
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

2-15-2011

Dense Matrix Inversion of Linear Complexity for
Integral-Equation Based Large-Scale 3-D
Capacitance Extraction
Wenwen Chai
Electrical and Computer Engineering, Purdue University, wchai@purdue.edu

Dan Jiao
Electrical and Computer Engineering, Purdue University, djiao@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Chai, Wenwen and Jiao, Dan, "Dense Matrix Inversion of Linear Complexity for Integral-Equation Based Large-Scale 3-D Capacitance
Extraction" (2011). ECE Technical Reports. Paper 410.
http://docs.lib.purdue.edu/ecetr/410

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages

Dense Matrix Inversion of Linear Complexity for Integral-
Equation Based Large-Scale 3-D Capacitance Extraction

Wenwen Chai

Dan Jiao

TR-ECE-11-05

February 15, 2011

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

Dense Matrix Inversion of Linear Complexity for Integral-
Equation Based Large-Scale 3-D Capacitance Extraction

Wenwen Chai and Dan Jiao

School of Electrical and Computer Engineering
465 Northwestern Ave.

Purdue University
West Lafayette, IN 47907-2035

– This work was supported by NSF under award No. 0747578 and No. 0702567.

Abstract

State-of-the-art integral equation based solvers rely on techniques that can perform

a dense matrix-vector multiplication in linear complexity. We introduce 2 matrix

as a mathematical framework to enable a highly efficient computation of dense
matrices. Under this mathematical framework, as yet, no linear complexity has
been established for matrix inversion. In this work, we developed a matrix inverse
of linear complexity to directly solve the dense system of linear equations for the
capacitance extraction involving arbitrary geometry and non-uniform materials.

We theoretically proved the existence of the 2 matrix representation of the

inverse of the dense system matrix, and revealed the relationship between the block
cluster tree of the original matrix and that of its inverse. We analyzed the
complexity and the accuracy of the proposed inverse, and proved its linear
complexity as well as controlled accuracy. The proposed inverse-based direct
solver has demonstrated clear advantages over state-of-the-art capacitance solvers
such as FastCap and HiCap: with fast CPU time and modest memory consumption,
and without sacrificing accuracy. It successfully inverts a dense matrix that
involves more than one million unknowns associated with a large-scale, on-chip, 3-
D interconnect embedded in inhomogeneous materials with fast CPU time and less
than 5 GB memory.

 1

Abstract—State-of-the-art integral equation based solvers rely

on techniques that can perform a dense matrix-vector
multiplication in linear complexity. We introduce 2 matrix as a

mathematical framework to enable a highly efficient computation
of dense matrices. Under this mathematical framework, as yet, no
linear complexity has been established for matrix inversion. In
this work, we developed a matrix inverse of linear complexity to
directly solve the dense system of linear equations for the
capacitance extraction involving arbitrary geometry and non-
uniform materials. We theoretically proved the existence of the
2 matrix representation of the inverse of the dense system

matrix, and revealed the relationship between the block cluster
tree of the original matrix and that of its inverse. We analyzed
the complexity and the accuracy of the proposed inverse, and
proved its linear complexity as well as controlled accuracy. The
proposed inverse-based direct solver has demonstrated clear
advantages over state-of-the-art capacitance solvers such as
FastCap and HiCap: with fast CPU time and modest memory
consumption, and without sacrificing accuracy. It successfully
inverts a dense matrix that involves more than one million
unknowns associated with a large-scale, on-chip, 3-D
interconnect embedded in inhomogeneous materials with fast
CPU time and less than 5 GB memory.

Index Terms— Integral-equation-based methods, 2 matrix,

direct solver, matrix inversion, capacitance extraction.

I. INTRODUCTION

NTEGRAL-equation-based (IE-based) methods have been a
popular choice in extracting the capacitive parameters of 3D
interconnects since they reduce the solution domain by one

dimension, and they model an infinite domain without the
need of introducing a truncation boundary condition.
Compared to their partial-differential-equation-based
counterparts, however, IE-based methods generally lead to
dense systems of linear equations. Using a naïve, direct
method to solve a dense system takes O(N3) operations and
requires O(N2) space, with N being the matrix size. When an

This work was supported by NSF under award No. 0747578 and No.

0702567.
Wenwen Chai and Dan Jiao are with the School of Electrical and

Computer Engineering, Purdue University, 465 Northwestern Avenue, West
Lafayette, IN 47907, USA (phone: 765-494-5240; fax: 765-494-3371; e-mail:
djiao@purdue.edu).

.

iterative solver is used, the memory requirement remains the
same, and the time complexity is O(NrhsNitN

2), where Nit
denotes the total number of iterations required to reach
convergence, and Nrhs is the number of right hand sides. In
state-of-the-art IE-based solvers [1-9, 22], fast multipole
method and hierarchical algorithms were used to perform a
matrix-vector multiplication in O(N) complexity, thereby
significantly reducing the complexity of iterative solvers;
efficient preconditioners [8-9] were developed to reduce the
number of iterations; in the limited work reported on the direct
IE solutions [6, 10, 22, 24, 25], the best complexity is shown
to be O(NlogαN). No linear complexity has been achieved.
Compared to iterative solvers, direct solvers have advantages
when the number of iterations is large or the number of right
hand sides is large. A linear-complexity, inverse based, direct
solver has an additional advantage in memory compared to
iterative solvers. Consider a system of Nc conductors. Using
existing fast iterative solvers, even if each matrix solve is of
linear complexity, to store the capacitance matrix one has to
use O(Nc

2) storage units. In contrast, with an inverse having
linear complexity in both CPU time and memory
consumption, the capacitance matrix can be stored in O(Nc)
units.

The contribution of this paper is the development of a
linear-complexity inverse based direct IE solver. To be
specific, the inverse of a dense system matrix arising from a
capacitance extraction problem is obtained in linear CPU time
and memory consumption without sacrificing accuracy. Our
solution hinges on the observation that the matrices resulting
from an IE-based method, although dense, can be thought of
as data-sparse, i.e., they can be specified by few parameters.
There exists a general mathematical framework, called the
“Hierarchical () Matrix” framework [10-12], which enables

a highly compact representation and efficient numerical
computation of dense matrices. Both storage requirements and
matrix-vector multiplications using  matrices are of

complexity O(NlogαN). 2-matrices, which are a specialized

subclass of hierarchical matrices, were later introduced in [13-
16]. It was shown that the storage requirements and matrix-
vector products are of complexity O(N) for 2-based

representation of both quasi-static [10] and electrodynamic
problems [17-18]. It was also shown that an 2-based matrix-

matrix multiplication can be performed in linear complexity
[16]. The nested structure is the key difference between -

Dense Matrix Inversion of Linear Complexity
for Integral-Equation Based Large-Scale 3-D

Capacitance Extraction

Wenwen Chai, Student Member; IEEE, and Dan Jiao, Senior Member; IEEE

I

 2

matrices and 2-matrices, since it permits an efficient reuse of

information across the entire hierarchy.

