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Abstract—The emerging wireless media delivery services have due to heterogeneous channel conditions and heterogeneous
placed greater demands for wireless networks to support high- deadlines imposes further difficulties for jointly scheduling
throughput applications while minimizing the delay of individual multiple deadline-constrained unicast sessions. In this paper,

packets. In this paper, we investigate using inter-session network . - N . .
coding to send packets wirelessly for twodeadline-constrained we are interested in using inter-session network coding (NC)

unicast sessions. Specifically, each unicast session aims to transmit0 improve the deadline-constrained streaming throughput in
a stored video file, whose packets have hard sequential deadlinethis setting.

constraints. We first characterize the corresponding deadline- It is well-known that without deadline constraints, NC can

constrained capacity region under heterogeneous channel condi- increase the throughput of communication networks [1], [2]

tions and heterogeneous deadline constraints. We show that this_ | . . . .. . . L
deadline-constraigned capacity region can be achievedsymptoti- while still admitting efficient implementation [3], [4]. While it

cally by modifying the existing generation-based schemes. Despite Nas been shown that NC is particularly attractive for wireless
its asymptotic optimality, the generation-based scheme has poor broadcast in our prior work [5], [6], it is notable that NC

performance and high complexity in the practical regime small & can also improve the throughput for multiple unicast sessions
medium file sizes. To address these problems, we further developaS well [7]. However, if not properly designed, NC could

new immediately-decodable network coding (IDNC) schemes introduce “decoding delay,” i.e., the receiver may not be able to
that admit superior performance in the practical regime while Y Yy, 1€, y

being provably optimal in the asymptotic regime. In contrast decode the information packet right away. For example, in the
to the existing delay/deadline-based IDNC results, which focus generation-based NC schenid$, each user must accumulate

on a single multicast session (intra-session network coding) with g sufficient number of coded packets from a generation before

homogeneous channel conditions, our new IDNC design takes full jy can decode any information packet. Such a long decoding

account of channel heterogeneity and provides the first rigorous delay can be detrimental to delay-sensitive applications such as
asymptotic optimality analysis for two unicasts with (potentially ~. ) . .

heterogeneous) hard dead“ne Constraints_ V|de0 Stream|ng Heﬂce, hOW to deS'gn a NC SCheme SubjeCt
to the deadline constraints becomes a challenging problem.

Existing studies have discussed different aspects of inter-

|. INTRODUCTION session NC transmission schemes. However, they either do

The advance of broadband wireless technologies has 8@t account for the lossy wireless network setting, or do not
abled a number of innovative wireless services. It is no@@nsider the delay aspect. Specifically, [8]-{10] discuss how to
common to use 3G/4G cellular networks or WiFi to providéesign and control intersession-network-coded traffic for the
multimedia services, most of which have stringent Quality-ogetting of lossless channels. [7] proposes a practical network
Service (QoS) requirements. Among them, video streamifgding scheme for multiple unicast-sessions while [11], [12]
over wireless networks has gained a significant amount @laracterize the corresponding information-theoretic capacity
interest. For such multimedia traffic, unicast is the prevalefgion. [13] combines intra- and inter-session network coding
mode of operation since different users often request differdft enhance the throughput of unicast flows. Recently, [14]
contents. In this paper, we consider sending two unica#taracterizes the capacity of 2-session unicast for an access-
sessions over an unreliable wireless channel. Each unida@int network. These studies focus on throughput without
session downloads a stored-video file from the base-state#nsidering delay. In contrast, our paper focuses on the delay
(BS). Note that in video streaming, each packet has a delivé§Pect when coding over two unicast sessions. Readers are re-
deadline, which is sequentially placed along the time horizd@rred to [6], [15]-[19] and the references therein for the delay
(e.g., the first frame’s deadline is at the 1/30 second, wha@alysis in the simplérsetting of a single multicast/broadcast
the second frame’s deadline is at the 2/30 second, and S&ssion.
on). If a packet is not delivered before the deadline, it is In this work, we first modify the generation based (GB)
considered useless to the receiver. Unfortunately, the randé@fieme to achieve the hard-deadline-constrained capacity
and unreliable wireless channel makes it much more diffic@symptotically. We then show the bad performance of the
to meet the deadline constraints of video packets, while maf{art-up phase for GB scheme. Further, we analyze the delay

taining a high system throughput. Meanwhile, the asymmetiefficiency that causes GB scheme to perform poorly in the
practical regime of median file sizes. To combat the delay
This work has been partially supported by the NSF grants CNS-0721484,
CNS-0721477, CNS-0643145, CCF-0845968, CNS-0905331, and a grantlt is well known [14] that even without the delay consideration, the
from Purdue Research Foundation. Part of this work has appeared in Allert@pacity / throughput study of coding over multiple unicast sessions is much
Conference 2011 as an invited paper. more challenging than that of coding over a single multicast session.



inefficiency of most existing NC schemes, recent practicab may be different. We assume thet= A\; N; = A5 N,, that
protocols have focused more on the “immediately decodable’ the total display tim&” for each video file is the sarhe
NC (IDNC) schemes [5]-[7], [20]. In this work, we are We consider random and unreliable wireless channels. Both
interested in developing new IDNC schemes to maximiaesers can overhear the transmission with certain probability.
the throughput for each unicast session under the sequerfiat j = 1,2, we use(C;(t) = 1 to denote the event
deadline constraints of stored-video streaming. Unfortunatefigat userj can receive a packet successfully at timeand
the performance analysis of these IDNC schemes turns outdg(t) = 0, otherwise. In this work, we assume channels are
be highly non-trivial. In contrast to our prior work [5], [6] independently and identically distributed (i.i.d.) across time,
that focus on a single multicast session with homogenecaisd C;(t) and C(¢) are independent with each other. The
channel conditions and deadline constraints, the design antcess probabilities for channels 1 and 2 are denoteg by
performance analysis of the IDNC scheme is much moawmdp,, respectively. We consider heterogeneous channels, i.e.,
complicated for unicast-sessions because of the asymmaetrymay be different fromp,. We assume that both; and
due to heterogeneous channel conditions and heterogenesuare known to the BS. We also assume that at the end of
deadline constraints (see further discussions in Section ¥ach time slot, the BS has perfect feedback from both users
Nonetheless, we establish the asymptotic optimality of thiegarding whether the transmitted packet has been successfully
proposed IDNC scheme when the file sizes are large. eceived by each user. In one slot, the BS can code a set of
this analysis, we use a novel form of Lyapunov functiorynexpired packets together and send the resultant coded packet
which reveals new and intricate dynamics of an IDNC systenm all users. When coding is used, we say that the original
Further, our numerical simulations show that the throughput pécket is correctly received only if it can be “decoded” from
the IDNC scheme is close-to-optimal even for small file sizethe coded transmission before the corresponding deadline.
We believe that our study on the 2-user case uncovers nonOur goal is to design a coding/scheduling policy that maxi-
trivial and interesting insights that could serve as a precursuizes the number of successful (unexpired) packet receptions.
to the full design and analysis for the case of a larger numidore specifically, letD;(n) = 1 if user j can successfully
of users. Prior studies of similar IDNC schemes either do ndecode/recovek; ,, before its deadline; ,,; and D;(n) = 0,
consider deadline-constraints at all [21], or only consider tlitherwise. We define the total number of unexpired successes
multicast case [6]. To the best of our knowledge, there hagg leuccessé Zﬁgl Di(n) and N;UCCESS% Zgil Ds(n).
been no analytical studies in the literature that analyze t&ir goal is to maximize the minimum of the normal-
throughput of IDNC schemes subject to sequential deadli®d throughputs, between the two users, i.e., maximizing
constraints in the multi-unicast setting. min (E{Ni””e“} E{Né““es})_

The rest of this paper is organized as follows. Section I Moo N
introduces the system model. Section Il discusses the capacify| Tt DEADLINE-CONSTRAINED CAPACITY REGION

region with deadline constraints. Section IV introduces the . . . .
Consider an interva{0, T'|. Suppose that during this inter-

generation based scheme for sequential hard deadline cor]— T kets f ion 1 be deli d
straints. Section V describes the IDNC schemes for deadlif@: On average, 1" packets from session 1 can be delivere

constrained streaming. Section VI provides the throughp ?fore their deadlines, wherg is termed the achievable rate

) i e
analysis of IDNC schemes under heterogeneous deadline cgh-USer 1. Obviouslyy; < - sincethe best scenario is to

straints and heterogeneous channel conditions, which is Ve all N1TpaCkkets l?eforéf :.)\1];[1_ S|m|||ar|g/, Zuplj_posed_
main contribution of this paper. Section VIl presents the sing%n average, I' packets from session 2 can aiso be delivered in

. ; 1 .
ulation results for the proposed IDNC schemes. Section V IS period, Wh.ef% < 3, Isthe achievable rate for user 2.In
concludes the paper. 14] and [22], it is shown that even when not considering the

sequential deadline constraints, the best possible achievable

1. THE SETTING rate pairs(ri, r2) must satisfy the following two inequalities
We consider the scenario that the base station (BS) Sers}ggultaneousl;}.
two video files to2 users,d; andds, respectively. The two s 2 <1 2)
video files containV; and N, packets, respectively, and are o 1=(1=p)(1—-p2)

N1 N2 H -
denoted by{le”}nil’ {sz”}"zl' respectively. We some . 2If the display time of one file is longer than that of the other, then after the

times use session 1 and session 2 to refer to (the transmissi@pletion time of the other file (before which both files were inter-session
of) the data packets faf; andds, respectively_ coded) we can treat the remaining packets as a single, separate unicast session,

We define the time when the BS starts transmission as E{ﬁa’ch is much easier to deal with, since there is no other session to be coded
ogether.

time Ori_gin, and assume that all paCketS'ar'e available at the€rhe intuition behind these two inequalities are as follows. Consider (2)
BS at time0. We assume slotted transmission. Each packi@tt. Since we would like to seneyT packets tods, transmitting those
X;n (j = 1,2) has a deadline;,, such that after time slot packets (either in an uncoded or in a coded way) would req%l?é number

) o . of time slots on average. Note that even though sometimes we may use NC
Tjn the packele is no longer useful for user. We assume to serve two destinations simultaneously, roughly speaking before doing so

that forj = 1,2 some version of each session-2 packet needs to be received by at least one of
the destinations before it can be mixed with a session-1 packet [14], [22]. As
Tim =Ajn, MNE {L cee Nj}7 (1) aresult at leas _(1_;2’1)T(1_p2) number of time slots should be dedicated

h \. is th tial) deadli . tf . to sending session-2 packets (not mixing with any session-1 transmission).
wherea; Is the (Sequen 'a) eadline Increment 10r SEsgIoN gjnce the total time budget B, the above heuristics imply (2). By swapping

In this work, we consider heterogeneous deadlines N;eand the roles of sessions 1 and 2, we also have (3).



each generation, the BS encodes all the packets that belong
to this generation together and transmits the coded packets.
After receiving enough coded packets, the receiver can decode
the entire generation. The BS then moves on to the next
generation. Since the receiver needs to collect enough packets
;. before decoding, a GB scheme generally incurs a decoding
delay (the larger the generation size, the longer the decoding
delay). For the following, we will show that the GB scheme
in [14] can be modified to achieve the asymptotic capacity
in Proposition 1, and then elaborate on its problem in the
practical regime of median file sizes.

