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Abstract 
 

We propose an analytical approach to study the rank of an integral operator, which 
is valid for an arbitrarily shaped object with an arbitrary electric size. With this 
analytical approach, we theoretically prove that for a prescribed error bound, the 
minimal rank of the interaction between two separated geometry blocks in an 
integral-equation operator, asymptotically, is a constant for 1-D distributions of 
source and observation points; grows very slowly with electric size as square root 
of the logarithm for 2-D distributions; and scales linearly with the electric size of 
the block diameter for 3-D problems. We thus prove the existence of an error-
bounded low-rank representation of both surface- and volume-based integral 
operators for electromagnetic analysis, irrespective of electric size and object 
shape. Numerical experiments have validated the proposed analytical approach and 
its resultant findings on the rank of integral operators. This work provides a 
theoretical basis for employing and further developing low-rank matrix algebra for 
accelerating the computation of electrically large problems.  
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Abstract—We propose an analytical approach to study the rank 

of an integral operator, which is valid for an arbitrarily shaped 
object with an arbitrary electric size. With this analytical 
approach, we theoretically prove that for a prescribed error 
bound, the minimal rank of the interaction between two separated 
geometry blocks in an integral-equation operator, asymptotically, 
is a constant for 1-D distributions of source and observation 
points; grows very slowly with electric size as square root of the 
logarithm for 2-D distributions; and scales linearly with the 
electric size of the block diameter for 3-D problems. We thus 
prove the existence of an error-bounded low-rank representation 
of both surface- and volume-based integral operators for 
electromagnetic analysis, irrespective of electric size and object 
shape. Numerical experiments have validated the proposed 
analytical approach and its resultant findings on the rank of 
integral operators. This work provides a theoretical basis for 
employing and further developing low-rank matrix algebra for 
accelerating the computation of electrically large problems.    
 

Index Terms—Rank, Integral Operators, Electrodynamic 
Analysis, One-, Two-, and Three-Dimensional Analysis, 
Theoretical Analysis 
 

I. INTRODUCTION 

RIVEN BY the design of advanced engineering 
systems, there exists a continued need of reducing the 
complexity of computational electromagnetic methods. 

Recently, the H- and H2-matrix based mathematical 

framework [1-2] has been introduced and further developed to 
accelerate both iterative and direct solutions of the integral 
equation based analysis of electrodynamic problems [3-5]. The 
resultant direct integral equation (IE) solver [4-5] successfully 
solved electrodynamic problems of 96 wavelengths with more 
than 1 million unknowns in fast CPU time (less than 20 hours in 
LU factorization, 85 seconds in LU solution), modest memory 
consumption, and with the prescribed accuracy satisfied, on a 
single CPU running at 3 GHz. The H- and H2-matrix based 

mathematical framework [1-2] encompasses a family of 
hierarchical low-rank matrix algebra that enables compact 
representation and efficient computation of dense matrices.  

 
Manuscript received May 29, 2012. This work was supported by NSF under 

award No. 0747578 and No. 0702567.  
W. Chai and D. Jiao are with School of Electrical and Computer 

Engineering, Purdue University, West Lafayette, IN 47907 USA. (e-mail: 
djiao@purdue.edu). 

It has been acknowledged that low-rank methods [7, 10-12] 
are applicable to electrically small or moderate problems. 
However, why the low-rank property can also be explored to 
accelerate the computation of electrically very large problems? 
The ACA-based low-rank solutions have also solved 
electrically large integral equations with over 1 million 
unknowns [8-9]. Does an error-bounded low-rank 
approximation of integral operators exist, regardless of electric 
size? 

It has been shown in [13] that electromagnetic fields, 
radiated or scattered by bounded sources, can be accurately 
represented by a finite number of samples, coincident with the 
number of degrees of freedom of the field, which is 
independent of the observation domain and depends only on the 
source geometry. This study is performed based on a 
representation that separates sources from observers. In [14], 
the section of theory based on [13] shows that the rank of the 
interaction between two separated blocks in a 3-D surface 
scatterer scales quadratically with the electric size of the block 
diameter. However, numerically by ACA and SVD, such a 
quadratic growth with electric size was not observed, as stated 
by the authors of [14].  

Given an accuracy requirement ε, it has been proven that the 
rank-r representation (R) generated from singular value 
decomposition (SVD) is a minimal rank approximation of the 
original matrix M that fulfils ||M  – R||2 ≤ ε [15]. The SVD based 
minimal-rank approximation does not separate observation and 
source coordinates. It treats the entire matrix as a whole and 
finds a minimal number of vectors, and hence rank, to represent 
the matrix with prescribed accuracy. Our numerical 
experiments show that methods that do not generate a minimal 
rank approximation such as the interpolation [3], Taylor series 
expansion, and plane-wave expansion based separation of 
source and observation coordinates can result in a rank that is 
much higher than the minimal rank required by accuracy. The 
rank also scales with electric size at a rate higher than linear, as 
observed in existing fast IE solvers that rely on the separation of 
source and observation coordinates.  To be more specific, in a 
source-observer separated representation of the integral 
operator, the Green’s function (| ' |)g r r−v v

,  which originally 

is the function of the distance between source 'r
v

 and observer 
r
v

, becomes a function of the complete coordinates of 'r
v

 and 
r
v

 since it is approximated by a 
1 2( ) ( ')f r f r
v v

-type  form  to 

separate 'r
v

 from r
v

. 
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In [5], through a singular value decomposition (SVD) based 
analysis, it is numerically shown, for large electric sizes (over 
100 wavelengths) and various scatterers, the rank of a matrix 
block of size N formed between two geometrically separated 
groups, arising from the surface integral equation based 
electrodynamic analysis, scales as O(N0.5). As a result, the 
block has a low rank. However, no theoretical proof has been 
developed to support this numerical finding.  

An SVD analysis is numerical, which makes it not feasible to 
find the actual rank required by accuracy for an arbitrarily large 
electric size. As a result, an analytical approach, which is not 
restricted by computational resources and is valid for arbitrary 
shape, becomes necessary to develop a theoretical 
understanding on the rank’s dependence with electric size. 

The contribution of this work is such an analytical approach. 
With his approach, we theoretically prove that the minimal rank 
of the interaction between two separated geometry blocks in an 
integral-equation based analysis of general 3-D objects, for a 
prescribed error bound, scales linearly with the electric size of 
the block diameter. For 2-D distributions of sources and 
observers, the minimal rank grows very slowly with electric 
size as square root of the logarithm of the electric size of the 
block diameter; for 1-D distributions, the minimal rank is a 
constant. These findings also agree with our finding on the rank 
of the inverse finite element matrix [18]. The proposed proof is 
applicable to various integral operators in electrodynamic 
analysis such as electric field, magnetic field, combined field, 
surface-, and volume-based integral operators. Since the rank 
scales linearly with the electric size of the block diameter, while 
the number of unknowns in a surface- and volume-IE based 
analysis scales with electric size in a quadratic, and cubic way 
respectively, we prove the existence of the error-bounded 
low-rank representation of both surface and volume integral 
operators for electromagnetic analysis, irrespective of electric 
size and problem shape.  

