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Abstract

State-of-the-art integral equation based solvers rely on techniques that can perform

a dense matrix-vector multiplication in linear complexity. We introduce H* matrix

as a mathematical framework to enable a highly efficient computation of dense
matrices. Under this mathematical framework, as yet, no linear complexity has
been established for matrix inversion. In this work, we developed a matrix inverse
of linear complexity to directly solve the dense system of linear equations for the
capacitance extraction involving arbitrary geometry and non-uniform materials.

We theoretically proved the existence of the 7’ matrix representation of the

inverse of the dense system matrix, and revealed the relationship between the block
cluster tree of the original matrix and that of its inverse. We analyzed the
complexity and the accuracy of the proposed inverse, and proved its linear
complexity as well as controlled accuracy. The proposed inverse-based direct
solver has demonstrated clear advantages over state-of-the-art capacitance solvers
such as FastCap and HiCap: with fast CPU time and modest memory consumption,
and without sacrificing accuracy. It successfully inverts a dense matrix that
involves more than one million unknowns associated with a large-scale, on-chip, 3-
D interconnect embedded in inhomogeneous materials with fast CPU time and less
than 5 GB memory.
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Abstract—State-of-the-art integral equation based solvers rely
on techniques that can perform a dense matrix-vector

multiplication in linear complexity. We introduce H? matrix as a

mathematical framework to enable a highly efficient computation
of dense matrices. Under this mathematical framework, as yet, no
linear complexity has been established for matrix inversion. In
this work, we developed a matrix inverse of linear complexity to
directly solve the dense system of linear equations for the
capacitance extraction involving arbitrary geometry and non-
uniform materials. We theoretically proved the existence of the
#? matrix representation of the inverse of the dense system

matrix, and revealed the relationship between the block cluster
tree of the original matrix and that of its inverse. We analyzed
the complexity and the accuracy of the proposed inverse, and
proved its linear complexity as well as controlled accuracy. The
proposed inverse-based direct solver has demonstrated clear
advantages over state-of-the-art capacitance solvers such as
FastCap and HiCap: with fast CPU time and modest memory
consumption, and without sacrificing accuracy. It successfully
inverts a dense matrix that involves more than one million
unknowns associated with a large-scale, on-chip, 3-D
interconnect embedded in inhomogeneous materials with fast
CPU time and less than 5 GB memory.

Index Terms— Integral-equation-based methods, H’ matrix,
direct solver, matrix inversion, capacitance extraction.

I. INTRODUCTION

INTEGRAL-equation-based (IE-based) methods have been a
popular choice in extracting the capacitive parameters of 3D

interconnects since they reduce the solution domain by one
dimension, and they model an infinite domain without the
need of introducing a truncation boundary condition.
Compared to  their  partial-differential-equation-based
counterparts, however, [E-based methods generally lead to
dense systems of linear equations. Using a naive, direct
method to solve a dense system takes O(N’) operations and
requires O(N?) space, with N being the matrix size. When an
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iterative solver is used, the memory requirement remains the
same, and the time complexity is O(thsNth), where Ny
denotes the total number of iterations required to reach
convergence, and Ny, is the number of right hand sides. In
state-of-the-art IE-based solvers [1-9, 22], fast multipole
method and hierarchical algorithms were used to perform a
matrix-vector multiplication in O(N) complexity, thereby
significantly reducing the complexity of iterative solvers;
efficient preconditioners [8-9] were developed to reduce the
number of iterations; in the limited work reported on the direct
IE solutions [6, 10, 22, 24, 25], the best complexity is shown
to be O(Nlog®N). No linear complexity has been achieved.
Compared to iterative solvers, direct solvers have advantages
when the number of iterations is large or the number of right
hand sides is large. A linear-complexity, inverse based, direct
solver has an additional advantage in memory compared to
iterative solvers. Consider a system of N, conductors. Using
existing fast iterative solvers, even if each matrix solve is of
linear complexity, to store the capacitance matrix one has to
use O(N,%) storage units. In contrast, with an inverse having
linear complexity in both CPU time and memory
consumption, the capacitance matrix can be stored in O(N,)
units.