The 2-matrix-based direct matrix solution of linear

complexity has not been established in the literature. In this

work, we developed an 2-matrix-based inverse of linear

complexity for large-scale capacitance extraction. In [19], we
outlined the basic idea of this work. In this paper, we complete
the work from both theoretical and numerical perspectives.
The significant extension over [19] is as follows.

First, we prove the existence of an 2-matrix-based

representation of the dense system matrix as well as its inverse
for capacitance extraction involving arbitrary inhomogeneity

and arbitrary geometry. We show that the 2-based

representation of the original matrix is error bounded, and the

same is true for the 2-based representation of its inverse.

Moreover, we prove that the inverse and the original matrix
share the same block cluster tree structure, and the cluster
bases constructed from the original matrix can be used for the

2-based representation of its inverse. This proof serves as a

theoretical basis for developing 2-matrix-based fast direct

solutions of controlled accuracy for capacitance extraction.
Second, we show how to construct a block cluster tree to

efficiently represent both original matrix and its inverse for the
capacitance extraction in inhomogeneous media.

Third, we present detailed linear-complexity algorithms in
the proposed inverse and analyze their complexity. In [19], we
only gave a very high level picture of the algorithm, and the
complexity analysis is only for the multiplications involved in
the inverse procedure. In this work, we give a complete
inverse algorithm and its complexity analysis. To help better
understand the proposed linear-complexity inverse, we use an
analogy between a matrix-matrix multiplication and a matrix

inverse to present the proposed algorithm since the 2-based

matrix-matrix multiplication has been shown to have a linear
complexity [16]. We first make a comparison between a
matrix inverse and a matrix-matrix multiplication to reveal
their similarity as well as difference. We show that although
the two operations share the same number of block matrix
multiplications, there is a major difference that prevents one
from directly using the linear-time matrix-matrix
multiplication algorithm to achieve a linear complexity in
inverse. The major difference is that in the level-by-level
computation of the inverse, at each level, the computation is
performed based on updated matrix blocks obtained from the
computation at the previous level instead of the original
matrix. In contrast, in the level-by-level computation of the
matrix-matrix multiplication, at each level, the computation is
always performed based on the original matrix, which is never
updated. This difference would render the inverse complexity
higher than linear if one does not address it properly. We then
detail the algorithms in the proposed inverse that overcome
this issue. In addition, we greatly enrich the section of
numerical results.

The remainder of this paper is organized as follows. In
Section II, we derive the 2-matrix-based representation of

the dense system matrix resulting from capacitance extraction
and show that this representation is error bounded. In addition,
we prove the existence of the 2 representation of the inverse

and reveal its relationship with the 2 representation of the

original matrix. In Section III, we construct a block cluster
tree for an efficient 2-based representation of the dense

system matrix and its inverse. In Section IV, we provide an
overall procedure of the proposed direct solver. In Section V,
we make a comparison between a matrix-matrix product and a
matrix inverse, from which one can clearly see the difference
between these two. In Section VI, we detail the linear-
complexity algorithms in the proposed inverse. In Section VII,
we give numerical results to demonstrate the accuracy and
linear complexity of the proposed direct IE solver for
capacitance extraction. Comparisons with state-of-the-art
capacitance solvers such as FastCap and HiCap are also
presented. We conclude in Section VIII.

To help make the paper concise, in what follows, we do not

repeat mathematics that can be referred to in the 2-matrix

literature. We only keep those mathematical definitions that
are necessary for the completeness of this paper so that we can
focus on the proposed new algorithms.

II. 2 MATRIX REPRESENTATION OF THE DENSE

SYSTEM MATRIX AND ITS INVERSE FOR
CAPACITANCE EXTRACTION

Consider a multi-conductor structure embedded in an
inhomogeneous material. An IE based solution for capacitance
extraction results in the following dense system of equations
[3, 19]:

q v=G (1)

where

cc cd

dc dd

 
=  
 

P P
G

E E
, c

d

q
q

q

 
=  
 

, and
0

cv
v

 
=  
 

, in which cq and

dq are the charge vectors of the conductor panels and

dielectric-dielectric interface panels, respectively, and cv is

the potential vector associated with the conductor panels. The
entries of P and E are

1 1
(,)

i j
ij i j i jS S

i j

g r r dr dr
a a

=  P

1 1
() (,)

i j
ij a b i j i jS S

a i j

g r r dr dr
n a a

ε ε ∂= −
∂  E , (2)

where ia and ja are the areas of panel iS and jS ,

respectively, g is static Green’s function, and aε and bε are

the permittivity of two different materials. The diagonal
entries of ddE are 0() / (2)ij a b ie aε ε ε= + .

In a uniform dielectric, (1) is reduced to

cc c cq v=P . (3)

Next, we show that the dense system matrix G shown in (1)
can be represented by an 2 matrix with error well controlled.

 3

Moreover, the inverse of G, also, has an 2 representation.

Such a property holds true for any G, i.e., IE-based
capacitance extraction involving arbitrary geometry and
inhomogeneity.

Definitions of an  matrix and an 2 matrix: An 2

matrix is generally associated with a strong admissibility
condition [10, pp. 145]. To define a strong admissibility
condition, we denote the full index set of all the panels by  :=

{1, 2, …, N}, where N is the total number of panels, and
hence unknowns. Considering two subsets t and s of the , the

strong admissibility condition is defined as

max{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs), (4)

where tΩ and sΩ are the supports of the union of all the

panels in t and s respectively, diam(.) is the Euclidean
diameter of a set, dist(. , .) is the Euclidean distance between
two sets, and η is a positive parameter. If subsets t and s
satisfy (4), they are admissible, in other words, they are well
separated; otherwise, they are inadmissible. Generally, it is not
practical to directly measure the Euclidean diameter and
Euclidean distance. We thus use an axis-parallel bounding box

t tQ ⊇ Ω , which is the tensor product of intervals [10, pp 46-

48], to represent the support of the union of all the panels in t.
Denoting the matrix block formed by t and s by Gt, s, if all

the blocks Gt, s formed by the admissible (t, s) in G can be
represented by a low-rank matrix, G is an  matrix. In other

words, if G possesses the following property
#×∈G    : Gt, s is low rank for all admissible (t, s), (5)

it is an  matrix.