II. THEORETICAL STUDY  

A. Problem Description 

 The integral equation based analysis of electrodynamic 
problems results in a dense linear system of equations 

I V=Z .                                     (1) 
Consider Z,t,s, an arbitrary m × n off-diagonal block of the 
system matrix Z, which describes the interaction between two 
separated groups (t and s) of the scatterer being analyzed. The 
objective of this work is to theoretically study whether there 
exists an error-bounded low-rank representation of Z,t,s 
irrespective of electric size and scatterer shape, and if such a 
representation exists, how the rank scales with electric size, and 
hence the number of unknowns N. 
 Given an accuracy requirement ε, as shown in [15], the 
rank-r representation (R) generated from SVD is a minimal 
rank approximation of the original matrix M that fulfils ||M  – 
R||2 ≤ ε. However, an SVD analysis is numerical. Restricted by 
computational resources, it cannot be used to find the actual 
rank required by accuracy for an arbitrarily large electric size. 
As a result, an analytical approach, which is not limited by 
computational resources and is valid for an arbitrary shape, 
becomes necessary to develop a theoretical understanding on 
the rank’s dependence with electric size. This paper provides 

such an analytical approach. In this approach, we are able to 
make a connection between an SVD analysis and a Fourier 
analysis. By utilizing the relationship between the two analyses 
in a linear and shift-invariant system, we succeed in 
analytically revealing the rank of the integral operators and its 
dependence with electric size. 
 

B. Relationship between SVD and Fourier Analysis in a 
Linear Shift-Invariant System 

 A linear system can be modeled by:  
b f= H ,                                       (2) 

where f  and b are vectors, and H is a linear operator. We can 
perform SVD on H to obtain 

Hb f= VΣU ,                                 (3) 

where superscript ‘H’ denotes a complex conjugate transpose, 
Σ  is the diagonal matrix comprising singular values, and  V 
and U are matrices comprising singular vectors. Since V and U 
are both unitary, we have 

( )H Hb f=V Σ U  .                             (4) 

which can be written compactly as 
V Ub f= Σ ,                                  (5) 

where 
;   V H U Hb b f f= =V U .                        (6) 

Multiplying a unitary matrix by a vector can be thought of as 
projecting this vector onto the orthonormal set defined by the 
matrix. Thus, (5) can be viewed as representing the response b 
in the V basis ( Vb ), the input f in the U basis ( Uf ), and relating 

these two projections by a diagonal matrix (Σ ).  
 When the operator H is both linear and shift invariant 
(LSIV), SVD turns to Fourier analysis [16]. More specifically, 
the singular vectors of an LSIV system are weighted Fourier 
basis functions (complex exponentials) and the singular values 
are the absolute values of the Fourier transform of the system’s 
point spread function (impulse response function) [16, 17]. To 
see this more clearly, let’s consider an LSIV system. Because 
an LSIV system operator is a convolution operator [16], the 
response b in space domain is a convolution of the input f with 
an impulse response h  

( ) ( ) * ( )b r f r h r=r r r
 ,                             (7) 

in which r
r

 denotes an arbitrary point in space. The above 
convolution can be converted to a simple multiplication by 
Fourier analysis. Thus we have 

( ) ( ) ( )( ) ( ) ( )b r h r f r=r r r
F F F  ,                  (8) 

where ( )F  denotes a Fourier transform. We can rewrite (8) 

as 

( )( ) ( ) ( )FT FTb r h r f r=r r r
F  ,                        (9) 

where ( )FTb r
r

is the representation of ( )b r
r

 in the Fourier basis, 

and ( )FTf r
r

 is the representation of ( )f r
r

in the Fourier basis. 

In other words, we represent the input in a unitary basis 
(Fourier basis), we also represent the response in a unitary basis 

(Fourier basis), and relate the two by ( )( )h r
r

F . From (5) and 

(9), the relationship between SVD and Fourier analysis can be 
clearly seen. The Fourier bases may be different from the 
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SVD-generated bases. However, if the system is linear and 
shift-invariant, the two bases are both Fourier bases [16]. 
Therefore, the Fourier analysis accomplishes the SVD analysis 
of a linear shift-invariant system.  

 

C. Rank Revealing via Fourier Analysis of the Integral 
Operator  

 There exist many integral equation based formulations for 
analyzing 3-D electrodynamic problems. Examples are electric 
field integral equation, magnetic field integral equation, 
combined field integral equation, each of which can be 
formulated in a surface- or volume-based form. The underlying 
integral operators are all linear and shift invariant. Therefore, 
we can use Fourier analysis to analytically study the rank of the 
integral equation based system matrix. 
 The point-spread function in IE-based operators is Green’s 
function. Without loss of generality, an integral equation based 
operator can be expressed as the convolution of a certain source 
f with Green’s function g as the following: 

( ) (| ' |) ( ') 'b r g r r f r dr= −∫
r r r r r

,                       (10) 

where response b is the field at observation point r
r

, and 'r
r

 
denotes a source point. The 'dr

r
is a short notation of dl (line 

integral), dS (area integral), dV (volume integral) over the 
source domain, respectively, for one-, two-, and 
three-dimensional distribution of the sources.  

 Multiplying both sides of (10) by jk re− ⋅
r r

, and integrate over 
the observation domain r

r
, we obtain 

( ) (| ' |) ( ') 'jk r jk rb r e dr g r r f r dr e dr− ⋅ − ⋅ = − ∫ ∫ ∫
r rr rr r r r r r r

,     (11) 
which can be further written as 

' ( ')

( )

( ') ' (| ' |) ( ')

jk r

jk r jk r r

b r e dr

f r e dr g r r e d r r

− ⋅

− ⋅ − ⋅ −

=

− −

∫

∫ ∫

r r

r rr r r

r r

r r r r r r ,         (12) 

and thereby 

=
r r r

( ) ( ) ( )B k G k F k ,                              (13) 

where 

'

( ')

( ) ( )

( ) ( ') '

( ) (| ' |) ( ')

jk r

jk r

jk r r

B k b r e dr

F k f r e dr

G k g r r e d r r

− ⋅

− ⋅

− ⋅ −

=

=

= − −

∫

∫

∫

r r

r r

r r r

r r r

r r r

r r r r r
,        (14) 

in which = + +
r

ˆ ˆ ˆ
x y z

k k x k y k z . The 
r

( )B k , 
r

( )F k , and 
r

( )G k  are 

the Fourier transforms of the sources f, observation fields b, and 
Green’s function g respectively. 
 Eqn. (13), in a discrete form, can be written as: 

     
    

    =    
    
    
     

M O M

1 1 1

2 2 2
   

          

               
p p p

B G F

B G F

B G F



,                (15)

 

where Gi, Fi, and Bi are, respectively, 
r

( )G k , 
r

( )F k , and 
r

( )B k  

at  discrete k
i

r
 (i = 0, 1, …), and p denotes the number of 

frequency points in Fourier transform.  