The contribution of this paper is the development of a
linear-complexity inverse based direct IE solver. To be
specific, the inverse of a dense system matrix arising from a
capacitance extraction problem is obtained in linear CPU time
and memory consumption without sacrificing accuracy. Our
solution hinges on the observation that the matrices resulting
from an IE-based method, although dense, can be thought of
as data-sparse, i.e., they can be specified by few parameters.
There exists a general mathematical framework, called the
“Hierarchical (H) Matrix” framework [10-12], which enables
a highly compact representation and efficient numerical
computation of dense matrices. Both storage requirements and

matrix-vector multiplications using H matrices are of
complexity O(Nlog™N). H>-matrices, which are a specialized
subclass of hierarchical matrices, were later introduced in [13-
16]. It was shown that the storage requirements and matrix-
vector products are of complexity O(N) for H*-based
representation of both quasi-static [10] and electrodynamic
problems [17-18]. It was also shown that an H*-based matrix-
matrix multiplication can be performed in linear complexity
[16]. The nested structure is the key difference between H-



matrices and H*-matrices, since it permits an efficient reuse of
information across the entire hierarchy.

The H*-matrix-based direct matrix solution of linear
complexity has not been established in the literature. In this
work, we developed an H’*-matrix-based inverse of linear
complexity for large-scale capacitance extraction. In [19], we
outlined the basic idea of this work. In this paper, we complete

the work from both theoretical and numerical perspectives.
The significant extension over [19] is as follows.

First, we prove the existence of an 7H’-matrix-based
representation of the dense system matrix as well as its inverse
for capacitance extraction involving arbitrary inhomogeneity
show that the H’-based

representation of the original matrix is error bounded, and the

and arbitrary geometry. We

same is true for the H’-based representation of its inverse.

Moreover, we prove that the inverse and the original matrix
share the same block cluster tree structure, and the cluster
bases constructed from the original matrix can be used for the

H>-based representation of its inverse. This proof serves as a

theoretical basis for developing H’-matrix-based fast direct

solutions of controlled accuracy for capacitance extraction.

Second, we show how to construct a block cluster tree to
efficiently represent both original matrix and its inverse for the
capacitance extraction in inhomogeneous media.

Third, we present detailed linear-complexity algorithms in
the proposed inverse and analyze their complexity. In [19], we
only gave a very high level picture of the algorithm, and the
complexity analysis is only for the multiplications involved in
the inverse procedure. In this work, we give a complete
inverse algorithm and its complexity analysis. To help better
understand the proposed linear-complexity inverse, we use an
analogy between a matrix-matrix multiplication and a matrix

inverse to present the proposed algorithm since the H*-based

matrix-matrix multiplication has been shown to have a linear
complexity [16]. We first make a comparison between a
matrix inverse and a matrix-matrix multiplication to reveal
their similarity as well as difference. We show that although
the two operations share the same number of block matrix
multiplications, there is a major difference that prevents one
from directly using the linear-time matrix-matrix
multiplication algorithm to achieve a linear complexity in
inverse. The major difference is that in the level-by-level
computation of the inverse, at each level, the computation is
performed based on updated matrix blocks obtained from the
computation at the previous level instead of the original
matrix. In contrast, in the level-by-level computation of the
matrix-matrix multiplication, at each level, the computation is
always performed based on the original matrix, which is never
updated. This difference would render the inverse complexity
higher than linear if one does not address it properly. We then
detail the algorithms in the proposed inverse that overcome
this issue. In addition, we greatly enrich the section of
numerical results.