If G can be further written as a factorized form
, , # , #: , , ,t s t t s s t t k t s k k s s kΤ × × ×= ∈ ∈ ∈G V S V V S V    , (6)

where tV is nested, then G is an 2 matrix. In (6), tV is

called a cluster basis, ,S t s is called a coupling matrix, k is the
rank of tV , and “#” denotes the cardinality of a set. The
nested property of tV enables O(N) storage of a dense matrix
and O(N) matrix-vector multiplication [10, pp. 146].

A. 2-Matrix Representation of G with Error Well

Controlled

1) 2-Matrix Representation of G

 If two subsets t and s of  satisfy the strong admissibility

condition (4), the original kernel function (,)i jg r r in (2) can

be replaced by a degenerate approximation
, (,) (,) () ()

t s

t s t s t s
i j v v i j

v K K

g r r g L r L rμ μ
μ

ξ ξ
∈ ∈

=   , (7)

where : { : {1,..., }} {1,..., }d d
iK v v p for all i d p= ∈ Ν ≤ ∈ = ; d=1,

2, 3, for 1-, 2-, and 3-D problems respectively; p is the number
of interpolation points; () t

t
v v K

ξ
∈

and () s

s

Kμ μ
ξ

∈
are two families

of interpolation points respectively in t and s; and () t

t
v v K

L
∈

 and

() t

t
v v K

L
∈

are the corresponding Lagrange polynomials. The

interpolation in (7) is performed on the axis-parallel bounding
boxes tQ and sQ .

With (7), the double integrals in (2) are separated into two
single integrals:

, 1 1
: (,) () ()

i jt s

t s t s t s
ij v v i i j jS S

v K K i j

g L r dr L r dr
a a μ μ

μ

ξ ξ
∈ ∈

= ⋅   P (8)

, (,)1 1
() () ()

i jt s

t s
vt s t s

ij a b v i i j jS S
v K K i j a

g
L r dr L r dr

a a n
μ

μ
μ

ξ ξ
ε ε

∈ ∈

∂
= − ⋅

∂   E (9)

Hence, the submatrix ,t sG can be written in a factorized form

as:
, , # # , # # # #: , , ,

t t s st s t t s s t t K t s K K s s KΤ × × ×= ∈ ∈ ∈G V S V V S V    (10)

where

,

() , () '

(,) / () (contains conductor panels)

(,)
() / () (contains dielectric panels)

i j

v

t t s s
iv v i j jS S

t s
v i j

t s t s
v

a b i j
a

L r dr L r dr

g a a t

g
a a t

n
μ

μ μ

μ

μ

ξ ξ

ξ ξ
ε ε

= =




=  ∂
− ∂

 V V

S

for i t∈ , j s∈ , tv K∈ , and .sKμ ∈ (11)

 If we use the same space of polynomials for all clusters,
then V t is nested. To explain, consider a set 't which is a

subset of t, ()t
vL r in (11) can be written as

'

' '
' '

'

() ()
t

t t t
v v v v

v K

L r L r
∈

=  T , (12)

where
' '
' '()t t t

v v v vL ξ=T . (13)

As a result,

t
ivV in (11) can be written as

' '

' ' ' ' ' '
' ' ' '

' '

() () ()
i it t

t t t t t t t t
iv v v v v v v iv ivS S

v K v K

L r dr L r dr
∈ ∈

= = = =  V T T V V T
 

(14)

where
'' # #t tt K K×∈T  is called a transfer matrix for the subset

't . Hence, assuming that the set t is the union of two subsets
t1 and t2, we have

1 1 1 1

2 2 2 2

t t t t
t

t t t t

    
= =        
    

V T V T
V

V T V T
 . (15)

Thus, V t is nested.
From (10) and (15), we prove that the dense system matrix

G for capacitance extraction can be represented by an 2

matrix. In the next section, we show that such a representation
is error bounded.

2) Error Bound

Following the derivation in [18], if the admissibility
condition given in (4) is satisfied, the error of (7) is bounded
by

(,)
,

2

|| (, ') (, ') ||

4 1 2
() [1 2][1]

(,)

t s

t s
Q Q

d p
p

t s

g r r g r r

ed
p

dist Q Q
η

π η

∞ ×

−

−

≤ Λ + +



, (16)

where pΛ is a constant related to p and the interpolation

scheme. Clearly, exponential convergence with respect to p

 4

can be obtained irrespective of the choice of η . Since (,)t s
ijG is

proportional to 1/ (,)t sdist Q Q , the relative error becomes a

constant related toη and p. The smaller η is, the smaller the

error is. The larger p is, the smaller the error is. In addition, all
block entries represented by (10) can be kept to the same order
of accuracy across the levels of a block cluster tree.

B. 2-Matrix Representation of G−1

In this section, to help better understand the existence of the
2-matrix representation of G−1, we provide a mathematical

proof.
Consider a 3-D problem involving arbitrarily shaped

conductors embedded in non-uniform materials. The
electrostatic phenomena in such a problem are governed by
Poisson’s equation:

() svε ρ−∇ ⋅ ∇ = , (17)

where v is electric potential and sρ is charge density. By

using a differencing scheme to discretize the space derivatives
in Poisson’s equations, like what is done in a partial
differential equation based solution of (17), we obtain the
following system of equations

V QC = , (18)

where V is a vector consisting of the electric potential at each
discretized point in the 3-D computational domain, and Q is a
vector containing the charge density at each discretized point.
Because of the nature of the partial differential operator, the
charge density at each discretized point only needs to be
evaluated from the electric potentials that are adjacent to the
point. As a result, in each row of C, there are only a few
nonzero elements, which are contributed by the electric
potentials close to the point corresponding to the row index.
Thus, the C in (18) is a sparse matrix, and also its blocks
satisfying admissibility condition (4) are all zero.
 Each row of equation in (1) states that the total electric
potential at one point in space is the superposition of the
electric potential generated by all of the discrete charges.
Therefore, if (1) is formulated for all of the discretized points
in a 3-D volumetric domain, then G−1 is nothing but C, and
hence a sparse matrix.