 Now consider an arbitrary source domain sΩ  that is 

geometrically disconnected from an arbitrary observation 
domain tΩ . The number of degrees of freedom in the source 

domain is denoted by n, while that in the observation domain is 
denoted by m.  The matrix block corresponding to the 
interaction between sΩ  and tΩ  is an off-diagonal block in the 

system matrix Z resulting from an IE-based analysis of an 
electromagnetic problem. Denote this block by Zt,s. Thus, we 
have 

× × ×= ,

1 1
( )t s

m m n n
b fZ ,                               (16) 

in which  the subscripts denote the dimension of the 
corresponding vector or matrix. Given a prescribed accuracy, 
the minimal rank of Zt,s can be numerically determined by 
SVD. Next, we show how to analyze the rank of Zt,s analytically 
by the Fourier analysis of the integral operator. 
 From (14), the B vector in (15) can be written as: 

× × ×

   
   
   = =   
   
   
   

M M

1 1

2 2

1p m p m m

p m

B b

B b
b

B b

B B                 (17) 

where ×p mB  is the ×p m  matrix that projects the observations 

b onto the space of Fourier modes. Its ij -th matrix element can 
be readily identified from (14) as  

, ,        1 ,  1ijk r
i j j

e dr i p j m− ⋅= ≤ ≤ ≤ ≤∫B
r r r

 ,   (18) 

where the integral is evaluated on the domain occupied by the 
j-th observer. For 1-, 2, and 3-D distribution of the observers, 
such a domain is a segment, an area, and a volume respectively.  
 Similarly, from (14), the F vector in (15) can be written as: 

× × ×

   
   
   = =   
   
   
   

M M

1 1

2 2

1p n p n n

p n

F f

F f
f

F f

F F ,                (19) 

where ×p nF  is the ×p n  matrix that projects the sources f onto 

the space of Fourier modes. Its ij -th matrix element can also be 
readily identified from (14) as  

'
, ',        1 ,  1ijk r

i j j
e dr i p j n− ⋅= ≤ ≤ ≤ ≤∫F

r r r
 ,   (20) 

where the integral is evaluated on the domain occupied by the 
j-th source.  
 Substituting (17) and (19) into (15), we obtain 

= ( )b fB G F  ,                                 (21) 

where G in boldface denotes the diagonal matrix composed of 
the Fourier coefficients of Green’s function shown in (15). If B 
is unitary, then 

= H( )b fB GF  .                                  (22) 

In the context of matrix computation, the source and 
observation domain represented by an off-diagonal block are 
both finite. In addition, they may not span a period used for 
evaluating the discrete Fourier transform. Although Fourier 
bases are unitary, if a subset of these bases is chosen at selected 
source and observation points, neither B nor F is unitary.  In 
this case, (21) can be written as  
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−= H 1 H( ) ( )b fB B B GF  .                        (23) 

With p chosen to be larger than m, H( )B B  is invertible. If 
H( )B B  is not invertible, we can also write B as 

= Σ H

B B B
B U V  ,                                 (24) 

which is the SVD of B. Then, we have 
−= Σ 1( )H

B B B
b fV U GF  .                            (25) 

Therefore, we obtain 
−= Σ, 1( )t s H

B B B
Z V U GF .                           (26) 

Thus, it is clear that if B and F are unitary, then the singular 
values of Zt,s are nothing but the absolute values of G’s entries, 
which are the Fourier expansion coefficients of Green’s 
function. In general cases where B and F may not be unitary, 
although the singular values are not the Fourier coefficients any 
more, the rank of Zt,s is still bounded by the rank of diagonal 
matrix G since the rank of a matrix product is no greater than 
any of the matrices being multiplied. Therefore, we can analyze 
the Fourier transform of Green’s function to analytically study 
the rank of Zt,s. 
 

D. Rank Determined from an Analytical Fourier Analysis of 
the Green’s Function 

 The Green’s function for a general 3-D problem can be 
written as: 

0 | '|

(| ' |)
4 | ' |

jk r re
g r r

r rπ

− −

− =
−

r r

r r
r r ,                        (27) 

where 'r
r

 denotes a source point, r
r

 denotes an observation 
point, k0 is the wave number corresponding to a frequency 
being studied. Let  

ˆ'R r r RR= − =
r r r

                             (28) 

with R being the magnitude of the distance vector R
r

 and R̂  a 
unit vector along 'r r−r r

 direction, (27) can be further written as 
0

( )
4

jk Re
g R

Rπ

−

= .                                (29) 

 The above Green’s function satisfies the following partial 
differential equation in an infinite space 

2 2
0 ( ')g k g r rδ∇ + = −r r

 .                     (30) 

Its Fourier transform can be analytically obtained as the 
following. 
 First, we represent the right hand side of (30) by its Fourier 
transform  

( ')( ') ( ')
3

1
( ')

(2 )
yx z

jk y yjk x x jk z z
x y zr r e e e dk dk dkδ

π
−− −− = ∫∫∫

r r

. (31) 

Similarly, we write Green’s function g as 
( ')( ') ( ')

3

1
( ') ( )

(2 )
yx z

jk y yjk x x jk z z
x y zg r r G k e e e dk dk dk

π
−− −− = ∫∫∫

r r (32) 

where ( )G k  is the Fourier transform of g. Substituting (32) 

into the left hand side of (30), we obtain 

( ')( ') ( ')2 2 2
0 3

( ')( ') ( ')2
03

( ')( ') ( ')2 2
03

1
( ) [ ]

(2 )

1
( )

(2 )

1
( ) ( )

(2 )

yx z

yx z

yx z

jk y yjk x x jk z z
x y z

jk y yjk x x jk z z
x y z

jk y yjk x x jk z z
x y z

g k g G k e e e dk dk dk

k G k e e e dk dk dk

k k G k e e e dk dk dk

π

π

π

−− −

−− −

−− −

∇ + = ∇

+

= − +

∫∫∫

∫∫∫

∫∫∫
(33) 

where 
2 2 2 2

x y zk k k k= + +  .                              (34)  

Since (33) is equal to (31), we obtain the Fourier transform of 
Green’s function as the following 

2 2
0

1
( )G k

k k
=

− .                                 (35) 

The above approach was actually one of the methods used to 
derive Green’s function in history, also known as 
Ohm-Rayleigh method [19, p. 30].  
 If both source points 'r

r
 and observation points r

r
are 

distributed in a 2-D domain, without loss of generality, assume

'z z= . From (33), since the term operated on by 2∇  is 
( ')( ') 1yx

jk y yjk x xe e −− ⋅ , we obtain 
2 2 2

x yk k k= +  .                                    (36) 

Notice that the above does not suggest that / 0z∂ ∂ = because 
when the right hand side of (32) is integrated out, we obtain 

( ')z zδ − . It simply means for 2-D distribution of observers and 

sources, there is no need to introduce Fourier modes in the third 
dimension to represent Green’s function. If both source points 

'r
r

 and observation points r
r

are distributed in a 1-D domain 
satisfying 'z z=  and 'y y= , from (33), we have  

2 2
xk k=  .                                     (37) 

Again, the above does not suggest that / / 0y z∂ ∂ = ∂ ∂ =
because when (32) is integrated out, we obtain