The remainder of this paper is organized as follows. In
Section II, we derive the H*-matrix-based representation of

the dense system matrix resulting from capacitance extraction
and show that this representation is error bounded. In addition,

we prove the existence of the 7 representation of the inverse

and reveal its relationship with the H* representation of the
original matrix. In Section III, we construct a block cluster
tree for an efficient H*-based representation of the dense

system matrix and its inverse. In Section IV, we provide an
overall procedure of the proposed direct solver. In Section V,
we make a comparison between a matrix-matrix product and a
matrix inverse, from which one can clearly see the difference
between these two. In Section VI, we detail the linear-
complexity algorithms in the proposed inverse. In Section VII,
we give numerical results to demonstrate the accuracy and
linear complexity of the proposed direct IE solver for
capacitance extraction. Comparisons with state-of-the-art
capacitance solvers such as FastCap and HiCap are also
presented. We conclude in Section VIII.

To help make the paper concise, in what follows, we do not

repeat mathematics that can be referred to in the H*-matrix
literature. We only keep those mathematical definitions that

are necessary for the completeness of this paper so that we can
focus on the proposed new algorithms.

II. H* MATRIX REPRESENTATION OF THE DENSE

SYSTEM MATRIX AND ITS INVERSE FOR
CAPACITANCE EXTRACTION

Consider a multi-conductor structure embedded in an
inhomogeneous material. An IE based solution for capacitance
extraction results in the following dense system of equations
[3,19]:

Gg=v )
P P
where G { o } q= {q‘} ,and v= {V} , in which ¢, and
i Eau 94 0

q, are the charge vectors of the conductor panels and
dielectric-dielectric interface panels, respectively, and v, is

the potential vector associated with the conductor panels. The
entries of P and E are

j j g(r,r,)drdr,

E, =, e,,)iiij I, sGrpdar, @

where @, and a; are the areas of panel S, andS§,,

respectively, g is static Green’s function, and &£, and &, are

the permittivity of two different materials.
entries of E,, are ¢, =(¢,+¢&,)/(2a,&,) .

The diagonal

In a uniform dielectric, (1) is reduced to
P.q.=v.. 3
Next, we show that the dense system matrix G shown in (1)
can be represented by an H* matrix with error well controlled.



Moreover, the inverse of G, also, has an H> representation.
Such a property holds true for any G, i.e., IE-based
capacitance extraction involving arbitrary geometry and
inhomogeneity.

Definitions of an 7{ matrix and an * matrix: An M’
matrix is generally associated with a strong admissibility
condition [10, pp. 145]. To define a strong admissibility
condition, we denote the full index set of all the panels by 7 :=
{1, 2,
hence unknowns. Considering two subsets ¢ and s of the Z, the

., N}, where N is the total number of panels, and

strong admissibility condition is defined as
max {diam(Q,), diam(€)} < 5 dist(€,, ), %
where Q, and Q_ are the supports of the union of all the

panels in ¢ and s respectively, diam( . ) is the Euclidean
diameter of a set, dist(. , .) is the Euclidean distance between
two sets, and # is a positive parameter. If subsets ¢ and s
satisfy (4), they are admissible, in other words, they are well
separated; otherwise, they are inadmissible. Generally, it is not
practical to directly measure the Euclidean diameter and
Euclidean distance. We thus use an axis-parallel bounding box
0, 0 Q,, which is the tensor product of intervals [10, pp 46-

48], to represent the support of the union of all the panels in .
Denoting the matrix block formed by ¢ and s by G"*, if all
the blocks G"* formed by the admissible (¢, s) in G can be

represented by a low-rank matrix, G is an H matrix. In other
words, if G possesses the following property

Ge R™#T: G"*is low rank for all admissible (¢, 5), (5)

it is an H matrix.

If G can be further written as a factorized form
ét,s = VrSt,svsl" Vie R#M, S e kak’ Ve R#sxk , (6)
where V' is nested, then G is an H* matrix. In (6), V' is

called a cluster basis, " is called a coupling matrix, & is the
rank of V', and “#” denotes the cardinality of a set. The
nested property of V' enables O(N) storage of a dense matrix
and O(N) matrix-vector multiplication [10, pp. 146].

