison
with that of the original matrix shown in (72). Asxcellent
agreement can be observed. In addition, we com{@&e to
assess the entire matrix error, which is showret@.4%.

In addition to the above three examples, we hisetasted
many other examples. They all demonstrate the coress of
the factorized form shown in (23) thus (26) obtdinga a
Fourier transform of the integral operator. In faetrforming a
Fourier transform on a convolution integral is teehnique
underlying existing FFT-based IE solvers. Therefone
addition to a theoretical proof developed in SettibC, we
also numerically prove that one can s rank to analytically
analyze the rank of an IE operator irrespectivéhefoperator
kind, scatterer shape, and electric size.

IV. NUMERICAL VALIDATION OF THE RANK'S DEPENDENCE
WITH ELECTRIC SIZE

In Section 11.D, we theoretically deduce the ranjgfswth
rate with electric size from the Fourier transfoomGreen’s
function. In this section, we numerically validateur
theoretical findings of the rank by performing aviCsto find
out the minimal rank required by a given accuracy.

A. Two separated lines

The first example simulated has a 1-D distributiain
sources and observers. It is the same as the egateptribed
in Section IIl.A, but the side length is increased fromALto
100\ to study the rank’s dependence with electric sizee
dense matrix that characterizes the interactionvéen the
source line and the observation line has the fatigvelements
e—ikolx,—x'J |

|)§ - X'j I
The mesh density chosen is 10 segments per wavblekiter
constructingZ based on (73), we perform an SVDnin Fig.
4(a), we plot the normalized singular values sorieda
descending order obtained from 1o 100\ versus singular
value index. There are 100 lines in this figurewdwger, they

ij

all overlap with each other above ¥Daccuracy. The singular

(73)

Singular Values

Index (i)

@

— Accuracy 1074
— Accuracy 1079

Rank

0 20 40 60 80
Electnic Size

(b)
Fig. 4. Rank study of the interaction between tepasated lines.
(a) Singular value distributions for 100 differegiectric sizes
from 1 to 100 wavelengths. (b) Rank for two accyrac
requirements versus electric size.

100

different electric sizes are all on top of eacheotlfor a given
accuracy, the resulting horizontal index, thus remthe same
for all electric sizes. Thus, the theoretical teshown in (56)
is verified.

values below 13* are more than 14 orders of magnitude B. Two Configurations of a Plate-Plate Interaction

smaller than the largest singular value. Due to himec
precision, these singular values cannot be acdyratgained
by computers, thus they differ from one simulatiorthe other
simulation, and hence cannot be used to studyatiiés growth
with electric size.

In the second example, we consider two separdegdspin
two configurations. In one configuration, the twiatps are
located in the same plane; while in the other pmition; one
plate is normally displaced from the other platéneTtwo
examples are the same as the two example desadnilszttion

In Fig. 4(b), we plot the rank @f versus electric size for two |j1.B and Section I11.C respectively. The only difence is that

different accuracy settings. The rank is determitgdthe
number of singular values that satisfy the follogvariterion

g
Zisg.
g,

(74)

instead of having a fixed, we increasé from 1A to 60\ to
study the rank’s dependence with electric size.

We first study the effect of mesh density on tlaak’s
growth with electric size. Since SVD is computatityn
intensive, it does not permit a fine discretizatfonstudying a

where J; is the i-th singular valueg, is the largest singular | qe electric size. If the effect of mesh densitythe rank’s
value, and¢€ is the accuracy requirement, which is chosen agowth rate is little, we can use a coarser meshthereby a
10, and 10° respectively. It is clear that the rank is a canst smaller matrix to study the rank for the same eledize. In
regardless of electric size. This is not a surpgsesult since it Fig. 5, we plot the rank determined with= 10* for this
is already shown by Fig. 4(a). Since the singukdue lines for example versus electric size for three differensimeensities:
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Fig. 5. Rank versus electric size generated witbettdifferent
mesh densities.

A2, A3, andA/5 respectively. As can be seen from this figure,

the three lines are almost on top of each othezrdtbre, in this
and the example shown in next subsection, weAias the
mesh criterion so that larger electric sizes casthdied with
SVD.

In Fig. 6(a), we plot the normalized singular \edwbtained

from 1A to 40\ versus singular value index. There are two set:

of lines in this figure. The solid red lines comead to the
in-plane configuration of the two plates, while theshed blue
lines are the singular values of the normally dispt plate
configuration. Each set has 20 lines representimgutar

values from A, 3\, 5A, ..., to 39 respectively from left to
right. It can be seen clearly that different frohe tL-D case
shown in the first example, when electric size @ases, the
entire singular value distribution is expanded He tight in

both plate configurations, thus requiring more siag values
and hence a larger rank to reach the same accutéayever,

for any given accuracy within machine precisiorg thnk for

both configurations is shown to be less than thérimaize,

which is the largest singular value index, as carséen from
Fig. 6(a). Therefore, the matrix has a low-rankpenty.