However, due to a surface integral based formulation, in
(1), the right hand side v is not the complete V; instead, it is a
subset of V, which only consists of the electric potential on the
conducting surface and that on the dielectric-dielectric
interface. Therefore, G−1 is not directly C in (18). However,
there exists a relationship between G−1 and C, which dictates
the existence of the 2-matrix representation of G−1. To see

this relationship, we rewrite (18) as

11 12

21 22

 0else

v q

v

C C

C C

     
=    
   

, (19)

where v and q are the same as those in (1), and elsev denotes

the electric potential elsewhere, which is not associated with
the conducting surfaces and dielectric interfaces. Since the
charge density is zero in a purely dielectric region, the right
hand side corresponding to the second row in (19) is zero.
From (19), we immediately obtain

 1
11 12 22 21()v qC C C C−− = . (20)

Comparing (20) to (1), it is clear that
1 1

11 12 22 21G C C C C− −= − . (21)

 The second row of (19), 22 21elsev vC C= − , is what is

traditionally solved by a partial differential equation based
method: solving elsev subject to boundary condition v. It is

clear that 1
22C − is the inverse of the matrix resulting from the

discretization of a Poisson’s operator. It is proved in [23] that
the inverse of the matrix resulting from the discretization of an
elliptic partial differential operator has an -matrix

representation. Therefore, 1
22C − also has an -matrix

representation, and hence an 2-matrix representation (An -

matrix representation can be converted to an 2-matrix

representation [10]). This can also be seen clearly from the
fact that 1

22C − is nothing but 22G , the G matrix whose

row/column dimension is the same as the length of elsev , and

each column of 22G represents the electric potential elsev

generated by one charge configuration (The 21vC− is in fact

an equivalent charge vector). The G matrix’s 2 matrix

representation has already been shown in the above section.
Therefore, 1

22C − has an 2 matrix representation.

 To prove the existence of the 2-matrix representation of
1G− , we need to prove that all the blocks 1 ,()t sG− formed by

the admissible (t, s) in 1G− can be represented by a factorized
low-rank form shown in (6).
 Consider a (t, s) block in 1G− that satisfies the admissibility
condition (4). Since unknowns in subset t and those in s are
well separated based on the definition of the admissibility
condition, we have

(,)
11 0t sC = , (22)

because C11 is a sparse matrix whose nonzero elements only
appear in the close-interaction blocks. Therefore, from (21),

1 (,) 1 (,)
12 22 21() ()t s t sG C C C− −= − . (23)

The (t, s) block of 1
12 22 21()C C C− can be evaluated as

1 (,) (, ') 1 (', ') (',)
12 22 21 12 22 21() () () ()t s t t t s s sC C C C C C− −= , (24)

where t’ denotes the subset that is physically close to t, s’
denotes the subset that is physically close to s. As shown in
Fig. 1, (, ')

12() t tC denotes the nonzero block in 12C that

occupies rows corresponding to subset t, and (',)
21() s sC

denotes the nonzero block in 21C that has columns

corresponding to subset s. In (24), we only need to consider
(, ')

12() t tC among all of the (,)
12() t iC (i = 1, 2, …) blocks

because all the other blocks are zero since the unknowns in
corresponding two subsets are well separated from each other.
This is the same reason why we only need to consider

(',)
21() s sC block in 21C . As a result, among all the blocks in

1
22C − , only the (t’, s’) block participates in the computation

of 1
12 22 21C C C− , as illustrated in Fig. 1. Since the subset t’ is

close to subset t, subset s’ is adjacent to subset s, and subsets t

 5

and s are well separated; the subset t’ and subset s’ also satisfy
the admissibility condition (4). Thus, 1 (', ')

22() t sC − has an 2

representation since 1 (', ')
22() t sC − is (', ')

22
t sG . By using the 2

representation of the admissible block (', ')
22

t sG , we have

1 (,) (, ') # ' # ' (',)
12 22 21 12 21

#

() () () ()

 ()

t s t t t k k k T k s s s

t k k k T k s

C C C C V S V C

V S V

− × × ×

× × ×

=

=   . (25)

Thus, from (23) and (25), we prove that 1 ,()t sG− has an 2

matrix representation. Since (t, s) is an arbitrary admissible
block, we conclude that for all the admissible blocks in 1G− ,

there exists an 2 representation. With that, we prove the

existence of 2 representation for 1G− .

 The important findings can be identified from the above
proof. First, G and 1G− share the same block cluster tree
structure in common. A block cluster tree determines which
matrix block has an 2 form and which is a full matrix. As

can be seen from the above proof, given an admissibility
condition (4), if a block is admissible in G, it must also be
admissible in 1G− (i.e. has a factorized low rank form); if a
block is inadmissible in G, it must also be inadmissible in

1G− . Therefore, G and 1G− share the same block cluster tree
structure. In addition, they share the same rank distribution as
can be seen from (25). The second finding is that the same
cluster basis constructed from the original matrix can be used
to represent its inverse as can be seen from (25). If the first
order differencing scheme is used to discretize Poisson’s
equations, the 21C and 12C are, in fact, diagonal matrices. For

non-diagonal 21C and 12C , the V in (25) can always be

spanned in the space of V . The only difference is that with V
being the cluster basis of the inverse, the coupling matrix will
be modified correspondingly from that in (25). This is similar
to the fact that given a set of cluster bases, one can always
orthogonalize it to construct a new set of cluster bases without
losing accuracy.

III. BLOCK CLUSTER TREE CONSTRUCTION FOR
EFFICIENT STORAGE AND PROCESSING OF 2-

BASED G AND G-1

 In this section, we show how to construct a block cluster
tree for the capacitance extraction problem. A block cluster
tree is a tree structure that can be used to efficiently capture
the nested hierarchical dependence present in an 2 matrix

[10, pp. 13-15]. Here, special care needs to be taken to make
the 2-based representation of G and 1−G efficient for

capacitance extraction.

A. Block Cluster Tree Construction for 2-Based G

 To make the explanation clear, we use a simple example to
show the procedure of constructing a block cluster tree
without loss of generality of the procedure. Consider a
capacitance system made of four conductors as shown in Fig.
2(a). We discretize each conductor into two panels, resulting
in a panel set of : = {1, 2, …, N}, where N is 8 in this

example. We start from  and split it into two subsets as

shown in Fig. 2(b). We continue to split until the number of
panels involved in each subset is less than or equal to leafsize,
which is a parameter to control the tree depth. For the specific
example shown in Fig. 2(a), leafsize is 1. As a result, we
generate a cluster tree as shown in Fig. 2(b). The cluster tree
constructed for panel set  is denoted by T . All the nodes of

the tree are called as clusters. The full panel set  is called the

(a)

(b)

Fig. 2. (a) An example of a structure having four
conductors. (b) The resultant cluster tree.

0 0t

t’ s

s’t’

s’

0

0

=

× ×

× ×
(, ')

12() t tC 1 (', ')
22() t sC −

(',)
21() s sC

12C 1
22C −

21C

Fig. 1. Illustration of the actual operation involved in 1

12 22 21C C C− .

t∈T s∈T

Fig. 3. Construction of a block cluster tree. (Admissible link
inadmissible link)

 6

root cluster, denoted by Root(T). Clusters with indices no

more than leafsize are leaves. The set of leaves of T is

denoted by  . Each non-leaf cluster has two children in our

tree construction.
The block cluster tree is recursively constructed from

cluster trees T and T and a given admissibility condition,

the process of which is shown in Fig. 3. We start from
Root(T) and Root(T), and test the admissibility condition

between clusters t T∈  and s T∈  level by level. Once two

clusters t and s are found to be admissible based on (4), a cross
link is formed between them, which is called an admissible
link. Once two clusters are linked, we do not check the
admissibility condition for the combination of their children. If
clusters t and s are both leaf clusters but not admissible, they
are also linked. For example, cluster {1} and cluster {1} as
shown in Fig. 3. This link is called an inadmissible link.