A. 7/-Matrix Representation of G with Error Well
Controlled

1) 7/-Matrix Representation of G

If two subsets ¢ and s of Z satisfy the strong admissibility

condition (4), the original kernel function g(r;,r;) in (2) can
be replaced by a degenerate approximation
)= 2 2 gL ENL, (L) (M

veK' pek®
where K ={ve N*:v,<p for all ie{l,.,d}}=1{,.,p}"; d=l,
2, 3, for 1-, 2-, and 3-D problems respectively; p is the number
of interpolation points; (&}) _,.and (&, ) g are two families

and

The

of interpolation points respectively in 7 and s; and (L)

(Lt" )ve K

veK'

,are the corresponding Lagrange polynomials.

interpolation in (7) is performed on the axis-parallel bounding
boxes Q, and Q, .

With (7), the double integrals in (2) are separated into two
single integrals:

P zz——g@:,fﬂﬂ RACUNRAGINC

veK' uek*

o ZZ11 ~ g(é,f)I

veK' /IEK

Ly [ L,(r)dr, (9)

Hence, the submatrlx G'* can be written in a factorized form
as:

Gt,s = Vtst,sV;-" , Vie R#tx#l(’ , SH e R#K’X#K‘ , Ve R#xx#l(‘ (10)
where

v, = [ Ldr,

g(&.E)/ (aa)
S = 9g(&.E)
on,

v =L/ L, (r,)dr'

jn

( t contains conductor panels)

(&,—¢&)/(aa)) ( ¢ contains dielectric panels)

veK',and ueK’. (11

If we use the same space of polynomials for all clusters,

for iet, jes,

then V' is nested. To explain, consider a set ¢#' which is a
subset of 7, L (r) in (11) can be written as

L(r)= Y TLL.r), (12)
vek"
where
T., = L&) (13)
As aresult, V;, in (11) can be written as

J.L’(r)dr— > j Li(F)dr="3, T\ Vi.=(V'T"), (14)

vek" vek"

where T" e R**"*X" ig called a transfer matrix for the subset
t'. Hence, assuming that the set ¢ is the union of two subsets
t; and t,, we have

. Vi B v T
V= VT2 - v llre |-

Thus, V'’ is nested.
From (10) and (15), we prove that the dense system matrix

G for capacitance extraction can be represented by an 7’

(15)

matrix. In the next section, we show that such a representation
is error bounded.
2) Error Bound

Following the derivation in [18], if the admissibility
condition given in (4) is satisfied, the error of (7) is bounded

by
1 g(rr) =& (r,r) g xo,

A oo e 09
r dist(0,,0,) n
where A, is a constant related to p and the interpolation

scheme. Clearly, exponential convergence with respect to p



can be obtained irrespective of the choice of 7. Since G is

proportional to 1/dist(Q,,0,), the relative error becomes a
constant related ton and p. The smaller 7 is, the smaller the

error is. The larger p is, the smaller the error is. In addition, all
block entries represented by (10) can be kept to the same order
of accuracy across the levels of a block cluster tree.

B. 7/-Matrix Representation of G~

In this section, to help better understand the existence of the
H*-matrix representation of G™', we provide a mathematical

proof.

Consider a 3-D problem involving arbitrarily shaped
conductors embedded in non-uniform materials. The
electrostatic phenomena in such a problem are governed by
Poisson’s equation:

V() =p, (17)
where v is electric potential and p, is charge density. By

using a differencing scheme to discretize the space derivatives
in Poisson’s equations, like what is done in a partial
differential equation based solution of (17), we obtain the
following system of equations

Cr=0, (18)
where V'is a vector consisting of the electric potential at each
discretized point in the 3-D computational domain, and Q is a
vector containing the charge density at each discretized point.
Because of the nature of the partial differential operator, the
charge density at each discretized point only needs to be
evaluated from the electric potentials that are adjacent to the
point. As a result, in each row of C, there are only a few
nonzero elements, which are contributed by the electric
potentials close to the point corresponding to the row index.
Thus, the C in (18) is a sparse matrix, and also its blocks
satisfying admissibility condition (4) are all zero.

Each row of equation in (1) states that the total electric
potential at one point in space is the superposition of the
electric potential generated by all of the discrete charges.
Therefore, if (1) is formulated for all of the discretized points
in a 3-D volumetric domain, then G is nothing but C, and
hence a sparse matrix.