In Fig. 6(b), we plot the rank versus electri@sifA from 1A
to 60\ for both configurations of the plates. Case 1 esents
the case where the two plates are on the same, plhile Case
2 is the other configuration. For Case 2, we gietriank versus
electric size for four different accuracy settifigem £ =10,

10

Singular Values

10 : ' : :
10° 10’ 10° 10° 10°
Index (i)
(@)
40° ~*Case-2 10712
----- case-2 1070
——Case—2 10°°
P -
10°k —+—(Case-2 1I]_8 -~
—&—Case-110 e
——Case-1107* o
a Linear Reference -
10| m =, Quadratic Reference| .»*
o ‘.'
3 ::
o
10°
10’
\“
L4
1]
10 :
Ao 10' 10°
Electric Size
(b)

Fig. 6. Rank study of the interaction between tepasated plates
in two configurations. (a) Singular value distrilouts for 20

different electric sizes from 1 to 40 wavelengththva step of 2

wavelengths (Red solid: Case 1; Blue dashed: Cagg)2Rank

versus electric size for both configurations regdiby different

accuracy criteri

10, 10°, to 10*. The scaling of the rank is much closer to th&ase 2, the Green's function is contributed by thizd

linear scaling than to the quadratic scaling, haftlvhich are
plotted in Fig. 6(b) for reference. It can alsodsen that the
scaling rate for a lower-order accuracy settirlgriger than that
of a higher-order accuracy setting. As for Cas¢hé,rank is
shown to grow slowly with electric size. The grow#te is less
than linear. It is clear that the rank requireddase 2 is larger
than that in Case 1 for the same accuracy. Thisbeaeasily
understood by comparing (72) with (69). The repnést@on of
Green'’s function in (72) requires more Fourier motlan that
in (69) becausé is involved, and its electric size increases. |
Case 1, the Green’s function for the two-plate rentéon is
solely determined by the 2-By plane information, while in

dimension. Therefore, the growth rate of the raitk wlectric
size for Case 1 is still governed by a 2-D basexvr rate
which is less than linear, while the rank of Casse @oser to a
3-D based rank.

Discussion: From Fig. 6(a), for Case 2, it can be seen that
there is fairly wide a range of indeix within which the
normalized singular values are quite flat. Afteistrange, the
normalized singular values drop more rapidly. This
phenomenon is what is exactly predicted by (35)e Th

Wavenumbers closest 1qu have the largest singular values,

and these wavenumbers distribute themselves orherispl
shell. If one stops at this range to observe thi,rae will get a
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guadratic growth with the electric size. For 2-Btdbutions, if one stops at the flat range to obsehe rank, he will get a
linear scaling. However, the resulting represeatatiannot be
used because the error is too large. In other wdrdsonly
keeping Fourier modes distributed on a sphericell ¢im 3-D
cases) or circle (in 2-D cases) closeskgo the resultant error
is too large to use. Therefore, one has to incaeaalso those
modes whose wavenumbers are away frkﬁnby a certain

distance, i.e. inside a volume of a spherical nvith inner
radius ofk, and outer radius ¢f +A, as shown by (52), to

obtain an accurate representation of the integratator. The
height of this volume,A, , is inversely proportional to

frequency asymptotically in 3-D distributions. Thstwhy the

resultant rank is linearly proportional to frequgnin addition,
wad one may observe the growth rate with electric skzanges if
different accuracy requirements are set, as shdsmlgy Fig.
6(b). It is also higher than linear when the accursetting is
(@) low for 3-D distributions. That is because the gitowate has
not converged yet. One can increase the accurdtggsantil
the growth rate does not increase any more. Uponergence,

Singular Values

——e=10 12 the growth rate is linear, which is proved by thedretical
''''' e=10""0 bound ofA, .
——c=108
——e=107*
Linear Reference " ] C. Two separated spheres

In the third example, we consider two separatectisgsh
One sphere is centered at the origin with diamateand the
other is centered atA20, 0) with the same diameter. Thés 1
m, andA is increased fromXLto 40\. The mesh density 2.
The sources and observers are located on the sphsuirface.
The matrix corresponding to the source-observatitaraction
has the following element

Rank

o ol =T
1010” 10' 10° i T (75)
Electric Size 5=
(b) The matrix size, which is the number of sourceslufom
dimension of the matrix) as well as the number lnfesvers
10* . : ' (row dimension of the matrix), ranges from 13, 31518,
—a— =101 2124, to 17204 when the electric size of the spHameterA
==e=10710 increases fromALto 40\. The SVD is then used to compute the
—a—g=10 7" rank of matrixZ for a given accuracy. In Fig. 7(a), we plot the
——e=10"* normalized singular values obtained fromn tb 40\ with a
10°F N*® Reference iy spacing of 2 versus singular value index. There are 20 lines in

this figure. The singular value lines are showestpand to the
right when electric size increases. In Fig. 7(9,plot the rank
of Z versus electric size for four different accuraeytiags.
The linear scaling line is also plotted for referenAs can be
seen, the growth rate of the rank with electrie sigrees very
well with linear scaling. In Fig. 7(c), we plot thank of Z
obtained with four different accuracy settings wsrsnatrix
sizeN. It is clear that the rank scales withasN°>. This is
because the rank scales linearly with the elestge, whileN
10 — — . of a surface distribution of sources and obsergeedes with

10' 10 133 10 10 electric size quadratically.