Specifically, for sessions 1 and 2 we choose the correspond-
ing generation sizes to h&f; and M-, respectively, and we
enforce that\; M; = A2 M,. (For practical implementation,
we can relax this requirement.) In this way, both sessions will
have the same number of generations. Tih generation
Fig. 1. Asymptotic capacity region for a hard-deadline-constraitvedl of session-1 packets can be coded together with [ttte
unicast system. Subfiguyesl(a) tlo (d) represent four possible_ cases depen&'@ﬁeraﬂon of session-2 packets. We then note that the GB
on the location of the pow(tx, Tz) andthe red and the blue line segments. . . . .

scheme proposed in [14] cannot be used directly in a deadline-
constrained system due to the following two observations.

First, recall that our goal is to send all; and N, packets
(before their deadlines) within the intervé), 7] whereT =

Since the capacity without deadlines is always an upper bouttf V1 = A2N2- Therefore, the best scenario bis to sqjtaiz the
of the capacity with deadlines, the above analysis proves figle (1/A1,1/A2). However,(1/A;,1/X) may be outside the

following outer bound on the deadline-constrained capacit _eadline-constrained capacity outer-bound in Proposition 1,
also see Fig. 1(a,c,d). In this case, we say that the system is

Proposition 1. For any scheme in a deadline constrained sysmder-provisioned23]. The problem for an under-provisioned
tem, the achievable throughput Ve(ég'{foT}’ %) system is that it is simply impossible for every packet to meet
mustbe in the following region: its deadline constraint. However, a GB scheme will encode
1 1 all packets of the same generation together and decode all
R = {(7“1,7"2) :0<r < )\—,O <re < o and (ry,72) the packets together. Therefore, if there is any packet that
! 2 cannot meet its deadline constraint, then the entire generation
satisfies(2) and (3) simultaneousl}. (4)  cannot be decoded, which greatly reduces the throughput. Our
solution to this problem is to deliberately discard some packets
so that those packets do not participate in the GB scheme. In
s way, those not-discarded packets have a better chance to
decoded in a GB scheme. To facilitate the exhibition, we
odify the generation based scheme proposed in [14] to fit
the sequential hard deadline constraints. The new generation

i tth traints by (2 d (3 . ased scheme is different from the one in [14] from two
Ines represent the constraints by (2) an .( ), reSpectiveld nects: First, suppose that the best possible scenario (in which
The shadowed area indicates the asymptotic capacity reggfﬁ)

. . : packets can be successfully decoded in time) is simply
depending on the relative location of the po(rfg, %2) and . :
the red and blue line segments. not sustainable by the underlying channel qualipy, p2).

By simil s | that if codi .Namely, when the rate paifl/\1,1/)2) violates either (2)
y simiiar analysis, we can aiso prove that It coding Iz, (3), it is simply impossible to meet the deadlines of all
prohibited, then the non-coding capacity region of a dead“nﬁéckets. Recall that this is thender-provisionedcenario. By

constrained system becomes deliberately discarding some packets we relax the deadlines

—

Y

N

|

T2 ™
p I —p) = ®)

We will prove later that for sufficiently larg&’, the above
capacity outer bound can be achieved by either a generati
based scheme or an IDNC scheme. The region in (2) and
thus describes the asymptotic capacity region for a deadliqﬁ
constrained system.

We illustrate the capacity region in Fig 1. The red and bl

1 1 -di -di
puncoded __ {(7“177“2) 0<r < —,0<ry<—, and for those not dlsca.rded packet;. Therefore, tho;e not-discarded
A1 A2 packets are less likely to expire. So we also incorporate the
(r1,72) satisfies : + 2 < 1}. (5) dropping mephanism for .generation .based scheme for the
D1 P2 under provisioned case since otherwise decoding would be
extremely difficult.
IV. ACHIEVING THE ASYMPTOTIC CAPACITY BY A Second, there is little time to perform coding for the first
GENERATION-BASED SCHEME few packet since the first few packets expire very quickly.

The generation-based (GB) scheme is widely used in exi€ur solution to this issue is to drop the first generation of
ing work [4], [14] for throughout-oriented analysis. Specifboth session 1 and session 2, and start encoding generation-2
ically, the GB scheme divides the whole file into severgdackets from the very beginning. In this way, we allow more
generations and transmits each generation sequentially. Wittime for all the subsequent encoding/decoding.



After considering these two points, we can design generation size is, intuitively the better the throughput for
Generation-Based scheme for the hard deadline constraintg@seration based scheme. However, in practice, if the size of
follows. For simplicity, we usey to denote a constant valueeach generation is large, then the performance for the start-up
used throughout the algorithm, which can be easily computpdase may be poor. Because the first generation is dropped,
by the BS. That is, the larger the generation size is, the poorer the performance in

the initial period. On the other hand, if the generation size is
A 1 1 small, then the law of large numbers cannot kick in. There will
7 = min ( T/ Y /> ) (6) be alarge chance that, an insufficient number of coded packets
pr T pi¥pa—pips Pitpa—pip: | P2 for generation; are received before timg — 1)M; A, (after
this generatiory + 1 will start). If this happens, all the coded
packets have to be dropped and cannot be decoded. Thus, the

§ GENERATION-BASED-SCHEME throughput will suffer.
1: Drop the first generation of both session 1 and session 2These insights can be verified through our simulation results
SetGenlD« 2 comparing the performance for both cases with the small file

2: For j = 1,2 choose arbitrarilyM;(1 — min(v, 1)) user- size and large file size. Here we use “G-B 4-4” in short
J packets from theGenID-th generation andirop those of generation based scheme with generation size 4 and 4,
packets, i.e, we remove those packets from any futurespectively, for session 1 and session 2. “G-B 40-40” denotes

consideration. generation based scheme with generation size 40 and 40,
3 for timet = (GenID — 2) * \;M; + 1 to time ¢t = respectively. “IDNC” denotes the IDNC scheme that we would
(GenIlD — 1) x \; M; do discuss in Section V. “upper bound” denotes the upper bound
4:  if there is still a user-packet of theGenID-th gener- derived from Proposition 1, while “upper bound for uncoded”
ation that is not heard by any uskren denotes the upper bound derived from (5). We set= 3,
5: The BS transmits one of such packets (that is not, = 3, andp; = p». In Fig. 2 we compare the performance
heard by any user) uncodedly. for large file sizes, and we séf; = 40000, N, = 40000. We
6: else can see that, G-B 40-40 performs better than G-B 4-4, since
7: After all GenlID-th packets have been heard by afrger generation size can bring higher throughput. In Fig. 3

least one user, using the idea of Random Lineafe compare the performance for small file sizes, and we set
Network Coding [3], the BS generates a single code®; = 400, N, = 400. We can see that most of time G-B 4-4
packets by randomly mixing all user-1 packets in theuffers less in throughput compared with G-B 40-40, as G-B
GenlID-th generation that have been heard only by-4 drops less packets in the beginning.

user 2, and all user-2 packets that have been heargzs can be seen in the figures, although the GB schemes
only by user 1. The BS sends the RLNC-generategte asymptotically optimal, they have poor performance in

papket. a practical regime of median file sizes. Most of the time,
8. end if their performance is barely better than the non-coded so-
9: end for lution (as compared with the upper bound for non-coded

10: In the end of timet = (GenID — 1) x \; My, user 1 (resp. schemes). Further, the GB scheme also suffers from high
user 2) will decode if it has received enough coded packeiscoding complexity when a large generation size is used.
of the GenlID-th generation. Buffer management is also an issue in a GB scheme since

11: GenID<- GenID+1 and go back to Line 2. the users need to store all the received coded packets before

decoding in the end. In the remaining sections of this paper,
It is easy to see that the generation based scheme is througb-propose a new Immediately Decodable Network Coding
put optimal in the asymptotic sense (i.e., when the generatiQibDNC) scheme that addresses the above issues, which has
size is sufficiently large, and when the file siz&s and N>  superior performance at median file sizes, and is also provably
approach infinity [4]). To see this, consider first the ovemptimal in the asymptotic regime.

provision case. Suppose the size of each generation is large

enough. Sincey > 1, by the law of large numbers, we can

repeat the analysis in Section Ill. Then, we have, for close-to-

1 probability, each generation can be transmitted successfullyTo overcome the delay inefficiency of generation based

to users for each session. If the number of generations atsheme, recent practical protocols have focused more on the

approaches infinity, the loss due to the dropping of the firslmediately decodable” NC (IDNC) schemes [7], [20]. An
generation can be neglected. Thus, the asymptotic throughf@NC scheme for two unicast sessions has the following
optimality for the over-provisioned case can be establishestructure. Suppose that two uselsandd, are interested in

Next, consider the under-provisioned case. After droppingd#ferent packetsX andY’, respectively. Initially, the BS sends

certain number of packets, the system is able to accommodateand Y uncodedly until each packet is received by at least

the transmission of the remaining packets for each generatione user. Suppose due to random channel realizafiohas

Thus we can also show the asymptotic throughput optimalibyerheardy” andds has overheard. We call the (unexpired)

for the under-provisioned case. There is a problem with tipacket X a (potential) coding opportunity involving user 1 and

generation based scheme, however. Note that the larger ¢h# the (unexpired) packet Y a (potential) coding opportunity

V. THE IDNC SCHEME



x 10" . Section IV, we thus need to incorporate a new early-dropping
A mechanism in the IDNC scheme, the details of which would
be discussed shortly after.