However, due to a surface integral based formulation, in
(1), the right hand side v is not the complete V; instead, it is a
subset of ¥, which only consists of the electric potential on the
conducting surface and that on the dielectric-dielectric
interface. Therefore, G™' is not directly C in (18). However,
there exists a relationship between G™ and C, which dictates
the existence of the *-matrix representation of G™'. To see

this relationship, we rewrite (18) as

Gy Co | Ve 0J’
where v and ¢ are the same as those in (1), and v

else

(19)

denotes

the electric potential elsewhere, which is not associated with
the conducting surfaces and dielectric interfaces. Since the
charge density is zero in a purely dielectric region, the right
hand side corresponding to the second row in (19) is zero.
From (19), we immediately obtain

(o C12C22_]C21)V =9q. (20)
Comparing (20) to (1), it is clear that
G'= C, _C12C2271C21 . (21)

The second row of (19), C,v

else:_C21V: iS What iS
traditionally solved by a partial differential equation based

method: solving v, subject to boundary condition v. It is

else
clear that C,,™" is the inverse of the matrix resulting from the
discretization of a Poisson’s operator. It is proved in [23] that
the inverse of the matrix resulting from the discretization of an

elliptic partial differential operator has an 7H-matrix

representation. Therefore, C,,”" also has an H-matrix

representation, and hence an {*-matrix representation (An H-

matrix representation can be converted to an H’-matrix
representation [10]). This can also be seen clearly from the
fact that C,,”' is nothing but G,,, the G matrix whose

row/column dimension is the same as the length of v, , and

else >

each column of G,, represents the electric potential v

else

generated by one charge configuration (The —C,,v is in fact
an equivalent charge vector). The G matrix’s H* matrix

representation has already been shown in the above section.
Therefore, C,,”" has an {* matrix representation.

To prove the existence of the H*-matrix representation of
G, we need to prove that all the blocks (G™)"* formed by

the admissible (¢, s) in G™' can be represented by a factorized
low-rank form shown in (6).

Consider a (¢, s) block in G™' that satisfies the admissibility
condition (4). Since unknowns in subset ¢ and those in s are
well separated based on the definition of the admissibility
condition, we have

Cci =0, (22)
because Cy; is a sparse matrix whose nonzero elements only
appear in the close-interaction blocks. Therefore, from (21),

(Gil)(M) = _(C12C2271C21 )(m) : (23)
The (¢, 5) block of (C,,C,,”'C,,) can be evaluated as
(C12C2271C21 )(I’S) = (CIZ )(’J') ((:2271 )UZSI) (CZI )(S'J) ’ (24)

where #* denotes the subset that is physically close to ¢, s’
denotes the subset that is physically close to s. As shown in
Fig. 1, (C,)"" denotes the nonzero block in C, that
occupies rows corresponding to subset ¢ and (C,)"*”
denotes the nomnzero block in C, that has columns
corresponding to subset s. In (24), we only need to consider
(C,)"" among all of the (C,,)*” (i = 1, 2, ...) blocks

because all the other blocks are zero since the unknowns in
corresponding two subsets are well separated from each other.
This is the same reason why we only need to consider

(C,))® block in C,,. As a result, among all the blocks in
C,,', only the (¢’, s’) block participates in the computation

of C,,C,,”'C,,, as illustrated in Fig. 1. Since the subset # is
close to subset ¢, subset s’ is adjacent to subset s, and subsets #



and s are well separated; the subset #” and subset s’ also satisfy
the admissibility condition (4). Thus, (C,, ")’ has an H*

representation since (C,,”)""” is G,,“"". By using the H’

representation of the admissible block G,,"*", we have

t’ N N
11
| | X ————: :__ X _0
t_0 0 S N 1 |
Tr L 0
1T 1
C]2 (j2271 C21
= O x 0O .
, e (€)Y
(Clz)(l)” (C22 1)0’”

Fig. 1. Illustration of the actual operation involved in CIZCZZ"CZI .