( ') ( ')y y z zδ δ− − . As can be seen from the above derivation, 

the Fourier transform of Green’s function for 1-, 2-, and 3-D 
distributions of source points and observation points has the 
same form as that shown in (35). The only difference is the 
difference in k2.   
 Now, we are ready to determine the rank of G in (26). The G 
is the diagonal matrix shown in (15), the entries of which are 
given in (14), which are the Fourier coefficients of Green’s 
function 

( ')( ) (| ' |) ( ')ijk r r
iG k g r r e d r r− ⋅ −= − −∫

r r rr r r r
.            (38) 

For a finite source-observation domain, the geometrical 
identity defined by ( ')r r−r r

 is finite. Take a 3-D ( ')r r−r r
 

domain as an example, (38) can be explicitly written as 
0

2 2 2

1 1 1

2( ) sin
4

i

jk R
R jk R

i R

e
G k e R drd d

R

ϕ θ

ϕ θ
θ θ ϕ

π

−
− ⋅= ∫ ∫ ∫

r r

 ,       (39) 

where the upper and lower limits describe the region that 
( ')r r−r r

 occupies. If ( ')r r−r r
 has multiple disconnected 

regions, then the matrix block corresponding to such a 
source-observation interaction is the union of the matrix block 
in each separated region. Then for each separated region, we 
can analyze the rank of the corresponding matrix block via (39). 
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The sum of the rank of the matrix block for each separated 
region is the upper bound of the rank of the entire matrix block 
associated with the interaction between 'r

r
 and r

r
.  

 Let 
1 2( , ) (0,2 )ϕ ϕ π= , 

1 2( , ) (0, )θ θ π= , and 

1 20,R R→ → ∞ . Then (39) becomes (35), and hence 

2 2 2 2
0

1
( )

( )i

xi yi zi

G k
k k k k

=
− + + ,                      (40) 

where  
2

2

2

xi

yi

yi

m
k m

D a
n

k n
D a

p
k p

D a

π π

π π

π π

= =

= =

= =

                               (41) 

in which m, n, p are integer numbers, D is the maximal size of 
the problem along x-, y-, and z-direction, and a is half of D. In 
what follows, we use (40) and its corresponding 2-D and 1-D 
forms to analytically analyze the rank of G because the rank of 
a smaller ( ')r r−r r

 domain determined by (39) is bounded by 

the rank dictated by (40).  
  Without performing a detailed quantitative analysis, from 
(40), we already can predict the existence of a low-rank 
representation of Green’s function. The reason is 
straightforward. Given a 20k , not all of the Fourier modes have 

a large Fourier coefficient, only those whose wave number 

square ( 2
ik ) are the closest to 20k  have the largest Fourier 

coefficients, while others can be truncated based on the 
magnitude of their Fourier coefficients and a prescribed 
accuracy. The total number of Fourier modes representing a 
function defined on a surface and that defined in a volume is, 
respectively, proportional to (electric size)2 and (electric size)3. 
Thus, the total number of Fourier modes is linearly proportional 
to N. However, Green’s function is different from an arbitrary 
function that depends on x, y, and z, due to its R-only 
dependence, its Fourier transform has a special form shown in 
(40). As a result, only a subset of Fourier modes needs to be 
used to represent the Green’s function for a given accuracy, 
while the rest can be discarded without sacrificing the 
prescribed accuracy. Hence the rank of G is less than N, thus 
being low rank. In addition, (40) also reveals why the rank of a 
2-D problem is, in general, less than that of a 3-D distribution of 
sources and observers. This is because in the former, the 
Fourier modes are distributed on a 2-D grid as can be seen from 
(36) and (41), while in the latter; the Fourier modes are 
distributed on a 3-D lattice. Thus, the number of Fourier modes 
satisfying a prescribed accuracy in a 2-D case is smaller than 
that in a 3-D case. The above analysis is conceptual. Next, we 
provide a quantitative analysis of the rank of G and its 
dependence with electric size. 
 Given an accuracy requirement ε, the rank of diagonal matrix 
G is the number of Fourier coefficients ( )i iG G k= satisfying 

the following criterion 
2 2

0

2 2
0

1/

max{ } max{1/ }

ii

i i i

k kG

G k k
ε

−
= ≥

−
.            (42) 

Since the maximum of 2 2
01/ ik k−  occurs at the minimum of 

2 2
0ik k− , (42) can be written as 

2 2
0

2 2
0 min

1/

1/

i

i

k k

k k
ε

−
≥

−
.                        (43) 

Let 
2 2

min 0 min
1/ ik k∆ = − ,                        (44) 

We have 
2 2

0 min /ik k ε− ≤ ∆ ,                          (45) 

with  
2 2 2 2 2( ) ( ) ( ) /ik m n p aπ π π = + + 

            (46) 

2 2 2 2( ) ( ) /ik m n aπ π = + 
                          (47) 

2 2 2( ) /ik m aπ =  
                                       (48) 

for 3-, 2-, and 1-D distribution of sources and observers 
respectively.  
 To determine the rank from (45), we can find out the 
maximum displacement 0k∆ >  satisfying 

( )2 2
0 0 min /kk k ε+ ∆ − ≤ ∆ ,                        (49) 

and then compute the number of modes that can exist between 

0k  and 
0 kk + ∆ . For the modes satisfying (45) and having 2

ik  

smaller than 2
0k , a similar analysis can be performed. 

 In 1-D cases, since 
i

m
k

a

π= , the distance between two 

adjacent wave number 
ik  is a constant. The number of Fourier 

modes between 
0k  and 

0 kk + ∆  is thus proportional to 
k∆ . 

Therefore, the rank k in 1-D cases can be written as: 

1
~ kD

k ∆ .                                    (50) 

In 2-D cases, since the number of Fourier modes having a 
wave number between 

0k  and 
0 kk + ∆  is proportional to the 

area of a ring with inner radius of 
0k  and outer radius of

0 kk + ∆
. Thus, the rank k in 2-D cases can be written as: 

( )2 2 2
02 0 0~ 2k k kD

k k k k+ ∆ − = ∆ + ∆ .                 (51) 

 In 3-D cases, the number of Fourier modes having a wave 
number between 

0k  and 
0 kk + ∆  is proportional to the volume 

of a spherical ring with inner radius of 
0k  and outer radius of

0 kk + ∆ .  Thus, 

( )3 3 2 2
00 03 0

3~ 3 3k k k kD
k k kk k+ ∆ − = ∆ + ∆ + ∆ .       (52)                 

 From the above, it can be seen that the rank’s dependence 
with electric size is determined by the k∆ ’s dependence with 

electric size. This question has been thoroughly studied in [18]. 
In fact, the Fourier transform of Green’s function has a direct 
relationship with the inverse of the finite element matrix by 
comparing (35) to the inverse of the finite element matrix 
shown in [18]. It is proved in [18] that k∆  for 1-, 2-, and 3-D 

modes satisfying (49), for a given ε, scale with frequency in the 
following way: 

1
~ (1)k D

O∆ .                                   (53) 
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0 02
~ ( log / )k D

O k k∆                        (54) 

03
~ (1/ )k D

O k∆ .                            (55) 

 Substituting them into (50-52), we obtain 

1
constant

D
Rank = .                                 (56) 

02
~ ( log )

D
Rank O k                                (57) 

03
~ ( )

D
Rank O k .                                    (58) 

Thus, for 1-D problems, for a prescribed error bound, the rank 
is a constant; for 2-D problems, the scaling rate of the rank is 
less than linear; while for 3-D problems, the rank increases 
linearly with the electric size of the problem. The theoretical 
results shown in (56-58) have also been numerically verified by 
finding out the number of modes having wave numbers shown 
in (46-48) and meanwhile satisfying (45) [18]. 
 