In addition to the challenges from the “under-provisioned
case”, we may also face a second challenge that arises
from the heterogeneity of the channels and the deadlines,
and that is orthogonal from the previous problem due to
the under-provisioned scenario. More specifically, consider

w
0
T

w
T

N
0
T

num of received packets for user 1

’ AR an over-provisioned scenario for which we can send at rate
15k G-B 4-4 | (ri,m9) = (A g L) that satisfy both (2) and (3). In an IDNC
upper bound scheme, each packet is sent repeatedly in an uncoded fashion
1t —e— P tneoded | until it is received by at least one user. As a result, on
s average it takesl# time slots to finish sending
031 015 02 025 03 035 04 045 05 055 06 all session-1 packets uncodedly For each time slot, with
successful delivery probabilty probability p»(1 — p;) such a packet will be heard only by

ds, which creates a coding opportunity involving user 1. On
Fig. 2. Total number of received packets in session 1 wher- 3, A2 =3,  average, the average amount of coding opportunities of user 1
N7 = 40000, N2 = 40000 averaged in 10 simulations. is 71T p2(1 1) Note that such a codlng opportunlty of
—(1—p1)(1—p2)"
use 1 will later be combined with that of user 2. Note that

when sending a coded packet, it takes on ave@%?gbeforen

can be received by,. Therefore, it take° (flﬂpzp(ll)(fl)m))

trials of sending coded packets to fully “consume the coding
opportunities of user 1”. Symmetrically, the average amount of
time slots to fully consume the coding opportunities of user 2

; roT-p1(1—p2)
IS AP o)) If we have

400

w
a
o

w
o
<]

N
o
=]

num of received packets for user 1

200 P T - pa(1—p1) roT - pi(1 — p2)
150 —A— G-B 40-40 i p1(1— (1 —=p1)(1 —p2)) p2(1 = (1 —=p1)(1 —p2))
G-B4-4 )\ _
upper bound ~ w < 1, (7)
100 upper bound | )\2172 (Pz - p1p2)
e for uncoded
S e e thenfrom our previous arguments, it takes longer to consume
successful delivery probability all user-1 coding opportunities than to consume the coding

opportunities of user 2. Those “leftover” user-1 coding oppor-
Fig. 3. Total number of received packets in session 1 wher- 3, A2 = 3,  tunities (those that could not be combined with that of the
Ni = 400, N2 = 400 averaged in 100 simulations. user-2 coding opportunities) thus needs to be transmitted in

an uncoded manner. If there is no deadline constraint, then

we can simply wait until the very end (when the coding
involving user 2. The BS can now combine the two codingpportunities of user 2 have been used up) to decide which
opportunities and senfX' + Y], which serves two receiversare the leftover user-1 coding opportunities. However, if there
simultaneously (and is thus more efficient than tradition@ deadline, when we know for sure which user-1 coding
uncoded retransmission). Note that in this example, the desitgsportunities are the leftover ones, those packets may have
packetX (resp.Y’) can beimmediately decodebly d; (resp. already expired and cannot be sent anymore. The throughput
dz) upon receiving[X + Y]. Compared to the generation-thus suffers from not being able to send those leftover coding
based solutions, the IDNC schemes have zero decoding delportunities uncodedly. Note that such a challenge does not
and incur substantially lower encoding complexity since onlyrise in the homogeneous setting of all existing IDNC work
binary field is used. As a result, IDNC schemes general{g], [6], for which there is no left-over coding opportunity.
demonstrate much faster startup phase [24], and are mWeerecover from this sub-optimality, when (7) is satisfied,
suitable for time-sensitive applications. optimal IDNC scheme should continue sending some user-1

However, designing IDNC scheme for the setting in thipacket in an uncoded manner even after it has been overheard

work is difficult. In a single-multicast setting, the abovéby user 2.For future reference, we say “user 1 is a leading
simple IDNC scheme proposed in [6] turns out to be optimaker” if (7) is satisfied since user 1 now has more coding
even with deadline constraints. However, when performirgpportunities than that could be combined with user 2's coding
coding over 2-unicast sessions, we need to take into accoopportunities. For the following, we combine the above two
new issues. For example, in the under-provisioned scenarigtiitions and design a new IDNC scheme that is capable of
(Figs 1(a,c,d)) the system simply cannot sustain the rate vecaghieving the upper bound of deadline-constrained capacity

(A1 v L). In a similar way as in the modified GB scheme irgiven in Proposition 1.



To begin with, we will introduce some definitions. In our oldest packetX ;: from L,o. Broadcast the sum

new IDNC scheme, the BS keeps two registegsand n.. [XLj; +X2,j;].

One can view the purpose af as to keep track of the next 20: else

uncoded packet to be sent for sessiorSince bothn; and 21 if niA\1 < no)y then

ny evolve over time, we sometimes usg(t) to denote the 22: Send uncoded packeX; ,,, directly.
value of n; at the end of timet. The BS also keeps two 23: else ifni A1 > naAg then

lists of packetsiLiy and Ly;. List Ly; contains all unexpired 24: Send uncoded packef, ,, directly.
coding opportunities of user 1 (those hearddaybut not yet 2s: end if

by d;). Symmetrically, listL,, contains all unexpired coding 26: end if
opportunities of user 2. Each packet is also associated witlea else
status, which can take one of the following four values “not2s: Choose the oldest unexpired packets in the system

processed”, “dropped”, “uncoded-Tx-only” and “coding- (including those inLy; U L1y and those haven't been
eligible”. The BS uses two arraystatusl[i], ¢ = 1,---, Ny, sent) and send that packet uncodedly.
and status2[i], « = 1,--- , No to keep track of the status of 29: end if

the session-1 and session-2 packets, respectively. In addition,

the BS keeps 4 floating-point registers, denotedazhy s,

y1, andys. We also assume that at the end of each time slgt UPDATE PACKET-STATUS
both users send an ACK or NACK message back to the BS ) )
depending on whether that user has successfully received thef @n uncoded packex; ,, was sent in the current time

transmitted packet in the present time slot. slotthen _
In the following, we describe our IDNC scheme in details.* if XLZ IS rfclelved byd: then
nq ny .

In the time origin, the BS first initializes the following 3
variables:ny « 1, ng « 1, Lig < 0, Ly; <+ 0,
status1[i] «—not-processed, status2[i] <—not-processed, for
all i; x1,y1, 22,y < 0. FOr convenience, we useto denote

the constant value as defined in (6). The detailed steps are noQN end if
described as follows. . else if an uncoded packek; ,, was sent in the current

for f— 110 M N d time slot then

l: orl 7th Ob 1:V1 0O - h borouti Repeat the steps from Line 2 to Line 6 with the roles

2: n the beginning of timet, run the sub-routine of users 1 and 2 swapped.
SCHEDULE-PACKET-TRANSMISSION

9: else
3: In the end of timet, run the sub-routine PDATE- .
! 10:  Suppose the coded packet being seniis ;+ + X5 jx],
PACKET-STATUS bp P g Bii 253

the sum ofX; ;- and X5 ;.

else if X;, was received only byd, and
statusl[n;] =coding-eligible then
Add XLTH to Loy and setn; < ny +1

4: end for 1. if [Xy: + Xo,;:] was received byl; then
The two sub-routines are described separately as follows. 1. RemoveX; ;: from Lo;.
13:  end if

§ SCHEDULE-PACKET-TRANSMISSION 14: if [Xy 5 + X3 j;] was received byl, then

1 if ny < Ny & ny < Ny then 15: RemoveX; j; from Li.

2: while status1[n1] =not-processed do 16:  end if

3 %1 ¢ 1 + min(vy, 1) 17: end if

4 if |z1] >y where|-| is the floor functionthen 18: Remove all expired packets from the system.

5: Y1 < [z1]

6 Generate a numberindependently and uniformly The high-level ideas of the proposed IDNC scheme is as

randomly from([0, 1] follows. Let us first focus on the sub-routineci$EDULE-

7: if a < % then PACKET-TRANSMISSION Line 1 checks whether we have
8: statusl[nl] « coding-eligible reached the terminal phase of the transmission, i.e., when

9: else eithern; > N; or ny > N> holds, we simply choose the
10: statusl[nl1] < uncoded-Tx-only oldest available packet to transmit. When we are in the main
11: end if loop of the transmission (the normal operations), i.e., when
12: else bothn; < N; andny < N> hold, we first assign the packet
13: statusl|n1] «+—dropped status for bothX; ,, andXs ,,. More specifically, in Lines 2

14: ny+<—ny+1 to 16, we first consider the “next-to-be-transmitted” packet and
15: end if will assign the corresponding packet status. To do so, we use
16: end while the variablesr; andy, to decide whether we would like to

17:  Repeat the steps from Line 2 to Line 16 with the roleset the current status to “dropped”. As can be easily seen
of users 1 and 2 swapped, i.e, we focus on user 2 naw.Lines 3, 4, and 13, when > 1, we never drop a packet

18:  if both L1y and Ly; are non-emptyhen (i.e., no packets are set tivopped). The value ofy is indeed