The aforementioned procedure results in a block cluster
tree. Each link represents a leaf block cluster. The block
cluster tree can be mapped to a matrix structure shown in Fig.
4. Each leaf block cluster corresponds to a matrix block. The

un-shaded matrix blocks are admissible blocks in which the
2-matrix-based representation is used; the shaded ones are

inadmissible blocks in which a full matrix representation is
employed.
 Special treatment is required for structures involving
multiple dielectrics. After discretizing the structure, the whole
set that includes all the panels is divided into two subsets. One
includes all the conductor panels, and the other includes all the
dielectric panels, as shown in Fig. 5. The conductor set is

denoted by C, and the dielectric set is denoted by D. If the

two subsets are almost balanced, we can directly use the
procedure above to construct the block cluster tree. If not, for
example, if the number of conductor panels is much larger
than that of dielectric panels, the subset D constructed for

dielectric panels is pushed down to the level where the size of
clusters in C is almost the same as that in D. Then we start to

check the admissibility condition from that level. By doing so,
the 2-based representation of G can be made more efficient.

B. Block Cluster Tree Construction for 2-Based G-1

 As proved in Section II.B, G−1 is an 2 matrix, and also,

has the same block cluster tree as G. Thus, using the 2 tree

of G to represent that of G−1 is theoretically rigorous for the
integral operator encountered in the capacitance extraction.

IV. OVERALL PROCEDURE

In this section, we give the overall procedure of the
proposed linear-complexity direct solver for capacitance
extraction.

First, we introduce the concepts, notations, and parameters
that are used throughout this paper:

• For each cluster t T∈  , the cardinality of the sets

{ : (,) }s T t s T ×∈ ∈   and { : (,) }t T t s T ×∈ ∈   is bounded by

a constant spC [10, pp. 124]. Graphically, spC is the maximum

number of links that can be formed by a cluster at each level
of a block cluster tree as shown in Fig. 3.

• Each non-leaf cluster t has two child nodes.
• Each non-leaf block b has four children blocks.
• The rank of ()t

t T∈=V V


is denoted by k.

• The parameter leafsize is denoted by minn , and

min# t n≤ if t ∈  .

• 1 minmax(,)k n k= .

There are three steps in the proposed direct solver. At the
first step, to enable linear-time matrix inversion, we
orthogonalize cluster basis tV while still preserving the

nested property of tV . Mathematically, the new basis tV
should satisfy the following two properties:

()t tΤ =V V I  , (26)

and
1 1

2 2

t t
t

t t

 
=  
  

V T
V

V T

 


  , (27)

where 1 2, ()t t children t∈ . We employ the method in [14, pp.

254-258] to construct orthogonal bases tV , which is shown to
have a linear complexity.

To give an example on how the orthogonalization helps
achieve a linear complexity, consider one multiplication Gb1×
Gb2→Gb involved in the inverse procedure, where

Fig. 4. An 2-matrix structure. (full matrix block,

admissible block.)

Fig. 5. Illustration of the treatment of the unbalanced case
encountered in non-uniform dielectrics.

 7

1 1b t b s Τ

=G V S V  and 2 2b s b r Τ

=G V S V  , and (,)b t r= is an

admissible block in the inverse. Then,
1 2 1 2b b t b s s b rΤ Τ

× = ×G G V S V V S V    . (28)

Since V is orthogonalized, we have
1 2 1 2 1 2()b b t b b r t b b rΤ Τ

× = =G G V S IS V V S S V    . (29)

Thus the multiplication cost becomes the cost of multiplying
two coupling matrices 1bS and 2bS , each of which is a k by k

matrix. Hence, the complexity of computing Gb1×Gb2→Gb is
made 3()O k , which is independent of the row dimension (#t)

and the column dimension (#r) of Gb. Notice that an 2

matrix is stored in the format of the cluster basis V and the
coupling matrix S, and we always use the factorized form

t r Τ

V SV  to perform efficient computation. Thus, we do not

need to compute t r Τ

V SV  out to obtain a matrix of dimension #t

by #r. In addition, from (29), it can be seen that the cluster
basis of the matrix product Gb, which is an admissible block
(,)t r in G-1, is the same as that of the block (,)t r in G. Thus,

the cluster bases of G are preserved in G-1 during the
computation.

At the second step, we perform a fast inverse of linear
complexity. Rewriting the system matrix G as

 
=  
 

11 12

21 22

G G
G

G G
, (30)

we can recursively obtain its inverse. In [10, p. 118], the
inverse of (30) is performed in O(Nlog2N) complexity. No
linear complexity inverse has been reported in the literature.
The contribution of this paper is a successful development of
O(N) inverse, which is described in the following Sections V
and VI.

After the inverse is done, we obtain all the capacitance data
because 1−G is, in fact, the capacitance matrix formed for the

system consisting of each discretized panel. As an 2 matrix,

it is stored in linear complexity. The capacitance matrix is, in
general, not the end goal of the analysis. It is often used in the
simulation stage after capacitance extraction is done. The 1−G
resulting from the proposed method can then be directly used
for the simulation without any post-processing. If one needs to
know explicitly the capacitances formed between one
conductor and the other conductors, the 1−G can be post-
processed to obtain them. For example, we can compute

1q v−= G . By adding all the entries of q in each conductor, the

capacitances can be obtained. Since the inverse is an 2

matrix, and an 2-based matrix-vector multiplication has

linear complexity, we can compute 1q v−= G in linear time.

For Nc conductors, we do not need to perform an 2-based

matrix-vector multiplication Nc times. Instead, we can perform
an 2-based matrix-matrix multiplication 1T −V G V to obtain

the capacitance matrix directly, in which V contains all the
right hand side vectors. Since an 2-based matrix-matrix

multiplication can be performed in linear complexity, we can

obtain the capacitance matrix for Nc right hand sides in O(N)
time also. With this, the capacitance matrix can also be
directly stored in an 2 format, which only requires O(Nc)

units. In contrast, using the conventional method, even if each
solve is of linear complexity, to store Nc solutions, i.e. the
capacitance matrix for Nc conductors, one has to use O(Nc

 2)
storage units.