E. Implication on the Complexity of IE-Based Computation  

 The rank’s scaling rate with electric size has a direct impact 
on the complexity of low-rank based methods in 
electrodynamic computation. Take the H2 matrix based method 

as an example [2-3], due to its nested low-rank representation, 
with the rank scaling with electric size linearly in a general 3-D 
problem, the storage and the matrix-vector multiplication of a 
dense matrix, resulting from a surface IE-based analysis, both 
have a complexity of O(NlogN), with N being matrix size. The 
detailed complexity analysis is given below. 

In an H2-based representation of a dense matrix Z, each 

block that characterizes the interaction between a source 
domain that is geometrically separated from an observation 
domain is called an admissible block. Consider an arbitrary 
admissible block Zt,s. It is represented by a factorized low-rank 
form V tSt,sVsT with V being nested in an H2-representation. The 

entire unknown set of Z is partitioned into two subsets level by 
level until the leaf level is reached based on a predetermined 
constant leafsize. Each node in the resulting binary tree is called 
a cluster. Since V is nested, we only need to store V#t×k at leaf 
clusters, and for each nonleaf cluster, we store transfer matrices 
Ek×k.  Here, #t denotes the number of unknowns in cluster t, and 
k is the rank. The coupling matrix Sk×k is stored for each 
admissible block at each tree level. The storage of an H2-based 

representation of Z, which is also the cost of a matrix-vector 
multiplication, hence can be evaluated as the following: 

( ) ( )

( ) ( )

2

0

2

0 0

( ) ( ) 2

2 2 2 2 2 2

( log )

P
l

l l
l

P P
l l l l

l l

Storage Cost v kb nb

O N N O

O N N

=

− −

= =

 = = ⋅ +
 

    ≤ ⋅ ⋅ ⋅ ≤ ⋅ ⋅      

=

∑

∑ ∑

Z Z

         (59) 

In the above, v denotes an arbitrary vector, P is the tree depth, 

lkb  is the rank of the admissible blocks at tree level l, and lnb  

is the number of admissible blocks at tree level l. Due to a 
binary tree, the number of clusters is 2l at level l, where l = 0 
represents the root level of the inverted binary tree. In the first 

row of (59), ( )2
2l

lkb  is the cost of storing the transfer matrix 

Ek×k of each nonleaf cluster at level l, where 
lk kb= , while the 

( )2

l lkb nb is the cost of storing the coupling matrix Sk×k for each 

admissible block at level l. In the second row of (59), we utilize 
the fact that the matrix size at level l is 2 l N− , and the rank 
scales as the square root of it, thus 2 l

lkb N−= . We also utilize 

the fact that the number of admissible blocks at level l is 
proportional to the number of nodes (clusters) at this level, 
hence (2 )l

lnb O= . In the first row of (59), we add the cost of 

storing both the transfer matrices E and the coupling matrices S 
to compute the total cost. As for the cost of storing V#t×k at leaf 
clusters, it is linear since there are O(N) leaf clusters, and each 
leaf V#t×k  has a cost of O(leafsize ×leafsize), which is constant.  
 To summarize, when ascending an inverted binary tree, at 
each tree level, the number of matrix blocks is reduced by half, 
and the cost of storage as well as a matrix-vector multiplication 
is doubled since the cost scales as the square of the rank, and the 
rank scales as the square root of the matrix size in a surface IE 
based analysis. As a result, the computational complexity is the 
same O(N) at each tree level. Since there are logN levels, the 
total complexity is O(NlogN) for electrodynamic computation. 
This is the complexity of a conventional H2-based method for 

electrodynamic computation. A further acceleration of the 
H

2-based method is possible with the understanding of the 

rank’s actual growth rate with electric size. In addition, neither 
prevailing fast multipole based nor FFT-based methods have 
utilized the low-rank property of the electrodynamic kernels. If 
this property is utilized, these methods may be further 
accelerated.  
 

III.  NUMERICAL VALIDATION OF THE PROPOSED ANALYTICAL 

APPROACH FOR RANK STUDY  

We first quantitatively validate the proposed analytical 
approach for analyzing the rank of the IE operators.  

A. Example 1  

The first example has a 1-D distribution of sources and 
observers. The source domain is in the range of

' ( 1.5 , 0.5 )x A A∈ − − , while the observation domain is located 

at (0.5 ,1.5 )x A A∈ . It is clear that ' ( ',0,0)r r x x− = −r r
 with 

' ( ,3 )x x A A− ∈ . The wavelength λ = 1 m, thus 0 2k π=  in 

Green’s function. The A is chosen as 4λ. A uniform 
discretization along x is used with a space step of ∆=1/50λ.  

The Fourier transforms shown in (14) for sources, 
observations, and Green’s function are performed in the same 
range of 

1 2( , )a a  with 
1 3a A= −  and 

2 3a A= . Hence, we 

have 
2

1

2

1

2

1

'

( ')

( ) ( )

( ) ( ') '

( ) (| ' |) ( ')

i

i

i

a jk x
i a

a jk x
i a

a jk x x
i a

B k b x e dx

F k f x e dx

G k g x x e d x x

−

−

− −

=

=

= − −

∫

∫

∫

         (60) 

with 

2 1

2
,     0, 1, 2,...

( )ik i i
a a

π= = ± ±
−

.                (61) 
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The interval for integration 
1 2( , )a a is chosen to carry out the 

discrete Fourier transforms of observations b, sources f, and 
Green’s function g in a common range. The f, b, and g are 
padded with zeros in the range beyond where they are 
originally defined.  
 From (60), the diagonal matrix G is obtained with Fourier 
mode index ( / 2 1, / 2)i ns ns∈ − +  , where ns is the number of 

sampling points along x, which is 
2 1( ) / 1ns a a= − ∆ + .  The B 

matrix and F matrix are constructed based on (18) and (20). 
Specifically, their ij -th element for this example is 

'

, ,,  ,  i j i jjk x jk x

i j i je e− −= ∆ = ∆B  F              (62) 

where 
jx  and ' jx  are, respectively, the j-th observation and 

source point, while i denotes the index of the Fourier mode.  

With G, B, F obtained, we construct ,t sZ  based on (23), thus 
−=, H 1 H( ) ( )t s

Z B B B GF .                         (63) 

 To assess the accuracy of the proposed approach, we 
compare (63) with the original matrix that is directly 
constructed from the following 

π

− −

= ∆
−

0
| ' |

,

, 4 | ' |

i j
jk x x

t s

orig ij

i j

e

x x
Z .                     (64) 

In Fig. 1, we plot the first column of the matrix obtained from 
(63) in comparison with that of the original matrix shown in 
(64). An excellent agreement can be observed. The same 

agreement is observed in all the other columns of the ,t s
Z matrix. 