19: Choose the oldest packeX; ;- from Ly, and the to decide whether the system is over-provisioned>(}) or



underprovisioned (y <1). As explained in Section IV, we the IDNC scheme is rather difficult, especially under the
drop a packet only when < 1, and Lines 3 to 5 make suresequential hard deadline constraints. To the best of our knowl-
that the packet dropping ratio is equal to the pre-compugtededge, our work is the first one to analyze the performance
as in (6). If we decide to drop the packet, then we need ¢ IDNC schemes for two unicasts under sequential hard
move on and decide the status of the next packet, see Lineddgadline constraints. The performance of the proposed new
and 14. For those packets that are not dropped and thus WEINC scheme is characterized as follows.
be transmitted later, we sometimes need to preemptively S%\r% osition 2. For anv diven svstem paramet \
those packets in an uncoded manner for the “leading user” as P ' Y9 y P 8, P2, At
. oo . . ; and \,, let 5* denote the largest value such thab < g <1
explained earlier in Section V. If user 1 is the leading user, 5 B o
then M21(P1=P1p2) _ 1 Lines6 to 11 ensure that some user-fNd the rate vectofry, rz) = (Tl’ E) satisfiesboth (2) and
Aapa (P2 P1pa). = (3). For an 0, there exists a sufficiently lar and
packets have their status setuiocoded-Tx-only. Note that if @) Alle6 >y, X ufficiently largd’; ( (
user 2 is the leading user, thé@%;ﬁ’;;iiiﬁzi ~1andLines6 N2 = A—2) suct ttmat the proposed IDNC schefme achieves
to 11 automatically ensure that all user-1 packets have thEFNFU°®S$ /Ny > £ — € and E{ N5 /N, > £ —e.
s:a’ius set t@(_)dlng-_ell_?lbie. tOnce V\f[te fm'tshh settén%the ?(a(;';_et Proposition2 shows that our IDNC scheme achieves asymp-
SLE.i us,i/\ée gl\éelgrlolr;y od_ransm(lj Igg ekcto e p?c N 'It; 6tically the upper bound in Proposition 1 for both over-
Ehmes an | )I.t setn ;)ngt code pag. eis 1s ng gos& ovisioned (8 = 1) and under-provisioned {5 < 1)
en we evenly afternate between sending uncoded pac narios. Before proving Proposition 2, we present Lemma 2,
for users 1 and 2, by comparing the valuesph; andna X\, s o
. which is critical to our proof.
(Lines 21 to 25). Namely, we choose the next uncoded packet
depending on which is the closest to expire. This observatibemma 2. Consider our IDNC scheme with system parameter
also leads to the following self-explanatory lemma. values\i, Xz, p1, and ps. Then for anye > 0, there exists

. i isfyi —t) >
Lemma 1. For any time slott, we have— max(\;, \y) < ﬁ;&j;?grt.hitioga“ fixed, andt; satisfying(t—t1) > B,
)\1711(75) — /\2n2(t) S max(/\l, )\2) J=ha

Let us now focus on the sub-routinePDATE-PACKET- E{nj(tQ) —nj(t)|t2 < min(A1n1(t1),>\2N2(t1))}
StATUS. If an uncoded packek; ,, was sent and received (to —t1) max(v,1)(1 + €)
by d; (see Lines 2-3), then there is no need to retransmit < » : (8)
J

this packet. We simply shift our focus to the next packet
(n1 < ng + 1). If Xy,, is received byds but not by The detailed proof for Lemma 2 can be found in Appen-
d1, then this packet may become a new coding opportunigices A and B. The high-level interpretation of this lemma
However, as mentioned earlier, if user 1 is the leading usés,provided as follows. Consider any two fixed time instants
then sometimes we need to forgo an coding opportunity afidand ¢z, and assume that we are in a critically provisioned
continue sending it in an uncoded manner. This is decided ®genariory = 1. Forj = 1, the termn (t2) —n1(¢1) quantifies
the packet status. If packet status was seiwoded-Tx-only, how many new session-1 packets have been “injected” to the
then we do not put the overheard packét,,, in the coding system during the time intervdt,,¢;]. Lemma 2 shows that
list Ly;. Thatis, X ,, will not participate in any future coding this value cannot grow much faster théﬁ%ﬂ. In other
operations and will still be transmitted uncodedly next timavords, the growth of.;(¢) in a critically-provisioned scenario
Only when the packet status @é®ding-eligible (see Line 4) is proportional to how fast the packets of session 1 expire. The
will the overheardX, ,,, be put into the listLy;. Lines 11 sketch of the proof is as follows. Note that when condition-
to 18 simply perform packet update to remove the packetgy on s < min(Ainy(t1), Aana(£1)), none of these newly
that have either expired or have already been decoded by iiected packetsXy ,,, (1), X1 n(t1)+1> 7 » X101 (t2)—1 Will
target user. expire during the intervalty,t;]. Therefore, those packets
The IDNC scheme has zero decoding delay, i.e., up#ill have similar behavior as if in a system without deadline
the reception of any coded or uncoded packet, the user e@mstraints. Then, by the law of large numbers (recall that
decode one more packet for its own session. Further, the coded- B is sufficiently large), we can explicitly quantify/upper-
transmissions are mingled with the uncoded transmissiob®und the numbers of uncoded and coded transmissions in this
not like the generation-based scheme. Thus the BS does tiwk interval (¢, t,], which in turn give us the inequality in
need to drop the first generation in order to let packets (8). For the following, we would first present the proof for
the subsequent generations meet the deadline. We can cleRrbyposition 2 based on Lemma 2.
see from Fig. 2 and 3 that our IDNC scheme universally Proof: For the following, we would first discuss the
outperforms the generation-based schemes for either large diigically-provisioned case (% 1 and recall the definition of
size and small file size. Next we would prove the asymptotigin (6)). We would later generalize the proof for the under-
throughput optimality for our IDNC scheme. provisioned case, and the proof for the over-provisioned‘case

VI. MAIN RESULT: PERFORMANCEANALYSIS OF THE 4For a deadline constrained system, it is more interesting to quantify the
NEw IDNC SCHEME performance in the under-provisioned setting because in an over-provisioned

. . . setting (when deadline is very far and each packet has plenty of time to finish
The IDNC scheme is easier to |mplement than the ge{ﬂénsmission) even a sub-optimal scheme can easily finish transmitting all

eration based scheme in practice. However, the analysispadkets without violating the deadlines.



For ease of exposition, we first assume that user 1 psove E{n,(¢)} < }—z + o(t) (y =1 for critically-provisioned
the leading user. Since we are considering the criticallgase).
provisioned case, we hav$: 15% plﬂljéﬁ = 1. For We next use these inequalities to bound the number of
any givene > 0, we useB to represent thes valle specified successful transmissions to user 1 and 2. For the following,
in Lemma 2. We will describe how to choose thealue in we temporarily assume that the file sizes are infinity by
the later part of this proof. For a given > 0, we define adding dummy packets to both sessions, which are labeled
a;(t) 2 n;(t) — 2AE29) for j = 1,2. We first note that;(t), aS Xjn,+1, Xjn,+2,-- for j = 1,2 In this way, we can
the index of the next to-be-sent uncoded packets must satig@ptinue executing Lines 2 to 26 ofCBEDULE-PACKET-
n;(t) > ALJ By definition, ¢;(t) is thus always non-negative. TRANSMISSI(_)NWi'FhOUt worrying about_ the degenerated cases
We first show thatg; (t) and g»(t) cannot be very large When executing Line 28. We then defifig(¢) as the number
due to Lemma 2. Consider @, ) pair satisfying By A of time slots when the BS transmits an uncoded packet for

t»—t, > B. Note that by the definition of; (£), g (t), and by sessionj up to timet (those time slots when Lines 22 or 24
Lemma 1, we haves (t) > n (DM —A_ yt(1420) Ay (t)— of SCHEDULE-PACKET-TRANSMISSION are executed). Since
’ @(t) = Az o xnd user 2 is not the leading user, the BS transmits every session-

)\ . . . . . B
5, Thisobservation thus implies thatdi (1) > 3 +1, then 5 nacuet uncodedly until it has been received by at least one
q2(t1) > £2. Onecan also check that if the following threeyser. We thus have

conditionsg, (t1) > £2 + 1 and gz (t1) > £2, ta = t1 + Bo 1
hold simultaneously, thert, < min(Ayn; (£1), Aana(t1)) in E{T>(t)} < E{na(t)}
Lemma 2.

Note that by the definition of; (t), we can see that the
conditiong (¢) > f—ermax (1, ﬁ—f) impliesthat \yny (t;) —
max (A1, A2) > to. By Lemma 1, this further implies that <
max(/\1n1 (tl), )\2712(1‘51)). We then have

_ (13)

P1+ P2 — P1P2

where the inequality is because some uncoded packets are
expired before they can be received by any user, and hence the
expected transmission time for each packet is no larger than
the case when there is no expiration. Next, we consIgér).

Note that for session 1, some packets would be transmitted
repetitively until user 1 receives it even after it has been
a )\2)} received by user 2T (t) is thus comprised of two types of

. transmissions: The first type counts the number of time slots

B,
E{ql(tl + Bo) — Q1(t1)‘Q1(t1) > 2% 4 max(1, "

A1
By Ao in which the BS transmits an uncoded packet of session 1 that
= E{”l(tl + Bo) — ”1(t1)“11(f1) “ 5 max(1, 71)} has not been heard by any user. The second type counts the

Bo(1 + 2€) number of time slots in which the BS transmits a session-1
B W (9)  packet urlwcoc(ijedl()(/j even though tha;c) packet has bdeedn heard by
user 2 already (due to its status being setutwoded-Tx-
< Boy(1+¢) — Boy(1+2¢) <0, (10) only and in which case the BS continues to transmit this
M M packet until user 1 receives it). The first part can be upper
where (9) follows from the definition ofgy(t), the first bounded byE{n:(t)};——-——- in the same way as in (12).

inequality of (10) follows from Lemma 2. Eq. (10) shows thatVe useUCO(¢) to denote the total number of the second type
q1(t) has a negative drift. As a result, for aay, e2 > 0, there of uncoded-Tx-only transmission during the intervéd, ¢].

exists atg > 0 such that We then have
A1p1(p1 — p1p2)
vt >ty, P t) <et)>1—es. 11 E<UCO(t); <E Ol - —————=
o Pl <an>1-e (D {ucom} s Efm(1- 50— )
Now that we have shown thaf (t) and ¢.(t) cannot be p2(1 —p1) 1 (14)
very large, we next show that; (¢) andnq(t) cannot be made 1—=(1—=p)A—p2)) p1

much larger than;—1 and ;—2 respectrely, either. Specifically,

The explanation of (14) is as follows. Out of all (¢) session-
the following inequality holds for any > ¢, xp ! (141 W . h(t) !