(C12C2271C21)(I,x) — ((:12 )([,l')V#l'XkSka (VT)kX#S'(Czl)(S',x)
— \Nl#txkskxk ((,T )kx#s :
Thus, from (23) and (25), we prove that (G™')"* has an H*
matrix representation. Since (¢, s) is an arbitrary admissible
block, we conclude that for all the admissible blocks in G,

there exists an H* representation. With that, we prove the

(25)

existence of H representation for G .

The important findings can be identified from the above
proof. First, G and G™' share the same block cluster tree
structure in common. A block cluster tree determines which
matrix block has an H? form and which is a full matrix. As
can be seen from the above proof, given an admissibility
condition (4), if a block is admissible in G, it must also be
admissible in G (i.e. has a factorized low rank form); if a
block is inadmissible in G, it must also be inadmissible in

A B c D
(@)

1 1 1 j

112 314 516 7.8

: : H

1 1 1 ;
1'2 3:4 51 6 7.1 8

1 1 '

X A : H
1 I . T
112 314 516 7.8
s : : !
/7N N N N

|E|

(b)
Fig. 2. (a) An example of a structure having four
conductors. (b) The resultant cluster tree.

G™'. Therefore, G and G™' share the same block cluster tree
structure. In addition, they share the same rank distribution as
can be seen from (25). The second finding is that the same
cluster basis constructed from the original matrix can be used
to represent its inverse as can be seen from (25). If the first
order differencing scheme is used to discretize Poisson’s
equations, the C,, and C,, are, in fact, diagonal matrices. For

non-diagonal C,, and C,,, the V in (25) can always be

spanned in the space of V . The only difference is that with V
being the cluster basis of the inverse, the coupling matrix will
be modified correspondingly from that in (25). This is similar
to the fact that given a set of cluster bases, one can always
orthogonalize it to construct a new set of cluster bases without
losing accuracy.

[II. BLOCK CLUSTER TREE CONSTRUCTION FOR
EFFICIENT STORAGE AND PROCESSING OF H2-
BASED G AND G

In this section, we show how to construct a block cluster
tree for the capacitance extraction problem. A block cluster
tree is a tree structure that can be used to efficiently capture

the nested hierarchical dependence present in an * matrix
[10, pp. 13-15]. Here, special care needs to be taken to make
the H*-based representation of G and G~ efficient for
capacitance extraction.

teT;
{1,2,3,4,5,6,7,8}

/N /N
{1,2,3,4y {5,6,7,8} {1,2,3,4} {5,6,7,8}

se Ty
{1,2,3,4,5,6,7,8}

Fig. 3. Construction of a block cluster tree. (Admissible link--~
inadmissible link —)

A. Block Cluster Tree Construction for 7/-Based G

To make the explanation clear, we use a simple example to
show the procedure of constructing a block cluster tree
without loss of generality of the procedure. Consider a
capacitance system made of four conductors as shown in Fig.
2(a). We discretize each conductor into two panels, resulting

in a panel set of Z: = {1, 2, ..., N}, where N is 8 in this

example. We start from Z and split it into two subsets as
shown in Fig. 2(b). We continue to split until the number of
panels involved in each subset is less than or equal to leafsize,
which is a parameter to control the tree depth. For the specific
example shown in Fig. 2(a), leafsize is 1. As a result, we
generate a cluster tree as shown in Fig. 2(b). The cluster tree
constructed for panel set Z is denoted by T . All the nodes of

the tree are called as clusters. The full panel set Z is called the



root cluster, denoted by Root(7} ). Clusters with indices no
more than leafsize are leaves. The set of leaves of T, is

denoted by L, . Each non-leaf cluster has two children in our

tree construction.
The block cluster tree is recursively constructed from
cluster trees 7, and T, and a given admissibility condition,

the process of which is shown in Fig. 3. We start from
Root(7; ) and Root(7; ), and test the admissibility condition

between clusters te T, and se T, level by level. Once two

clusters ¢ and s are found to be admissible based on (4), a cross
link is formed between them, which is called an admissible
link. Once two clusters are linked, we do not check the
admissibility condition for the combination of their children. If
clusters ¢ and s are both leaf clusters but not admissible, they
are also linked. For example, cluster {1} and cluster {1} as
shown in Fig. 3. This link is called an inadmissible link.