To assess the entire matrix error of (63), we evaluate the 
following  

−
=

, ,

,

t s t s

orig

t s

orig

error
Z Z

Z

 .                         (65) 

in which 2-norm is used. The error is shown to be 0.1%. Hence, 
the accuracy of the factorized form shown in (63) is validated. 

As a result, the rank of ,t sZ  is bounded from above by the rank 
of diagonal matrix G. 
 

B. Example 2  

The second example is two separated plates that are 
horizontally displaced. One is located at (0≤ x’ ≤ A, 0≤ y’ ≤ A, 
z’=0), the other at (3A≤ x ≤ 4A, 0≤ y ≤A, z=0). It is clear that 

)0,','(' yyxxrr −−=− vv
 with )4,2()'( AAxx ∈−  and 

),()'( AAyy −∈− .  The wavelength is 1 m, thus 0 2k π=  in 

Green’s function. The A is chosen as 1 wavelength. A uniform 

 
(a) 

 
(b) 

Fig. 1. Comparison between the matrix generated from the 
proposed approach and the original matrix for a line example. (a) 
Real part of the first column of Z. (b) Imaginary part. 

 
(a) 

 
(b) 

Fig. 2. Comparison between the matrix generated from the 
proposed approach and the original matrix for a plate example. (a) 
Real part of the 998-th column of Z. (b) Imaginary part. 
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discretization along both x and y is used with a space step 
∆=1/40 λ.  

The Fourier transforms shown in (14) for sources, 
observations, and Green’s function are performed in a common 
range of 

1 2( , ) (0, 4 )a a A= , and 
1 2( , ) ( , )b b A A= − . Thus, we 

have 
2 2

1 1

2 2

1 1

2 2

1 1

''

( ')( ')

( ) ( , )

( ) ( ', ') ' '

( )

(| ' |,| ' |) ( ') ( ')

yixi

yixi

yixi

b a jk yjk x
i b a

b a jk yjk x
i b a

i

b a jk y yjk x x

b a

B k b x y e e dxdy

F k f x y e e dx dy

G k

g x x y y e e d x x d y y

−−

−−

− −− −

=

=

=

− − − −

∫ ∫

∫ ∫

∫ ∫

, 

(66) 
where 

2 1 2 1

2 2
, ,   , 0, 1, 2,...

( ) ( )xi yik m k n m n
a a b b

π π= = = ± ±
− −

.   (67) 

 Based on (66), the diagonal matrix G is obtained with 
Fourier mode index ( / 2 1, / 2)m nx nx∈ − + , and 

( / 2 1, / 2)n ny ny∈ − + , where nx is the number of sampling 

points along x which is 
2 1( ) / 1nx a a= − ∆ + , and ny is the 

number of sampling points along y which is 

2 1( ) / 1ny b b= − ∆ + . The B matrix and F matrix are 

constructed based on (18) and (20). Specifically, their ij -th 
element for this example is 

' '2 2
, ,,  .  xi j yi j xi j yi jjk x jk y jk x jk y

i j i je e− − − −= ∆ = ∆B  F    (68) 

We then construct ,t s
Z  based on (23), thus 

−=, H 1 H( ) ( )t s
Z B B B GF . 

 To assess the accuracy of the proposed approach, we 
compare the above with the original matrix that is directly 
constructed as the following 

π

− − + −

= ∆
− + −

2 2
0

( ' ) ( ' )

, 2

,
2 24 ( ' ) ( ' )

i j i j
jk x x y y

t s

orig ij

i j i j

e

x x y y
Z .           (69) 

In Fig. 1, we plot a randomly selected column (column 998) of 
the matrix obtained from the proposed approach in comparison 
with that of the original matrix shown in (69), an excellent 
agreement can be observed. In addition, we compute (65) to 
assess the entire matrix error, which is shown to be 2.3%.  
 

C. Example 3  

 We also consider the same two plates as simulated in the 
above example but displaced normally by 2A. Thus, one plate is 
located at (0≤ x’ ≤ A, 0≤ y’ ≤ A, z’=0), while the other is at (0≤ x 
≤ A, 0≤ y ≤A, z=2A). This is a 3-D configuration of sources and 
observers. It is clear that ),','(' hyyxxrr −−=− vv  with 

),()'( AAxx −∈−  and ),()'( AAyy −∈− . The other 

parameters are the same as used in the above example.   
The Fourier transforms shown in (14) for sources, 

observations, and Green’s function are performed in a common 
range of 

1 2( , ) ( , )a a A A= − , and 1 2( , ) ( , )b b A A= − , and (0, 

h=2A). Hence, we have 

2 2

1 1

2 2

1 1

2 2 2
0

2 2

1 1

0

'' '

0

( ') ( ') ( ')

2 2 2

( ) ( , ) ( )

( ) ( ', ') ( 0) ' ' '

( ) ( ' )
( ') ( ') ( ')

yixi zi

yixi zi

h b a jk yjk x jk z
i b a

h b a jk yjk x jk z
i b a

jk x x y y z z
b a

i b a

B k b x y z h e e e dxdydz

F k f x y z e e e dx dy dz

e
G k z z h

x x y y z z

δ

δ

δ

−− −

−− −

− − + − + −

= −

= −

= − − ×
− + − + −

∫ ∫ ∫

∫ ∫ ∫

∫0

( ')( ') ( ') ( ') ( ') ( ')yixi zi

h

jk y yjk x x jk z ze e e d x x d y y d z z− −− − − − − − −

∫ ∫

 

(70) 
The above can be further evaluated as 

2 2

1 1

2 2

1 1

2 2 2
0

2 2

1 1

''

( ') ( ')

2 2 2

( ')( ')

( ) ( , )

( ) ( ', ') ' '

( )
( ') ( ')

( ') ( ')

yizi xi

yixi

zi

yixi

b a jk yjk h jk x
i b a

b a jk yjk x
i b a

jk x x y y h
b ajk h

i b a

jk y yjk x x

B k e b x y e e dxdy

F k f x y e e dx dy

e
G k e

x x y y h

e e d x x d y y

−− −

−−

− − + − +
−

− −− −

=

=

= ×
− + − +

− −

∫ ∫

∫ ∫

∫ ∫

(71)

 

Different from (69), now the original matrix becomes 

π

− − + − +

= ∆
− + − +

2 2 2
0

( ' ) ( ' )

, 2

,
2 2 24 ( ' ) ( ' )

i j i j
jk x x y y h

t s

orig ij

i j i j

e

x x y y h
Z  .       (72) 

 
(a) 

 
(b) 

Fig. 3. Comparison between the matrix generated from the 
proposed approach and the original matrix for the second plate 
example. (a) Real part of the 800-th column of Z. (b) Imaginary 
part the 800-th column of Z. 
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In Fig. 3, we plot a randomly selected column (column 800) of 
the matrix obtained from the proposed approach in comparison 
with that of the original matrix shown in (72). An excellent 
agreement can be observed. In addition, we compute (65) to 
assess the entire matrix error, which is shown to be 2.4%.  
 In addition to the above three examples, we have also tested 
many other examples. They all demonstrate the correctness of 
the factorized form shown in (23) thus (26) obtained via a 
Fourier transform of the integral operator. In fact, performing a 
Fourier transform on a convolution integral is the technique 
underlying existing FFT-based IE solvers. Therefore, in 
addition to a theoretical proof developed in Section II.C, we 
also numerically prove that one can use G’s rank to analytically 
analyze the rank of an IE operator irrespective of the operator 
kind, scatterer shape, and electric size.  
 