1 packets that have been transmitted during time interval
~H(1 + 2€) N (t)} [1,¢], a fraction of (1 — w) hastheir status set to
T T—— 1

_ A2p2(p2—p1p2)
E{n:(t)} = E{ ¥ uncoded-Tx-only. Out of those with status set tscoded-

; p2(1—p1) i
~t(1 + 2€) Tx-only, a fraction of m) will be heard byd,
= E{ N +Q1(t)‘(ﬂ(t) <eat Plat) <at) first (strictly before it is heard byi;). For those that have
been heard by, first, it takes, on average, additional time
E t t) > ert}P(q1(t) > et
* t{rfl( ;'ql( )z atiPlalt) z ab) slots of transmission before it can be heard by tﬁé intended
< (M + elt) + teo, (12) userd;. The inequality is again to take into account that some
1

packets may expire even before finishing its corresponding
where (12) is because:, (t) is always upper bounded hy transmission. Combining the first and second part, we obtain
regardless whetheg;(t) > ¢t or not. Note that we can 1 Apr(p1 — )

choose arbitrarily smak, ¢;, ande, and (12) still holds for  E{T1(¢)} < E{ny(t)}— (1 B i )
sufficiently larget. As a result, (12) shows that the expectation P A2p2(p1 +p2 = p1p2)

E{ni(t)} is upper bounded by* + o(t). Similarly, we can (15)




Note that when we transmit an uncoded packet for sessi¥hent = A2 Ny /7, we haveE{NsucceS} N> —o(t). Hence,

1, the expected “reward” ip; since only user 1 can benefitthe achievable rattf\X?—2 alsoapproaches;; for sufficiently
from this transmission. When we transmit a coded packet, thg@ge N,. By the similar arguments for the “‘dummy packets”
expected reward for user 1 jg and the expected reward foranalysis of user 1, we can also prove the throughput optimality
user 2 isp, since both destinations can benefit from the coded user 2.

transmission. Note that by definition the total number of codedThe case when user 2 is the leading user can be proved
transmission in thél, ¢] interval ist — T% (t) — T>(t). We can  similarly.

now lower bound the expected total rewards for user 1: We have shown the optimality proof for the critically-
provisioned case. Next, we are going to show the maximum
E{NT"®} = pi E{T1 (1)} + pE{t — Tu(t) — To(t)} throughput that can be achieved by our scheme for the under-

=pit — ;i E{Ta(¥)} provisioned casey < 1. For ease of exposition, we assume

> prt—p 2t 1 o) that user 1 is the leading user. Defipgt) = ny (1) — 29
A2 p1+ P2 — p1p2 and go(t) £ na(t) — {29 Thenin the same way as in

- o o(t) (16) the critical-provisioned case we can prove the negative drift

A ’ of ¢1(t) and ¢2(t) and consequently prove the existence of

t
wherethe inequality follows fromE{n,(t)} < 3 + o(t) and tEO suzh tzatt for atnyt > to, E{mi(t)} < 57 + o(t) and
(13),and (16) follows from plugging in the definition efand {n2()} < 57 + o )'_ : - L
. C s = Comparedto the critically-provisioned case, the main dif-
arithmetic simplification (here = 1). : L
. . . . - ference is that for the under-provisioned case, a new packet-
Consider the asymptotic reg?e with sufficiently larlyg dropping mechanism is used in Line 2 to Line 16 of
_ * 2 AN
and Np. We chooset = 1" = 5fi5g. and we have qq\ep iy e packET-TRANSMISSION Therefore, we need to
E{Njueeesy = - — o(t). Recallthat the above expectedcarefully take that into account in our analysis. Use the same
rewardE{N}"***} is the number of session-1 packets that aigefinition of 7, (t) and75(¢) as in the previous proof, we can
SUCCGSSfU”y decoded by user 1 by the end of timandthat upper bouncE{TQ( )} as follows. By our dropp|ng mechanism
also counts the dummy packet§ v, +1, Xjn,+2,--- @added for the under provisioned case, we can upper boEfit ()}
after X; v, (so that we can avoid executing Line 28) To coundasily. Since user 1 is the leading usBr(t) is still comprised
only the real packets, we notice that, by (1), for sufficientlyf two parts: one part is when the BS transmits uncoded

large V1, with high probabilityl — e; we have packets of session 1, the other part is when a session 1 packet
X has been received by user 2 first, the BS continues to transmit
R ) . . , e
ny (%) — — = q1(tx) < et this packet until user 1 receives it. We can upper bound the
11 npy first part and second part separately, and then upper bound
S ni(t') < Ny T3 + e t™. (A7) E{Ti(t)} . By the same argument as in the previous proof,
€

expected total rewards for users 1 and 2 are lower bounded
By choosing sufficiently smal;, the above analysis showsby

that ny (t*) < N with probability > 1 — e5. Symmetrically, t 1

P(’I’Lg(t*) < Ng) >1—es. Jointly, P(’ﬁq(t*) < Nl,ng(t*) < E{leucces.} = T( /M /2 ) + O(t)v (19)
N3) > 1 — 2¢,. It means that at time* with high probability p1 P1+p2—p1p2

1 — 2y, both indicesn, (t*) and nq(t*) are still less than and

N and N,, respectively. Therefore, no dummy packets have t 1

been injected in the system yet. As a result, even when we E{NZ"5 = *( /M /22 ) +o(t). (20)
run the algorithm without any dummy packets, the expected P P1+p2=p1p2

succesE{ N7UCesfwithout dummy packedd at timet* must
be no smaller thaq%@(E{Nf‘mesiwith dummy packets —
262N1) Choosing sufficiently smakk and ¢;, we have thus

L . . . A N\ N
Theremaining step is again to show that at tine= 3131,

with close to one probability both, (t*) < N; and ”2(tsu ?

suibcks: s N,. Therefore, the two equations guarantees t
ELNY fw'thom dummy packe approached when bothN; and roach qf ¢ suff |gntl araeN ndN
g—
N, are suff|C|entIy large. approache JEYUAY £V or sufriciently large/Vy and.Vs.

Similarly, we can prOVoE{Niu”est'thOUt dummy packeld 55 Next we show | proof for the over-provisioned case. For ease

proachesl when N; and N, are Suff|c|ent|y large. The Of exposition, we first assume that user 1 is the leading user.

expected total rewards for user 2 can be lower bounded bﬁmce  we are considering the over-provisioned case, we have
= /1+¢ > 1. For any givene > 0, we use

E{N5U°S} = poB{To(t)} + poE{t — T (t) — T>(¢)} B to relpresé)nﬁhé% value specified in Lemma 2. We will
= pot — p2E{T1 (1)} descfrlee how _to chooose th;(ajvafl_lue mtthAe Iatjr pe;rtt(lcifi)hls
i (L )y T im0 )
M\pr (1 +p2—pip2) N We first show thatg, (t) and ¢(t) cannot be very large
_ 2t o(t). (18) due to Lemma 2. Consider &;,t2) pair satisfying By £

A2 to —t; > B. Note that by the definition of; (¢), ¢2(¢), and by
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Lemmal, we havey,(t) > "1(”;21”1 —Vt(l;ff) = 3qi(t)— wherethe inequality is because some uncoded packets are

%_ This observation thus implies thatf (¢,) > %4_1, then expired before they can be received by any user, and hence the

E(t) > %. Onecan also check that if the following three€Xxpected transmission time for each packet is no larger than
s . e

conditionsqs (1) > % +1andg(t) > %,’ ty =t + By the case when ther_e is no expiration. Next, we consigér). _

hold simultaneously, thert, < min(Ayny(t1), Aanz(t1)) in Note that for session 1, some packets would be transmitted

Lemma 2. repetitively until user 1 receives it even after it has been

Note that by the definition of; (), we can see that the feceived by user 21 (t) is thus comprised of two types of

" I transmissions: The first type counts the number of time slots
Bo Az _
conditiong: (1) > X, Fmax (1’ A1) impliesthat Ay (1) in which the BS transmits an uncoded packet of session 1 that

max(Ar, A2) > 12. By Lemma 1, this further implies thaf < a5 not been heard by any user. The second type counts the
max(Ainy (1), A2n2(t1)). Then, by the same arguments fohmper of time slots in which the BS transmits a session-1

the critical-provisioned case, we have packet uncodedly even though that packet has been heard by
user 2 already (due to its status being sairtooded-Tx-only
By A2 and in which case the BS continues to transmit this packet until
E{(h(tl + Bo) — (h(tl)’(h(tl) ” A +max(l, )\T)} user 1 receives it). The first part can be upper bounded by
By Ao E{n,(t)}—————. We still useUCO(¢) to denote the total
- E{nl(tl + Bo) — nl(tl)‘ql (t2) > N max(1, )\T)} némée)r}gflmé second type uﬁcoded-(T>)<-onIy transmission
_ Bo(1 + 2¢) (21) during the intervall, ¢]. We then have
AL A1p1(p1 — p1p2)
- Boy(1+6)  Boy(1+29) _ 22) E{UCO(t)} < E{nl(t)}(l S Ve — _plpz))
A1 A1
y p2(1 —p1) 1 (26)
We have shown thap (¢) has a negative drift. As a result, for 1—-1—p)A—p2)) p1
any ey, ez > 0, there exists &, > 0 such that Combiningthe first and second part, we obtain
Vit >to, P(q(t) <et)>1—e. (23)
1 A1p1(p1 — p1p2)
Now that we have shown thag (t) and g(¢) cannot be ~ E{T1(t)} < E{nl(t)}p< 3 — )
1 2p2(p1 + p2 — p1p2)
very large, we next show that, (¢) andny(t) cannot be made @7)
much larger thari* and 3%, respectiely, either. Specifically,
the following inequality holds for any > ¢, Note that when we transmit an uncoded packet for session
Y#(1 + 2¢) 1, the expected “reward” ip; since only user 1 can benefit
E{mi(t)} =E { +@ (t)} from this transmission. When we transmit a coded packet, the
M expected reward for user 1 jg and the expected reward for
_E { Yt(1 + 2¢) ta (t)‘(h(t) < elt} P(qi(t) < ert) user 2 isp, since both destinations can benefit from the coded
A transmission. Note that by definition the total number of coded
+ E{n1(t)]q1(t) > e1t}P(q1(t) > e1t) transmission in thel, ¢] interval ist — Ty (¢) — Tz (t). We can

< ('yt(l + 2€) now lower bound the expected total rewards for user 1.