V. COMPARISON BETWEEN MATRIX INVERSION AND MATRIX-
MATRIX MULTIPLICATION

The 2-based matrix-matrix multiplication is shown to

have a linear complexity in [16]. To help better understand the
linear-time algorithms in the proposed inverse, in this section,
we first make a comparison between a matrix inverse and a
matrix-matrix multiplication to reveal their similarity as well
as difference. We then show that if one straightforwardly uses
the 2-based matrix-matrix multiplication algorithm for

inverse, the complexity would be greater than linear. In
Section VI, we detail the proposed inverse that addresses the
issue of increased complexity, and renders the overall cost
linear.

A. Matrix Inverse

For matrix G shown in (30), we can recursively obtain its
inverse by using the Matrix Inversion Lemma [21]:

1 1 1 1 1 1
11 11 12 21 11 11 121

1 1 1
21 11

− − − − − −
−

− − −

 + × × × × − × ×
=  

− × ×  

G G G S G G G G S
G

S G G S
(31)

where 1
22 21 11 12()−= + − × ×S G G G G .

The above recursive inverse can be realized level by level
by a pseudo-code shown below

()
()2

2
11 11

21 11 21

Recursive Inverse is temporarily used for storage

Procedure inverse , (is input matrix, output is its inverse)

 matrix is a non leaf matrix block

 H inverse (,)

 ,

If

Η −
−

−
× →

X

G X G G

G

G X

G G X ()

() ()

11 12 12 22 21 12 22

2
22 22

22 21 21 12 22 12 11 12 21 11

 , ,

 H inverse (,)

 , , () ,

 DirectInverse normal full matrix inverse

else

× → + − × →

−
− × → − × → + − × →

G G X G X G G

G X

G X G X G G G G X G

G

 (32)
in which the G that is different from the original G is
underlined. The underlined G is overwritten by 1−G in the
recursive computation.

As can be seen from (32), we compute the inverse level by
level. We start from the root level. We descend the block
cluster tree of G to the first level, the second level, and
continue until we reach the leaf level. At this level, we
perform a number of inverses and matrix-matrix
multiplications. As can be seen from (32), first, we
compute 1

11()−G , and use it to overwrite 11G . We then use the

updated 11G , denoted by 11G , to compute two matrix

multiplications: 21 11 21× →G G X and 11 12 12× →G G X . We

 8

then compute 22 21 12()+ − ×G X G to update 22G . The 1
22()−G

can then be directly computed, which overwrites 22G . We

then use the updated 22G , denoted by 22G , to compute two

matrix multiplications: 22 21 21− × →G X G and

12 22 12− × →X G G , which update 12G and 21G . We then

compute 11 12 21()+ − ×G G X to update 11G . At this point, the

inverse of the parent block of leaf-level
11G is obtained. We

repeat the above procedure across all the levels from bottom to
top until the inverse at the root level is obtained.

From the aforementioned procedure, it can be seen that in
the level-by-level computation of 1−G , the matrix blocks of G

are kept updated to their counterparts in 1−G . At each level,
the computation is performed based on updated G obtained
from the computation at the previous level instead of original
G. To highlight this fact, we underline the updated G in (32).
All the underlined G blocks in (32) are different from those in
the original G.

B. Matrix-Matrix Multiplication

Similar to matrix inverse, a matrix-matrix multiplication
×G G can be recursively obtained from

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

× + × × + × 
× =  × + × × + × 

G G G G G G G G
G G

G G G G G G G G
, (33)

which can be realized by the pseudo-code shown below.

()

()

2

2
11 11

21 11 21 11 12 12 11 12 21 11

2

Procedure multiplication , (is input matrix, is output)

 matrix is a non leaf matrix block

 H multiplication (,)

 , , ,

 H multiplica

If

G X G X

G

G X

G G X G G X X G G X

Η −
−

−
× → × → + × →

−

() ()

22 22

21 22 21 21 12 12 22 12 22 21 12 22

tion (,)

 + , , () ,

 DirectMultiply normal full matrix multiplication (34)

else

G X

X G G X X G G X X G G X

G

× → + × → + × →

C. Comparison

Comparing (32) with (34), it can be seen that the total
number of block multiplications involved in a matrix inverse
is exactly the same as that involved in a matrix-matrix
multiplication; in addition, only a half number of additions in
the matrix-matrix multiplication are involved in the inverse. In

[16], it is shown that an 2-based matrix-matrix multiplication

can be performed in linear complexity. Apparently, the inverse

can also be obtained in linear complexity using the 2-based

matrix-matrix multiplication algorithm. However, there exists
a major difference between these two operations, which
prevents one from directly using the matrix-matrix
multiplication algorithm to achieve a linear-complexity
inverse.

The major difference is that in the level-by-level
computation of the inverse, at each level, the matrix blocks in

G are updated by their counterparts in G−1. Thus, one has to
use updated matrix blocks to perform computation as
highlighted by the underlined G in (23). In contrast, in the
level-by-level computation of the matrix-matrix
multiplication, at each level, one always uses the original G to
perform computation. Once the product is computed, it will be
stored in the corresponding target block in X as can be seen
from (25), and never be used again in the following
computations. Unlike (23), in (25), none of the G is
underlined, i.e. all of them come from the original matrix.

This major difference does not cause any difference in
operation counts if one performs a conventional matrix inverse
or matrix-matrix multiplication that has a cubic complexity.
However, this difference leads to a significant difference in
devising a linear-complexity algorithm. The reasons are given
below.

The linear-complexity matrix-matrix multiplication is
achieved by a matrix forward transformation algorithm, a
matrix backward transformation algorithm, and a recursive
multiplication algorithm, as shown in Algorithm 10 in [16, pp.
21]. The matrix forward transformation used in the linear-time
matrix-matrix multiplication cannot be used for inverse in the
same way because in the inverse procedure, the matrix blocks
in G are kept updated in the level-by-level computation. The
matrix forward transformation (Algorithm 4 in [16, pp. 13]) is
used to prepare an auxiliary admissible block form of each
block in A and B, i.e., AS and BS . It is applicable to a matrix-

matrix multiplication because all the matrix blocks involved in
the multiplication are from the original matrix. They are never
updated, and hence a collected admissible block form S can
be prepared in advance and can be directly used in the
“RecursiveMultiply” function for the recursive multiplication.
However, for inverse, the blocks at each level are kept updated
and then are used to update other blocks, and hence it is not
possible to use the forward transformation to prepare the
auxiliary admissible block forms ahead of the recursive
inverse procedure.

A block matrix multiplication, when the target product
block b is a non-leaf block, may generate a product that has an
auxiliary admissible block form, i.e., C

bS as shown in

Algorithm 9 in [16, pp. 21]. To get the real matrix in b, C
bS

should be split to b’s leaf blocks. However, since C
bS is never

involved in the subsequent computations in the matrix-matrix
multiplication, it can be stored in the non-leaf block without
being split immediately. After the matrix-matrix multiplication
is done, a backward transformation (Algorithm 5 in [16, pp.
14]) can be used to split each C

bS to the leaf blocks. Such a

backward transformation, however, cannot be employed in the
same way in the inverse procedure either. This is because in
the inverse, C

bS has to be used in the subsequent computations.