IV.  NUMERICAL VALIDATION OF THE RANK ’S DEPENDENCE 

WITH ELECTRIC SIZE  

In Section II.D, we theoretically deduce the rank’s growth 
rate with electric size from the Fourier transform of Green’s 
function. In this section, we numerically validate our 
theoretical findings of the rank by performing an SVD to find 
out the minimal rank required by a given accuracy.   

 

A. Two separated lines  

The first example simulated has a 1-D distribution of 
sources and observers. It is the same as the example described 
in Section III.A, but the side length A is increased from 1λ to 
100λ to study the rank’s dependence with electric size. The 
dense matrix that characterizes the interaction between the 
source line and the observation line has the following elements 

0| ' |

| ' |

i jjk x x

ij
i j

e

x x

− −

=
−

Z  .                            (73) 

The mesh density chosen is 10 segments per wavelength. After 
constructing Z based on (73), we perform an SVD on Z. In Fig. 
4(a), we plot the normalized singular values sorted in a 
descending order obtained from 1λ to 100λ versus singular 
value index. There are 100 lines in this figure. However, they 
all overlap with each other above 10−14 accuracy. The singular 
values below 10−14 are more than 14 orders of magnitude 
smaller than the largest singular value. Due to machine 
precision, these singular values cannot be accurately obtained 
by computers, thus they differ from one simulation to the other 
simulation, and hence cannot be used to study the rank’s growth 
with electric size.  
 In Fig. 4(b), we plot the rank of Z versus electric size for two 
different accuracy settings. The rank is determined by the 
number of singular values that satisfy the following criterion 

ε
σ
σ ≥

1

i  .                                   (74) 

where iσ  is the i-th singular value, 1σ  is the largest singular 

value, and ε  is the accuracy requirement, which is chosen as 
10−4 , and 10−8 respectively. It is clear that the rank is a constant 
regardless of electric size. This is not a surprising result since it 
is already shown by Fig. 4(a). Since the singular-value lines for 

different electric sizes are all on top of each other, for a given 
accuracy, the resulting horizontal index, thus rank is the same 
for all electric sizes.  Thus, the theoretical result shown in (56) 
is verified. 
 

B. Two Configurations of a Plate-Plate Interaction  

 In the second example, we consider two separated plates in 
two configurations. In one configuration, the two plates are 
located in the same plane; while in the other configuration; one 
plate is normally displaced from the other plate. The two 
examples are the same as the two example described in Section 
III.B and Section III.C respectively. The only difference is that 
instead of having a fixed A, we increase A from 1λ to 60λ to 
study the rank’s dependence with electric size.  
 We first study the effect of mesh density on the rank’s 
growth with electric size. Since SVD is computationally 
intensive, it does not permit a fine discretization for studying a 
large electric size. If the effect of mesh density on the rank’s 
growth rate is little, we can use a coarser mesh and thereby a 
smaller matrix to study the rank for the same electric size. In 
Fig. 5, we plot the rank determined with ε = 10−4 for this 
example versus electric size for three different mesh densities: 

 
(a) 

 
(b) 

Fig. 4. Rank study of the interaction between two separated lines. 
(a) Singular value distributions for 100 different electric sizes 
from 1 to 100 wavelengths. (b) Rank for two accuracy 
requirements versus electric size.   
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λ/2, λ/3, and λ/5 respectively. As can be seen from this figure, 
the three lines are almost on top of each other. Therefore, in this 
and the example shown in next subsection, we use λ/2 as the 
mesh criterion so that larger electric sizes can be studied with 
SVD.  
 In Fig. 6(a), we plot the normalized singular values obtained 
from 1λ to 40λ versus singular value index. There are two sets 
of lines in this figure. The solid red lines correspond to the 
in-plane configuration of the two plates, while the dashed blue 
lines are the singular values of the normally displaced plate 
configuration. Each set has 20 lines representing singular 
values from 1λ, 3λ, 5λ, …, to 39λ respectively from left to 
right. It can be seen clearly that different from the 1-D case 
shown in the first example, when electric size increases, the 
entire singular value distribution is expanded to the right in 
both plate configurations, thus requiring more singular values 
and hence a larger rank to reach the same accuracy.  However, 
for any given accuracy within machine precision, the rank for 
both configurations is shown to be less than the matrix size, 
which is the largest singular value index, as can be seen from 
Fig. 6(a). Therefore, the matrix has a low-rank property.  
 In Fig. 6(b), we plot the rank versus electric size of A from 1λ 
to 60λ for both configurations of the plates. Case 1 represents 
the case where the two plates are on the same plane, while Case 
2 is the other configuration. For Case 2, we plot the rank versus 
electric size for four different accuracy settings from ε =10−12, 
10−10, 10−8, to 10−4. The scaling of the rank is much closer to the 
linear scaling than to the quadratic scaling, both of which are 
plotted in Fig. 6(b) for reference. It can also be seen that the 
scaling rate for a lower-order accuracy setting is larger than that 
of a higher-order accuracy setting. As for Case 1, the rank is 
shown to grow slowly with electric size. The growth rate is less 
than linear. It is clear that the rank required by Case 2 is larger 
than that in Case 1 for the same accuracy. This can be easily 
understood by comparing (72) with (69). The representation of 
Green’s function in (72) requires more Fourier modes than that 
in (69) because h is involved, and its electric size increases. In 
Case 1, the Green’s function for the two-plate interaction is 
solely determined by the 2-D x-y plane information, while in 

Case 2, the Green’s function is contributed by the third 
dimension. Therefore, the growth rate of the rank with electric 
size for Case 1 is still governed by a 2-D based growth rate 
which is less than linear, while the rank of Case 2 is closer to a 
3-D based rank.   

Discussion: From Fig. 6(a), for Case 2, it can be seen that 
there is fairly wide a range of index i within which the 
normalized singular values are quite flat. After this range, the 
normalized singular values drop more rapidly. This 
phenomenon is what is exactly predicted by (35). The 
wavenumbers closest to 20k

 

have the largest singular values, 

and these wavenumbers distribute themselves on a spherical 
shell. If one stops at this range to observe the rank, he will get a 

 
(a) 

 
(b) 

Fig. 6. Rank study of the interaction between two separated plates 
in two configurations. (a) Singular value distributions for 20 
different electric sizes from 1 to 40 wavelengths with a step of 2 
wavelengths (Red solid: Case 1; Blue dashed: Case 2). (b) Rank 
versus electric size for both configurations required by different 
accuracy criteria. 