M E{NFo=} = pi (T ()} + pE{t — T1(1) — To()}
By the same argument for the critical-provisioned case, (12) _ pit — piE{To(t)}

+ elt) + tes. (24)

shows that the expectatidi{n(t)} is upper bounded bg* + it 1
o(t), andE{nz(t)} < :\Y—z + o(t). > pit B W —— o(t)
We next use these inequalities to bound the number of 2 P17 P2 = Pib2
successful transmissions to user 1 and 2. For the following, = — — o(t) (28)

we temporarily assume that the file sizes are infinity by M

adding dummy packets to both sessions, which are labef@igilarly we can show that

as X; N,+1, Xj n,+2, -+ for j = 1,2. In this way, we can

contiaugexeéutﬁg Lines 2 to 26 OfcBEDULE-PACKET- E{N3"%} = % —o(t) (29)
TRANSMISSIONWithout worrying about the degenerated cases . 2 )

when executing Line 28. We then defifie(t) as the number The case when user 2 is the leading user can be proved
of time slots when the BS transmits an uncoded packet foifnilarly.

sessionj up to timet (those time slots when Lines 22 or 24 The proof for Proposition 2 is thus complete. u
of SCHEDULE-PACKET-TRANSMISSION are executed). Since
user 2 is not the leading user, the BS transmits every session- VII. SIMULATION

2 packet uncodedly until it has been received by at least on

€ur previous analyses focus on the asymptotic regime with
user. We thus have P Y ymp g9

large file sizesN; — oo and N, — oo. In this section, we
E{Tx(t)} < E{na(t)} 1 7 (25) Uuse _si_mulation to verify the performance of our IDNC scheme
D1+ P2 — p1p2 for finite N; and Ns.
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average rate of receiving packets for user 1 average rate of receiving packets for user 1

Fig. 4. Average rate of receiving packets for user 1 and user 2 wien Fig. 5. Average rate of receiving packets for user 1 and user 2 wen

and N2 arelarge. and N2 are small.
TABLE |
A. Performance for Largé\h and N, COMPARISON FORIDNC SCHEMESWITH & WITHOUT KNOWN CHANNEL
We first assume that the successful delivery probabilities for user-1 with | user-2 with
_ _ . user-1 | user-2 | estmation estmation
user 1l and user 2 agg = 0.5 andp, = 01.6, respecuyely. Then e T 003 05 05935 08763
we consider the following 5 cases with, A2) being (2,4), case 2| 0.9551 | 0.9280 | 0.9523 0.9322
. case 3| 0.9844 | 0.9799 0.9830 0.9807
(3,4), (4,4), (5,4), anc_i (6,4), respectively (we name them as case 4| 09905 | 09910 | 09908 0.9896
Cases 1 to 5, respectively). For all cases we Nge= 40000. case 5| 0.9952 | 0.9944 | 0.9951 0.9940

Recall that we require; N1 = Ay No. We thus setV; to be
20000, 30000, 40000, 50000, and 60000 in the 5 cases.
We first show the capacity region without deadline corgasily see that in Fig. 2 the performance of the IDNC scheme

straints in Fig. 4, i.e., according to (2) and (3), as shown i@pproacheshe outer bound for the entire range of the

the area beneath the two solid lines. We ths(uecrgessusgucgsifferm@dues. It is still true even for small file size in Fig. 3.

markers to denote the normalized throughp%]vfl, JXEW) The IDNC scheme dynamically arranges the operations of

from simulation for the 5 cases. The circles indicate theoded transmission, uncoded transmission, and drops packets

corresponding theoretical upper bound of both sessions, whishan “online” fashion, while the generation-based scheme

are given by(%, %) in Proposition 1. stubbornly stick to the pre-fixed order for these operations.
More specifically, Cases 1 and 2 are the under-provisionbtbreover, the IDNC scheme takes less complexity in the

scenarios for which3* < 1 and the throughput is limited encoding process, and consumes relatively smaller buffer size

by the two lines rather than by the maximum rz{ug\él, 712). for storing the coding opportunities.

Cases3 to 5 are the over-provisioned scenarios for which

the throughput is decided by the maximum rége, 5-). We D Extensions to The Settings of Unknown Channel

observe that in all cases, the achievable throughput coincide

to the theoretic upper bound, as predicted by Proposition chilthough our proof of asymptotic optimality assumes that

e BS knows the channel parametgisand p,, we believe
that IDNC schemes can also achieve good performance with-
out channel information. Specifically, since the users would

We are also interested in the performance of the IDN&nd an ACK to the BS at the end of each time slot, the BS
scheme in the finite regime (wheN; and N, are small). can use this feature to “estimate” the channel paramgters
In Fig. 5 we plot the normalized throughput for both usergngs, and plug them into the IDNC subroutines as a substitute
when N, and N, are small. We use the same parameters astti} the actualp; andp,. For the following, we use simulation
Section VII-A except with smaller file sizegVy, N2) being g study the performance of the “adaptive” IDNC scheme that
(400, 200), (400, 300), (400, 400), (400, 500), and (400, 60@ktimates the channel parameters on the fly. We consider the
We can observe that, although the numbers of packets for bgl{ine 5 cases as in Sections VII-A and VII-B. For the cases
session 1 and session 2 are small, the achievable througkg}uparge N, and N, as in Section VII-A, since by the law
are still very close to the theoretical upper bound. of large numbers, the estimage — p, for all j = 1,2, the

. ) ) normalized throughput of the adaptive IDNC scheme is always

C. Comparison of the generation-based scheme with th&hin 1% of the performance when the valuegpefandp, are
IDNC scheme known to the BS. For smalV; and N, as in Section VII-B,

In Figs. 2 and 3, we compare the performance betweare summarize our finding in Table I. We find that, even for
the generation-based scheme and the IDNC scheme. We sanall file size, the performance with channel estimation is

B. Performance for SmalN; and N,
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very close to the performance with known channel parametefs] L. Georgiadis and L. Tassiulas, “Broadcast erasure channel with feed-

Based on the above observation, our IDNC scheme is robyst Pack — capacity and algorithms,” KetCod, 2009. .
d h h . lth h h he ch rt115 | A. Eryilmaz, A. Ozdaglar, and M. Edard, “On delay performance gains
and approaches the optimal throughput even when the charinel f,m hetwork coding " inProc. of CISS, 2006,

parameters are unknown. Finally even if the feedback frops] J.-K. Sundararajan, D. Shah, and M.étlard, “ARQ for network

users is not perfect, we can design a similar mechanism like coding,” in Proc. of ISIT, 2008. )
[17] J.-K. Sundararajan, P. Sadeghi, and Médard, “A feedback-based

n [6], to solve the prObIem of delayed and |OSSy feedback. adaptive broadcast coding scheme for reducing in-order delivery delay,”

in NetCod, 2009.
VIIl. CONCLUSION AND DISCUSSION [18] W. Yeow, A. Hoang, and C. Tham, “Minimizing delay for multicast-

. . . . . streaming in wireless networks with network coding,” Rroc. of
In this work, we have studied inter-session network coding |NFOCO%,|, 2009. 9

for sending two unicast sessions over an unreliable wirelei$g] E. Drinea, C. Fragouli, and L. Keller, “Delay with network coding and
hannel. We hav nsider W ni ion n feedback,” inProc. of ISIT,_ 2009. _ ) _
channe e have conside .e.d two unicast sessions u Sr{ P. Chaporkar and A. Proutiere, “Adaptive network coding and scheduling
hetemg_eneous channel conditions and h_etemgeneous deadliN€ror maximizing throughput in wireless networks,” iRroc. of ACM
constraints. We developed both a generation-based scheme andMobiCom, 2007. _ _
an immediately-decodable network coding (IDNC) schenié!! Eéd'\i'r?;?,’?r?’,\ktgggy%@”d B. Bose, "Wireless broadcast using network
for controlling packet transmissions for the unicast sessiop§] D. Kogtsonikmas,'c_.c_'Wang, Y. Hu, and N. Shroff, “Fec-based
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requirements, and achieves close-to-optimal throughput even paper 2011.
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Corollary 1. Without considering hard deadline constraints, Similarly, the total number of time slots to transmit the
foranye > 0, § > 0, if t5 — t; is sufficiently large, then uncoded session 2 packets in tifde+ 1,¢3] is at least

P((ts —t1) > (ta—t1)(1 —€)[ Ay, ) > 1—0. (32) na(t1)+Ans—1

Based on Corollary 1, we will then show that the “growth”of UTz 2 ' Z Ha.
n;(t) from timet, + 1 to ¢, is upper bounded bW: i=na(t1)+1

Corollary 2. Without considering hard deadline constraints, Since each; ; and H, ; are of i.i.d. (conditional) geomet-
for any e > 0, there exists a sufficiently largB such that if ric distribution with expectation (36), for any,d; > 0, we

ta —t1 > B, then can choose a sufficiently large, such that ifAn; > B; and
Any > B34, then
tg—t 1+4+e€ 2 IXs?
£y (1) — ny(1)| A, } < 2IIEED (g :
J
Finally, we will take into account the hard deadline conP (UTl +UT2 > (1—e) Atl)
straints and show that even with the hard deadline constraints, * . A,.
we still have — Ang + Ang — 2
ZP Z Hl>(1_€1)+—7 >1_(517

Corollary 3. After considering hard deadline constraints, for i=1 P17 b2 = p1bz

any ¢ > 0, there exists a sufficiently larg& such that if
to —t1 > B, then

A’I’Ll + A’n,g -2
p1 + P2 — P1D2

(37)

where{H;} are i.i.d. geometric random variables with expec-
o —t 1+e o —1L
E{nj (ts) - n; (t1)|-/4t1} < (ta 1})\7( ). (34) ;ajlrﬁgé’?s*’”‘““ and(37) follows from the weak law of large
J .