The aforementioned procedure results in a block cluster
tree. Each link represents a leaf block cluster. The block
cluster tree can be mapped to a matrix structure shown in Fig.
4. Each leaf block cluster corresponds to a matrix block. The

1 2 3 L 5 6 7 8

7

8

Fig. 4. An H*-matrix structure. (I full matrix block, []
admissible block.)

un-shaded matrix blocks are admissible blocks in which the
H*-matrix-based representation is used; the shaded ones are

inadmissible blocks in which a full matrix representation is
employed.

Special treatment is required for structures involving
multiple dielectrics. After discretizing the structure, the whole
set that includes all the panels is divided into two subsets. One
includes all the conductor panels, and the other includes all the
dielectric panels, as shown in Fig. 5. The conductor set is

=

e I, I

000 @&

Fig. 5. Illustration of the treatment of the unbalanced case
encountered in non-uniform dielectrics.

denoted by Z¢, and the dielectric set is denoted by Zp. If the

two subsets are almost balanced, we can directly use the
procedure above to construct the block cluster tree. If not, for
example, if the number of conductor panels is much larger

than that of dielectric panels, the subset Zp constructed for
dielectric panels is pushed down to the level where the size of
clusters in Z¢ is almost the same as that in Z, Then we start to
check the admissibility condition from that level. By doing so,
the ’-based representation of G can be made more efficient.

B. Block Cluster Tree Construction for 7-Based G

As proved in Section I1.B, G is an H? matrix, and also,
has the same block cluster tree as G. Thus, using the H? tree

of G to represent that of G™ is theoretically rigorous for the
integral operator encountered in the capacitance extraction.

IV. OVERALL PROCEDURE

In this section, we give the overall procedure of the
proposed linear-complexity direct solver for capacitance
extraction.

First, we introduce the concepts, notations, and parameters
that are used throughout this paper:
e For each cluster te T}, the cardinality of the sets
{seT,: (t,5)eT,,} and {teT,: (t,s)e T, ,}is bounded by
a constant C,, [10, pp. 124]. Graphically, C

, 18 the maximum

number of links that can be formed by a cluster at each level
of a block cluster tree as shown in Fig. 3.

e FEach non-leaf cluster ¢ has two child nodes.

e FEach non-leaf block b has four children blocks.

e The rank of V=(V')_, is denoted by £.

e The parameter /eafsize is denoted by n
#t<n, ifte L.

k).

There are three steps in the proposed direct solver. At the
first step, to enable linear-time matrix inversion, we

orthogonalize cluster basis V' while still preserving the

teTy

and

min >
e k =max(n

min >

nested property of V'. Mathematically, the new basis V'
should satisfy the following two properties:

V)V =1,

_ V”T”
V= \“,rzvizz ’

where t,,t, € children(t). We employ the method in [14, pp.

(26)

and

@7

254-258] to construct orthogonal bases V', which is shown to
have a linear complexity.

To give an example on how the orthogonalization helps
achieve a linear complexity, consider one multiplication G”'x
G”—G’ involved in the inverse procedure, where



G"=V'S"V* and G” =V'S”V" | and b=(t,r) is an
admissible block in the inverse. Then,

G"'xG” =V'S"'V* x V'SV (28)
Since V is orthogonalized, we have
G« GP? = VtSbIISbZVrT — ‘"'/t(sh]ShZ)\"'/rT ) (29)

Thus the multiplication cost becomes the cost of multiplying
two coupling matrices S”' and S”*, each of which is a k by &k
matrix. Hence, the complexity of computing G”'xG”—G" is
made O(k*), which is independent of the row dimension (#¢)

and the column dimension (#r) of G’. Notice that an >

matrix is stored in the format of the cluster basis V and the
coupling matrix S, and we always use the factorized form

V'SV" to perform efficient computation. Thus, we do not

need t