 
Fig. 5. Rank versus electric size generated with three different 
mesh densities. 
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quadratic growth with the electric size. For 2-D distributions, if one stops at the flat range to observe the rank, he will get a 
linear scaling. However, the resulting representation cannot be 
used because the error is too large. In other words, by only 
keeping Fourier modes distributed on a spherical shell (in 3-D 
cases) or circle (in 2-D cases) closest to 2

0k , the resultant error 

is too large to use. Therefore, one has to incorporate also those 
modes whose wavenumbers are away from 2

0k
 

by a certain 

distance, i.e. inside a volume of a spherical ring with inner 
radius of 

0k  and outer radius of
0 kk + ∆ as shown by (52), to 

obtain an accurate representation of the integral operator. The 
height of this volume, 

k∆ , is inversely proportional to 

frequency asymptotically in 3-D distributions. That is why the 
resultant rank is linearly proportional to frequency. In addition, 
one may observe the growth rate with electric size changes if 
different accuracy requirements are set, as shown also by Fig. 
6(b). It is also higher than linear when the accuracy setting is 
low for 3-D distributions. That is because the growth rate has 
not converged yet. One can increase the accuracy setting until 
the growth rate does not increase any more. Upon convergence, 
the growth rate is linear, which is proved by the theoretical 
bound of 

k∆ .  

 

C. Two separated spheres 

In the third example, we consider two separated spheres. 
One sphere is centered at the origin with diameter A, and the 
other is centered at (2A, 0, 0) with the same diameter. The λ is 1 
m, and A is increased from 1λ to 40λ. The mesh density is λ/2. 
The sources and observers are located on the spherical surface. 
The matrix corresponding to the source-observation interaction 
has the following element 

0| ' |

| ' |

i jjk r r

ij
i j

e

r r

− −

=
−

Z

r r

r r  .                            (75) 

The matrix size, which is the number of sources (column 
dimension of the matrix) as well as the number of observers 
(row dimension of the matrix), ranges from 13, 315, 1018, 
2124, to 17204 when the electric size of the sphere diameter A 
increases from 1λ to 40λ. The SVD is then used to compute the 
rank of matrix Z for a given accuracy. In Fig. 7(a), we plot the 
normalized singular values obtained from 1λ to 40λ with a 
spacing of 2λ versus singular value index. There are 20 lines in 
this figure. The singular value lines are shown to expand to the 
right when electric size increases. In Fig. 7(b), we plot the rank 
of Z versus electric size for four different accuracy settings. 
The linear scaling line is also plotted for reference. As can be 
seen, the growth rate of the rank with electric size agrees very 
well with linear scaling. In Fig. 7(c), we plot the rank of Z 
obtained with four different accuracy settings versus matrix 
size N. It is clear that the rank scales with N as N0.5. This is 
because the rank scales linearly with the electric size, while N 
of a surface distribution of sources and observers scales with 
electric size quadratically.  

 

(a) 

 
(b) 

 
Fig. 7. Rank study of the interaction between two separated 
spheres. (a) Singular value distributions for 20 different electric 
sizes from 1 to 40 wavelengths with a spacing of 2 wavelengths. 
(b) Rank for four accuracy requirements versus electric size.  (c) 
Rank for four accuracy requirements versus N. 
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D. A suite of electrically large examples 

To further verify the proposed theoretical analysis, we 
numerically determined the rank of a plate, cylinder, open cone, 
cone sphere, and sphere, resulting from a surface-based electric 
field integral operator (EFIE) by ACA+ [1, 6] and SVD from 
small to very large electric sizes. A detailed description of this 
scheme can be found from [4] and Section IV.A in [5]. 
Basically, we first use ACA+ to obtain a factorized low-rank 
form, and then perform an SVD on the factorized form to find 

out the minimal rank required by accuracy. The ACA+ is used 
here because a direct SVD is very expensive when matrix size 
is large. For all these examples at all the electric sizes we 
simulate, a mesh size of 0.1 λ is used. By an H-matrix partition 

scheme (Section II.D in [5]), we partition the dense system 
matrix into admissible blocks and inadmissible blocks level by 
level. The admissible blocks are blocks that satisfy 
max{diam( ),diam( )} dist( , )t s t sηΩ Ω ≤ Ω Ω , where η = 1 is 

used. In an H matrix, the admissible blocks are represented by 

   
                                 (a)                                                                                                (b) 

 

 
                         (c) 

 
           (d)                       (e) 

Fig. 8. Rank generated by ACA+ and SVD with respect to electric size for a variety of scatterer shapes. 
(a) Plate. (b) Cylinder. (c) Open cone. (d) Cone sphere. (e) Sphere. 
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low-rank matrices, while inadmissible blocks are stored in a 
full matrix format. The leafsize used for the multilevel tree 
construction in the H-matrix partition is 32. The error used in 

ACA+ and SVD truncation is 10−4. We then find the maximal 
rank kmax among all the admissible blocks at all tree levels for 
each example simulated. It is clear that kmax corresponds to the 
rank of the matrix block that has the largest electric size in each 
example. In Fig. 8, we plot the kmax versus electric size for all of 
the five different scatterers. As can be seen clearly, kmax is 
O(ka). Thus it verified the proposed theoretical analysis.  

V. CONCLUSION 

A theoretical study is conducted in this work to analyze the 
minimal rank of integral operators encountered in 
electrodynamic analysis and its dependence with electric size 
for a prescribed error bound. We highlight the fact that the rank 
generated by singular value decomposition is the minimal rank 
required by accuracy. The SVD-based low-rank approximation 
does not rely on the separation of observation and source 
coordinates for separated geometry blocks, while methods that 
separate observation and source coordinates such as 
interpolation and plane wave expansion based methods do not 
lead to a minimal rank approximation of the electrodynamic 
kernel. As a result, the rank obtained from these methods is 
observed to scale with electric size at a much higher rate. 

The SVD analysis is numerical, which prevents a study of 
the rank for an arbitrarily large electric size. By recognizing the 
relationship between an SVD analysis and a Fourier analysis in 
a linear and shift-invariant system, we successfully develop an 
analytical approach to analyze the rank of an integral operator, 
and reveal the relationship between the rank and the electric 
size for satisfying a prescribed accuracy. The rank of the 
interaction between two separated geometry blocks is shown to 
scale linearly with the electric size of the block diameter in a 
general 3-D problem. As long as the rank is smaller than the 
matrix dimension, the matrix is called a low-rank matrix. We 
thus theoretically prove the existence of an error bounded 
low-rank representation of electrodynamic integral operators 
irrespective of electric size and object shape. Moreover, 
numerous results are generated to validate both the proposed 
analytical approach for analyzing the rank and the findings of 
this work on the rank’s asymptotic dependence with electric 
size. The implication of this work on the complexity of 
IE-based electrodynamic computation using low-rank methods 
is also discussed. 

The theoretical proof developed in this work provides a 
theoretical basis for employing and further developing 
low-rank matrix algebra for accelerating the integral equation 
based computation of electrically large problems. 

Moreover, through the proposed theoretical study of the rank 
of the integral operator, we have found that the Fourier 
transform of Green’s function has a direct relationship with the 
singular values of the inverse of the finite element matrix. As a 
result, the low-rank property of the IE operator, the inverse of 
IE operator, and the inverse finite element matrix is 
demonstrated by a single proof.  
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