n Let O;, denote a Bernoulli random variable that is
The proof of Lemma 2 is thus complete for the overl: When repeatedly sending’;, uncodedly, it wasd, that

provisioned case. For the following, we will prove Corollarféceived Xy, first; O1, = 0, if d; and d, received X, ,
ies 1 to 3, respectively. simultaneously ot received it first. Symmetrically, we define

the Bernoulli random variabl€®, ,, such thatO,,, is 1 if,
when repeatedly sending,,, uncodedly, it wasd; that

A. Proof for Corollary 1 received X ,, first; Oz, = 0, if dy and d, received Xy ,
Proof: We define UT, (which stands for “Uncoded Simultaneously ot recelveq it first. _
Transmission”) as the number of time slots [ + 1, ] WhenX, ,, has been received by user 2 first and not by user

when the proposed scheme schedules uacoded packet 1, the BS would decide whether or not to keep transmitting
transmission for Session 1. Note that by our definitions, dflis packet in the uncoded fashion until it's received by user
those uncoded transmissions must be used to tradémitfor 1, or not. We definéC, ,, (which stands for “Flip a Coin”)
somen > ny(t1). Similarly, we also defin® T, as the number as a Bernoulli random variable to indicate the decision result.
of time slots int;+1, ¢5] when the proposed scheme scheduld€"1,» = 1 if the BS decides to keep transmitting this packet
an uncoded packet transmission for Session 2 packgts uncodedly until it's received by user EC, ,, = 0 if not. By
with the indices being: > ny(t;). Define our algorithm,FC, ,, = 1 with probability 1 — %,
FCy., = 0 with probability %.

A To distinguish from the uncoded transmission, we name
schedules an uncoded transmissionxaf, }|. (35)  the retransmission of coding opportunity of user 1 as “Single

Since we stop an uncoded transmission if any one of tﬂn?nsvr?/;szlggngi theazmgle transmission is meant for user 1
destinations successfully receives it, we have y. Ln

1 1

Hy, = |[{t > t; : in the beginning of time, the scheme

E{Hinl Ay} = = STy, 2 |{t > t1 : in time ¢, coding opportunity for user 1
1—(1=p1)(1 =p2) p1+p2—pipe . . . . .

(36) X1, Is transmitted until user 1 recewes}*, (38)

for all n z ny(t1). As a result,. the total numper of time slots\gte that for anyi > ny(t1), ST1., = 0 wheneverO, ,, = 0;
to transmit the uncoded session-1 packets is STy, = 0 wheneverOy,, = 1 and FCy,, = 0; whenever
(b)) +Any—1 we have O, = 1, and FC;,, = 1, random variable

uT, > Z H, ., ST,,, is geometrically distributed with successful probability
i=n1(t1)+1 pi. As a result,ST, , is with expectation% (1 —

where the inequality is because uncoded session 1 packets W §§;:§1§;§§)p% for any n > ny(t;) (recall that we have

indices less tham (t;) + 1 or larger thann, (t1) + An; — 1  temporarily suspended “expiration”). By the weak law of large
may also be transmitted durirjgy + 1, ¢3]. numbers, we also have for ay > 0, ¢4 > 0, there exists a



14

B, suchthat if An; > By, we have focus on the sub-series of the summations:

b1 — p1p2
P(TCT > (Any — 1 1—e5)|A
( (Ana )((p1 +p27p1p2)p2)( ) tl)
mtEgmt D2 — P1D2 p p1p
P STii < (Any — 1) ————— — P( Eq. (41) > (Any — 1 L~ Pip2
( i—mz(t:l)Jrl b= (B )pl P2 = pr1p2 ( 9-(41)> (Anz —1) ((pl +p2 — p1p2)p2
)\1]31(1)1 *p1p2) 1
X(1l—-——F———=)—(1—c¢ ‘A/l <44 (39 1 — ‘
( Aap2 (P2 —P1P2)>P1( 1) A ) + (39) x (1= e5)|An
nl(tl)JrAnl*l
> 1—P< > CTui<(Anp—1)
We now defineCT, ,, as follows: i=nq (t1)+1
b1 — P1Db2
X 1—c¢ ’A
((Pl + p2 —p1P2)P2)( 5) tl)
CTyn 2 |{t > t1 : in time ¢, packetX ,, is mixed (coded) na(t1)+Ans—1
with some otherX s packets} , (40) — P( Z CTy; < (Ang—1)
i=no(t1)+1
P1 — P1p2
where CT, ,, stands for the coded transmission for packet % ((p1 + po _p1p2)p2>(1 N 65)|At1>' (43)

X1,,. Note that for any givem, the packetsX; , may be

sent in a coded form for several (not necessarily adjacent) tifNete that for anyi > n,(t,), CT1; = 0 if Oy, = 0. Further,
slots and each time the companyiig ,, may be different, conditioning onO;; = 1, we haveFC, , = 0, the random
i.e., differentn’. variableCT, ; is geometrically distributed with success proba-

Define TCT as the total number of coded transmission iHIIIty p1- As aresult, by averaging over all events, we can show

time [t1 + 1,43]. We then notice the following facts: (i) In NatCT 1, is with expectatlor(m’fpz’fﬁfm ' 2522251531}1)
the beginning of timets, the scheme must either transmifor anyi > n(t1) (recall that we have temporarily suspended
an uncoded packeX ,,, (1,)+an, 1, OF transmit an uncoded “expiration”). The weak Iaw of large numbe_rs thus implies
packet Xy ., (1)1 an,—1 and it is received by one of thethat for anyds > 0, there exists &g such that ifAn, > B,
destinations (that is why (t) changes tau, (¢1) + Anq, or We have

no(t) changes tons(t1) + Ansg). (i) Therefore, at the end n1(t1)+An,—1
P(

of time t3 — 1, there must havenin (Lo, Lo1) = 0. There Z CTii < (Ansy — 1)( P1 — P1p2 )
are no packets to be coded at the end of tilme- 1. (iii) ' (p1 +p2 — p1p2)p2
Therefore, at the end of timg — 1, either (a) there is no

{X1,n:n € (ni(t1),n1(¢t1) + Ang — 1]} in Ly, or (b) there x (1 - 65)‘At1> < . (44)
is no {XQJL n e (ng(tl),ng(tl) + Ang — 1]} in L. From

the above three facts, we have

i=nq(t1)+1

Conditioning on Oz; = 1, the random variableCT,; is
geometrically distributed with success probability. (Since
we assume user 1 is the leading user, there is no need to flip
) a coin when deciding whether to set the status of a user-2
TCT =min ( Z CTwi, Z CT?ai)' packet to be “uncoded-Tx-only”). As a result, by averaging
i=1 i=1 (a1) over aII.eventsCTgyi is i.i.d. with expectation(%
for anyi > nq(t1) (recall that we have temporarily suspended
“expiration”).
By the weak law of large numbers, we also have for any
For the following, we will prove that for anys, 65 > 0, we J7 > 0, there exists &7 such that ifAny > Bz, we have
can choose a sufficiently large; such that ifAny, > Bs, we

" na(t1)+Ans—1 )

N P Z CTy; < (Ang — 1)( P1 —Pip2 )
= (p1 + p2 — p1p2)p2
i=na(t1)+1

nl(t1)+An171 n2(t1)+An271

P (TCT > (Ang — 1) ( b1~ Piba )p2> (1—es) An) (- 65)‘“““) < o (43)

(p1 + p2 — P1p2

>1—10s. (42) Jointly (44) and (45) imply that (43) can be made arbitrarily

close to one by choosing sufficiently largBs (An; is
sufficiently large so thatAn, is large enough) and,, and
To that end, we use the following union-bound arguments ahg settingB; = max(BG%, B7). Eq. (42) is thus proven.
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To summarize what we have proven thus far, we define B. Proof for Corollary 2

Term-12 Any + Any —2 (46) Proof: By Corollary 1, for anyeg > 0, with close-to-one
pL+Dp2—pip2’ probability we haves > ¢+ (t2—t1)(1—eg). By the definition
Term-22 (Ang — 1) of the random stopping timg;, with close-to-one probability,

B Mpi (pr — N1 one of the following two statements holds at the end of time

(W (1- m)) @7 R (b — 0)(1—es): () ma (1) < ma(tr) + Any, or (i)
Pripe—pipz A epape —pip2)/ ns(t*) < na(th) + Any. Therefore,

(Ang — 1)(p1 — p1p2) (48)
(p1 +p2 —pip2)p2 P(na(t*)(1 —€s)) > na(t1) + Ang &

Our previous analyses (37), (39), and (42) prove that the ni(t*)(1 —€s)) > na(t1) + Any| Ay, ) < ds. (53)

following three inequalities hold with close-to-one probability:

(i) UT, +UTy > (1—e;)Term-1, (i) zm(tl )FAm -1l ;> Bylemma 2, both the distancgssna(t1) — Aina(t1)| and

1=n1 tl)Jrl —
(1 — eq)Term-2, and (i) TCT > (1 — e5)Term-3. Further, we |A2n2(t") —Aina ()| are upper bounded hyiax (A1, A2). We

Term-3é

can prove by simple arithmetic operations that can thus prove that
Term-14 Term-2+ Term-3 na(t*) < na(t1) + Ang (54)
Ang +Any — 2 (Ang — 1)(p1 — pip2) max(A1, Az)
= + + = ny(t*) <ni(tr) + Ang + 2——————= 55
D1+ P2 — pip2 (p1 + p2 — p1p2)p2 1) <mty) ! A1 (55)
_ A
(Any — 1) (pzmm(l w> 1) = ny(t) < ma(t) + Any + 222 + 2. (56)
p1+p2 —pip2 A2p2(p2 — p1p2)/ P1 A1
__ Am -1 + (Any = 1)(p2 = pip2) Combining (53) and (56) we have
D1+ Dp2 — pip2 (p1 + p2 — p1p2)p1 \
Ang =1 (Ana = 1)(p1 = p1p2) P(ny(ty + (ta — t1)(1 — es)) < ma(ty) + Any + QTQ 42
prtp2—pip2  (P1+Dp2—pip2)p2 1
|As,) > 1 6s. (57)

) A1(p1 — p1p2)