We cannot wait until the inverse is done to process it. A
straightforward way to overcome this problem is to split C

bS to

b’s leaf blocks immediately after it is generated. However, this
would, in general, result in a complexity greater than linear.
Thus, one has to do it properly.

 9

If the two essential operations, matrix forward
transformation and matrix backward transformation, cannot be
used in the same way in the inverse, each block matrix
multiplication cannot be done in constant time. For example,
when we do the block matrix multiplication based on
Algorithm 7 in [16], without the preparation of auxiliary
admissible matrix S , the cost for directly computing a block
matrix multiplication would not be O(k3). Instead, it would be
proportional to the row and column dimension of the target
block.

Our strategy to solve the problem facing matrix forward
transformation is that, instead of preparing the admissible
block form for each block b by a forward transformation in
advance before the inverse, we will create it and update it
level by level during the recursive inverse procedure. To solve
the problem facing matrix backward transformation, when an
auxiliary admissible block bR (This can be viewed as a

counterpart of C
bS used in a matrix-matrix multiplication) is

generated during the block-block multiplication, instead of
splitting bR directly to its leaf blocks, we use b b+R G as the

real matrix block to perform next-level computation. The
computation can be a b b+R G based block matrix

multiplication; it can also be a b b+R G based inverse involved

in the 1
22

−G part. For the former, we modify the block matrix

multiplication algorithms. For the latter, we perform an
instantaneous split procedure that has a linear complexity.

Along the above line of thought, we develop three new
algorithms in the proposed inverse to render the total cost
linear. The first algorithm is an instantaneous collect operation
for generating the auxiliary admissible block form of 1−G ,

12X , and 21X . The second algorithm is a modified block

matrix multiplication algorithm. The third one is an
instantaneous split operation for computing the inverse of

22G . To help better understand these three algorithms, the first

algorithm can be viewed as the counterpart of the matrix
forward multiplication. They fulfill the same task: when
performing Gb1×Gb2→Gb or Gb1+Gb2→Gb, the auxiliary
admissible block form of Gb1 and Gb2 should be ready so that
each block matrix product or addition can be performed in
constant complexity. The third algorithm can be viewed as the
counterpart of matrix backward multiplication. Since the
matrix forward and backward operations are modified, the
block matrix multiplication should be modified
correspondingly. That is the origin of the proposed second
algorithm. In the next section, we detail these three
algorithms. Their corresponding pseudo-codes are also given.

VI. ALGORITHMS IN THE PROPOSED INVERSE

A. Instantaneous Collect Operation to Prepare the Auxiliary
Admissible Block Form of 1−G , 12X , and 21X in O(N)

Complexity

This operation can be viewed as the counterpart of the
matrix forward transformation in [16] except that the collect
operation is done instantaneously in the inverse procedure. As
can be seen from (32), we need to perform a number of block

matrix multiplications such as G21× G11→ X21, G11× G12→
X12, X21×G12→ G22 and etc. Here, the underlined G is 1−G .
(Recall that in the inverse procedure, after the computation at
each level is done, G is overwritten by its inverse.) Take G21×
G11→ X21 as an example, to achieve the same complexity as
that achieved in the linear-time matrix-matrix multiplication,
we need to prepare for the auxiliary admissible block form of
G21, and 1

11()−G (G11 is 1
11()−G) respectively. Denoting the

two auxiliary admissible block forms by
21GS and 1

11
−G

S . The

former can still be prepared in advance, i.e. before the inverse
procedure since G21 is the original matrix. The latter, however,
cannot be prepared in advance since 1

11()−G is updated level

by level during the computation. To overcome this problem,
our strategy is to generate 1

11
−G

S instantaneously through

collect operation when 1
11()−G is computed. The procedure of

a collect operation can be referred to Algorithm 2 in [16].
As can be seen from (32), there are three matrices for which

we need to collect their auxiliary admissible block form
instantaneously during the inverse procedure: 1−G (including

1
11

−G , 1
22

−G , and 1
12

−G), 12X , and 21X . Since these matrices

are obtained by block matrix multiplications, the instantaneous
collect operation can be performed in the level-by-level block
matrix multiplication procedure that is given in the following
Section VI.B. At each level, once the inadmissible block or a
non-leaf block of the 1−G , 12X , or 21X is computed, we

perform a collect operation to obtain its auxiliary admissible
block form. The algorithm for a collect operation used in the
inverse is shown below.

()INVProcedure Collect

 Form based on Algorithm 2 in [16]

 is a non-leaf block

b

b b b

b

If b

= +

S

S S R



 

 (35)

The collect operation is done level by level from bottom to
top. The admissible form of each block at level l can be
directly obtained from the four children blocks at level l+1,
instead of the blocks from level l+1 all the way down to the
leaf level. Therefore, each collect operation only costs O(k1

3)
time. There are O(N) blocks in 1−G , 12X , and 21X . Each

block is associated with one collect operation. Hence, the total
complexity of performing the instantaneous collect operation
for 1−G , 12X , and 21X is linear.

 For the original 12G and original 21G that are involved in

the matrix multiplication, and the original 22G involved in the

matrix addition of (32), since they are from the original
matrix, we can prepare an auxiliary admissible block form of
G in advance before the inverse procedure by using the matrix
forward transformation (Algorithm 4 in [16]), which has a
linear complexity.

B. Modified Block Matrix Multiplication Algorithm of O(N)
Complexity for Inverse

Since neither matrix forward transformation nor matrix
backward transformation can be directly used in the proposed

 10

inverse, the algorithm for block matrix multiplications should
be modified also. The matrix forward transformation is
replaced by the instantaneous collect operation. Thus, when
performing Gb1× Gb2→Gb, we need to collect an admissible
form for the target block b, bS , for the use of b-involved block
matrix multiplication. In addition, for a non-leaf block b, the
real matrix block stored in it could have a form of b b+G R

instead of only bG (This will become clear in Section V.C).

We cannot wait until the inverse is done to process bR by

matrix backward transformation because bR is immediately

involved in the next-level computation. Thus we need to
perform (1bG + 1bR)×(2bG + bR)→ bG instead of Gb1×

Gb2→Gb in the block matrix multiplication.
There are three basic block multiplication cases: admissible

leaf as target, inadmissible leaf as target, and nonleaf as target.
They correspond to Algorithm 7, Algorithm 8, and Algorithm
9 respectively in [16]. For the first case, next, we show how to
modify the block matrix multiplication algorithm to
accommodate the need in matrix inverse. Consider Gb1×
Gb2→Gb with b1=(t, s), b2=(s, r), and b=(t, r). The blocks b1,

b2, and b can be in any form: an admissible form R, an
inadmissible form F, or a non-leaf form NL. The possible b1

and b2 combinations that are involved in the block matrix
multiplications are R-R, NL-NL, F-F, F-NL (or NL-F), R-
NL(or NL-R), and R-F (or F-R).