Rank

107F

1

Fig. 7. Rank study of the interaction between tvepasated
spheres. (a) Singular value distributions for 2fedént electric
sizes from 1 to 40 wavelengths with a spacing wfa2elengths.
(b) Rank for four accuracy requirements versustetesize. (c)
Rank for four accuracy requirements verN.
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Fig. 8. Rank generated by ACA+ and SVD with respedtlectric size for a variety of scatterer shapes
(a) Plate. (b) Cylinder. (c) Open cone. (d) Coneesp. (e) Sphere.

D. A suite of electricallv large examples out the minimal rank required by accuracy. The AGdétsed
' ) y'larg P . ) here because a direct SVD is very expensive whernxsze
To further verify the proposed theoretical analysi® s |arge. For all these examples at all the elecsizes we

numerically determined the rank_of aplate, cylndpen CONE, " simulate, a mesh size of Quds used. By aft{-matrix partition
cone sphere, and sphere, resulting from a surfaseebelectric

1A heme (Section I11.D in [5]), we partition the dersystem
field integral operator (EFIE) by ACA+ [1, 6] and/B from  SCN€ME n | , on
small to very large electric sizes. A detailed digion of this matrix into admissible blocks and inadmissible Blotevel by

scheme can be found from [4] and Section IV.A id. [5 level. .The admissible blogks are blocks th_at s>atisf
Basically, we first use ACA+ to obtain a factorizletv-rank ~Mmax{diam@, ),diamQ, )< distQ, Q. ), wheren = 1 is

form, and then perform an SVD on the factorizedrfdo find  used. In ari{ matrix, the admissible blocks are represented by



low-rank matrices, while inadmissible blocks arerstl in a
full matrix format. Theleafsizeused for the multilevel tree [y

construction in thé{-matrix partition is 32. The error used in

ACA+ and SVD truncation is T We then find the maximal
- [2
rank k,.x among all the admissible blocks at all tree levVets
each example simulated. It is clear thaf.corresponds to the [3]
rank of the matrix block that has the largest elesize in each
example. In Fig. 8, we plot thg,,« versus electric size for all of
the five different scatterers. As can be seen lgle&r,. is
O(ka). Thus it verified the proposed theoretical anialys (4]

V. CONCLUSION

[5]
in

A theoretical study is conducted in this work talgze the
minimal rank of integral operators encountered
electrodynamic analysis and its dependence witttrédesize
for a prescribed error bound. We highlight the taett the rank
generated by singular value decomposition is th@mal rank
required by accuracy. The SVD-based low-rank appration
does not rely on the separation of observation smuakce
coordinates for separated geometry blocks, whilthots that
separate observation and source coordinates such
interpolation and plane wave expansion based msttilochot
lead to a minimal rank approximation of the eledymamic
kernel. As a result, the rank obtained from thesghous is
observed to scale with electric size at a muchdrigate.

The SVD analysis is numerical, which prevents al\stof
the rank for an arbitrarily large electric size. iBgognizing the
relationship between an SVD analysis and a Foariatysis in
a linear and shift-invariant system, we succesgfidlvelop an
analytical approach to analyze the rank of an natiegperator,
and reveal the relationship between the rank amdetbctric
size for satisfying a prescribed accuracy. The rafkhe
interaction between two separated geometry blackbown to
scale linearly with the electric size of the blatikmeter in a
general 3-D problem. As long as the rank is smahan the
matrix dimension, the matrix is called a low-ranktrix. We
thus theoretically prove the existence of an efvounded
low-rank representation of electrodynamic integrpkrators
irrespective of electric size and object shape. dduer,
numerous results are generated to validate botlpitheosed
analytical approach for analyzing the rank andfthéings of
this work on the rank’s asymptotic dependence witttric
size. The implication of this work on the complgxibf
IE-based electrodynamic computation using low-ram@thods
is also discussed.

The theoretical proof developed in this work pr@dda
theoretical basis for employing and further devaigp
low-rank matrix algebra for accelerating the inegrquation
based computation of electrically large problems.

Moreover, through the proposed theoretical studphefrank
of the integral operator, we have found that theurfeo
transform of Green’s function has a direct relagiip with the
singular values of the inverse of the finite eletmaatrix. As a
result, the low-rank property of the |E operattie tnverse of
IE operator, and the inverse finite element matig
demonstrated by a single proof.
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