A2(p1+p2 = Prp2)p2 We then notice that for alj € {1,2}, we must have:, (t,) —
ny(t*) <ty — t*. The reason is that for every time slot, the

—(A’I’Ll -1

= A —1 + ang —1 (Ang — 1) A1(p1 = pip2) registern; (¢) can increase at most by 1 in the over-provisioned
p1 P2 A2(P1+ P2 = P1P2)P2 scenario. Since the difference betweerandt* is (ty —t1)es,
S BAn—1 4 (Anl)‘l —M— A 1) 1 (57) implies
It A2 P2 N
- A
_(Anl_l) P1 = P1p2 2L (49) P <n1(t2)—n1(t1) <An1+2—+2+(t2—t1)eg .At1>
(P1 + P2 — p1p2)p2 A2 A1
1/A 1/A 2 > 1 —dg. 58
:(Am—l)(/l—f— [Ae )A—— 8 (58)
p1 DP1+ p2 — p1p2 D2

Further,n (t2) —n1(t1) < t2 —t1 since for each time slot the

_ (ta — t1) <1/>\1 N 1/ A2 ) registern, (t) can increase by at most one. By (58), we can
- (1/>\1 LY ))\ D1 pL+p2—pipa/’ " upper bound the expectation of (t2) — ny(t):
p1+p2—p1p2 1
(50)
2 A2
- — =l —t, (51) E{nl(b) - ”1(t1)|At1} < (Anl b (t2 — tl)ﬁs)

P2

where (50) follows from (30), and (49) is by Lemma 1. x (1= 3ds) + d(t2 — ta). (59)

Since for any time slot irft; + 1,t3] we either send an
uncoded or a coded transmission, we must have t; =
UT; +UTy + E:”ffl jl)fl 'ST,,+TCT. As as result, we
have proven that for angg, 0g > 0, there exists &g > 0 such
that if t — t; > Bs (so thatAn; and An, are sufficiently

large), we have

By noticing thatAn; is linearly proportional tqts —t; ) while
all other terms are sub-linear (with eithet ar ad coefficient),
(59) thus implies that for any > 0, there exists a sufficiently
large B such that ift, — t; > B, then

(tg — ﬁl)’y(l + 6)
A1 '

E{nl(tg) — nl(t1)|At1} < (60)

P((ts —t1) > (ta —t1)(1 —es)[ Ary) > 1—3ds. (52 By similar argument, we have

Namely, with close to one probability, the random time at (t2 — t1)y(1 + €)
the end of whichn,(t) is at leastni(¢t;) + An; and na(t) E{ng(tQ) - ng(t1)|Atl} < — (61)
is at leastny(t1) + Ang for the first time, is no less than 2

t1+ (t2 —t1)(1 —es). The proof for Collory 1 is completem [ |
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C. Proof for Corollary 3 for packets with indices> n4(t1) for session 1 and packets

Proof: In the above analysis, we have not considered tHath indices> ns(t,) for session 2. As a result, we have
impact of when allowing expiration. In the following, we will n1(t1)+Ani—1 na(t1)+Ans—1
include expiration back to our analysis. To that end, we first P( Z Hy i+ Z H,
notice that we can still defind; ,,, H2 n, ST1,0, CT1,0, CTo i=n1 (t)+1 j=na(t)+1
as in (35), (38), and (40), respectively. Note that now these na (t1)+Ang —1 na(t1)+Ang—1
five random vgnables are no Ionger' independently distributed | i ( Z CTo, Z CT2,1> +
as the realization of one random variable, $&y,,, may affect

the distribution of the other random variables, &3 ../, due n(t)+Ang—1 = =

to expiration. Define a set aghadow random variablef; ,,, Z STi,; < (ta — t1)(1 — €5) -At1>
Hsp, ST1p, CTy,, CT2, that characterize the behaviors iy (01) 41 '

when there is no expriation involved. More specifically, we

choosef, ,, = H, , if H; , stops “growing” due to thex , R (t1)+Ang —1 na(ty)+Ans—1
packet being received by one of the two destinationgilf, p Z Hy + Z H,
stops growing due to the expiration &f, ,,, then we letH; ,, T ’ P J

continue to grow as an independent geometric random variable na(t1)4 Ang—1 na(t)4 Ang—1
with success probabilityp; + pa — pip2). In this way, H , i 1 JZ 2 o 2 12 2 o .
mimics the behavior of a system with no expiration did,, Lk 2

.. . k= t 1 = t 1
is independent from all other random variables. In the same m(f)+ ma(t)+

manner, we choos&T; ,, = ST, ,, if ST, ,, stops growing due m(t)+An—1
to the single transmission involving ,, being received by, Z STii < (t2 —t)(1 —es) | As |, (64)
and we letST, ,, keep growing ifST ,, stops growing due to i=ny(t1)+1

the expiration ofX ,,. Similarly, we chooseCT; ,, = CT;,  because for those realizations, the probability distributions of
if CT,,, stops growing due to the mixed coded transmissiahe shadow random variables and the actual random variables
involving X ,, being received byi;. If CT, ,, stops growing are the same for those packets that are with indiees (¢1)

due to the expiration ofX; ,, then we letCT, , continue for session 1 or that are with indicesn(¢;) for session 2,

to grow as an independent geometric random variable. In tlisd that are transmitted betwegn+ 1, ¢,]. Since (52) holds
way, CT; , mimics the behavior of a system with no expiratiorfor the case without expiration, (64) is smaller th&nwith
andCT, ,, is independent from all other random variables. sufficiently largeBs. (63) is thus proven. We can then follow

Then we need to prove the following version of (52): Fothe same analysis as in (52) to (60). ]
any es, ds > 0, there exists a sufficiently largBs such that  We have shown the case when user 1 is the leading user. By
for anyt, — t; > Bg, we have the same approach, we can also show similar results for the

na () +An; —1 case with user 2 as the leading user (thadjrEi=piea) > 1,

ds > P(UTl +UTo+ ) STy, +TCT and L = A 4 122) Then the proof for the over-
i=na (t1)+1 provisioned case of Lemma 2 is complete.
< (ta —t1)(1 — 68)|~At1> (62) APPENDIX B
PROOF FORTHE UNDER PROVISIONED CASE OFLEMMA 2

Proof: The proof for the under-provisioned case (11k

ni(t1)+An;—1
—p t 1)2 ' H. . of Lemma 2 is similar. The goal is to show that for any 0,
e there exists & > 0 such that for all fixed; andt, satisfying

i=nat)+1 (ty —t;) = B, we have forj = 1,2,

na(t1)+Ans—1 ny(t1)+An;—1
+ Y Hyy+ Y. STu E{n;(ts) — nj(t1)[t2 < min(uni (01), Aema(t1)) }
j=na(t1)+1 i=nq(t1)+1 (t2 . tl)(l L 6)
ni(t1)+An1—1 na(t1)+Anz—1 < - (65)
+ min ( Z CTig, Z CTQJ) Aj
k=1 1=1 Define An; and Any the same way as in (30) and (31).
Definets as the first (random) time slot for which in the end
< (ta —t1)(1 — €s) An) (63)  of time t5, the BS has scheduled transmission for at l@ast

uncoded packets for session 1 af\éh, uncoded packets for
Note that conditioning on the event;, (see the definition of session 2, respectively. Note that since we are dealing with
Aq, in Appendix A), during time(t1,t; + (2 — t1)(1 —es)],  the under-provisioned case, some packets are dropped and will
no packets with indices> n4(t;) for session 1 and packetsnever be transmitted. The way we defifiehere is to count
with indices > ns(t;) for session 2 will expire. Therefore,only thoseAn; and An, uncoded packets that are actually
conditioning on A, any realization ofH,;, H,;, ST;; transmitted. (Note that for the over-provisioned case when we
CTix, and CTo; in (63) must not result in any expirationdo not drop any packets, the abokgdefinition is identical



to the one used in the proof of Corollary 1.) We then relabel
the nextAn; packets including packet; (t1) (that have been
transmitted by the BS) from session 1,/agt1), - .., n1(t1)+
An; —1. We also relabel the nexin, packets (that have been
transmitted by the BS) including packet(¢;) from session

2, aSﬁg(tl), . ﬁg(fl) + Ang — 1.

We first examine how long it takes before the BS finishes
transmitting packets; (¢1), ..., 71 (t1)+An; —1 for session 1,
and finishes transmitting packets(t;), ..., ma(t1) +Ang—1
for session 2. That is, we want to understand the distribution
of the random stopping timg. We then would examine at the
end of timets, how would indicesy; (¢3) andns(t3) be. That
is, we want to investigate how many packets (outpfts) —
n;(t1) packets) for each session have been transmitted by the
BS or how many of them (out of,;(t3) — n,(t1) packets)
were discarded without transmission due to congestion control
in Lines 2 to 16 of the IDNC scheme.

We can apply a similar proof and show that with close-
to-one probabilityt; is no less thart; + (t2 — ¢1)(1 — €').
Namely, at mostAn; (resp.Ans) uncoded packets have been
transmitted for session 1 (resp. session 2) by the end of time
tl + (tg - tl)(]. - 6/).

By our congestion control mechanism (Lines 2 to 16),
wheneverz; is increased by 1, then the BS would schedule
one more uncoded packet of session 1 to be transmitted.
Recall that in the under-provisioned case,< 1, that is
1;& + ﬁ > 1. Henceafter the BS finishes trans-
mitting An, uncoded packets from session 1, the register
is at most increased by

1/ N 1/A
P11 P1+Dp2—pip2’

Usingthe definition ofAn, in (30), we then hawf:&nl(l/Al +

1/2 ~ tz t1
o plpz) ~ . Similarly, the registern, is at most

mcreased by

Anl(

1/)\1 1/)\2 )\1 tg*tl

+ — = .
P1 P1t+D2—pip2’ Ag A2
Combiningthe above observations together, and following

a similar proof,n;(t2) — n;(t1), the increment of the actual
indices, must satisfy

E{n;(t2) = n; ()4, | <

Am(

(tg—tl)(l‘f‘G). (66)

Aj
The critical-provisioned case can be proven in the similar
way. Note that, for the critical-provisioned case= 2 Al +

1/X2

TT—ap,. = 1 The proof is thus complete.
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