The algorithm for the modified block matrix multiplication
with a target admissible leaf is developed as follows.

()INV

1 2

1 2

1 2

1 2

Procedure TargetAdmissible (is an admissible leaf)

 If - combination is R-R, or F-F, or R-F

 Compute based on Algorithm 7

If - combination is NL-NL

 Compute

b b b

b b b

b b

b b

b b

G G G

G G G

× →

× → ()INV

1 2 1 2

1 2

1 2

1 2

 based on TargetAdmissible

 Compute , , and

 based on Algorithm 7

If - combination is R-NL or F-NL

 Compute based on Algorithm 7

 Com

b b b b b b

b b b

b b b

b

b b

R G G G R G

R R G

G G G

× → × →
× →

× →
1 2pute based on Algorithm 7 b b bG R G× →

(36)

As shown in the above, if b1-b2 combination is R-R, or F-F, or
R-F type, Algorithm 7 in [16] can be directly used to compute
the block matrix multiplication, the cost of which is at most
O(k1

3). Once we meet the combination NL-NL, or R-NL, or
F-NL, the block matrix multiplication has to be performed in a
way that is different from that in Algorithm 7. If b1-b2
combination is NL-NL type, 1bR and 2bR may be stored in b1

and b2, respectively. Therefore, the real blocks that should be
used are 1bG + 1bR and 2bG + 2bR instead of 1bG and 2bG .

Then the block multiplication becomes
(1bG + 1bR)×(2bG + 2bR)→ bG . To handle this multiplication,

we separate it into two parts. One part is the original block
multiplication 1bG × 2bG → bG , which belongs to the NL-

NL→R multiplication case. As shown in Algorithm 7 in [16],
the computation of 1bG × 2bG → bG in this case involves

recursive descendent-block matrix multiplications, each of
which can be categorized into the basic block multiplication
with an admissible leaf being a target and can be computed by
recursively calling Algorithm 7. In the modified algorithm for
inverse, we call the TargetAdmissibleINV shown in (36)
recursively. The other part is the three additional
multiplications associated with 1(2)b bR , i.e., 1bG × 2bR → bG ,

1bR × 2bG → bG , and 1bR × 2bR → bG . They, in fact, belong to

the multiplication cases of NL-R, R-NL, and R-R
respectively with target being an admissible block. Each of
these three cases can be performed in O(k1

3) complexity using
Algorithm 7 in [16].

If b1-b2 combination is R-NL or F-NL type, similar to NL-
NL type, we separate the computation to Gb1×Gb2→Gb
and 1 2b b b× →G R G . The latter is a case of R-R or F-R

multiplication with target block being an admissible block. It
again can be performed in O(k1

3) complexity based on
Algorithm 7 in [16].

Since bG itself is an admissible block, we do not need to

perform a collect operation to prepare its auxiliary admissible
block form bS .

Consider the block matrix multiplication with an
inadmissible block being a target block. We develop the
following pseudo-code:

()INV

1 2

1 2

1 2

Procedure TargetDense (is an inadmissible leaf)

If - combination is F-F, or R-F, or R-R

 Compute based on Algorithm 8

If - combination is R-NL or F-

b b b

b b

b b

b b

G G G× →

()1 2
INV

1 2

INV

NL

 Compute based on TargetDense

 Compute based on Algorithm 8

Collect () (37)

b b b

b b b

b

b

G G G

G R G

× →

× →

As can be seen from the above, if b1-b2 combination is F-NL
or R-NL, we separate the computation to Gb1×Gb2→Gb and

1 2b b b× →G R G . The latter one can be directly handled by

Algorithm 8 in [16]. The Gb1×Gb2→Gb involves recursive
descendent-block matrix multiplications with inadmissible
targets, each of which can be computed by recursively calling
(37) instead of Algorithm 8. In addition, since the target is a
full matrix block, for efficient computation, during the
recursive computation, we do not perform the collect
operation on the block intermediate results, but do the collect
operation on the target block when the block matrix
multiplication is done, as can be seen from (37). All the other
b1-b2 combinations in (37) can be directly computed based on
Algorithm 8. In (37), each block matrix multiplication costs
O(k1

3) time. After the full matrix target block is computed, we
compute its bS form by performing a collect operation, the

cost of which is at most 2
min()O n k .

The modification to the third block multiplication case, i.e.,
the case with non-leaf as a target, can be derived in a similar
way. Basically, the computation of
(1bG + 1bR)×(2bG + bR)→ bG is separated into two parts. One

 11

part is the original 1bG × 2bG → bG . The other part is R-based

computation. The second part involves three multiplications,
each of which can be categorized as one case of the block
multiplications that are handled by the Algorithms 7, 8, and 9
in [16]. The procedure for this basic multiplication case is
shown below.

()INV

1 2

1 2

1 2

1 2

Procedure TargetNonleaf (is a non-leaf)

 If - combination is R-R or R-F

 Compute based on (36)

else

 If - combination is F-F

 Compute

b b b

b b b

b b

b b

b b

b b

G G R

S S R

G G G

× →

= +

× →

 

()

()

INV

1 2

1 2

1 2
INV

1 2

 based on TargetNonleaf

 If - combination is R-NL

 Compute based on (36)

 Compute based on TargetNonleaf

 If - combination is NL-NL

b

b b b

b b b

b

b b

b

b b

G R R

G G G

× →
× →

()

()

1 2 1 2
INV

1 2

1 2
INV

INV

 Compute , based on TargetNonleaf

 and based on (36)

 Compute based on TargetNonleaf

 Collect ()

b b b b b b

b b b

b b b

b

b

b

R G G G R G

R R R

G G G

× → × →

× →

× →
 (38)

 The instantaneous collect operation for each target block is
done during the block matrix multiplication.

In the modified block matrix multiplication derived in this
work, we employ (36)-(38) to handle a block matrix
multiplication with the target block being any form. The
computation for each b1-b2 multiplication case performed by
calling (36)-(38) has the same order of complexity as the
corresponding multiplication case handled by Algorithms 7, 8
and 9 in [16]. As proved in [16], for matrix-matrix
multiplication, the three basic multiplication algorithms
(admissible leaf as target, inadmissible leaf as target, and
nonleaf as target) are called no more than O(3Csp

2N) times.
The same is true in matrix inverse since it shares the same
number of block multiplications with a matrix-matrix product
as analyzed in Section V.C. The computation involved in each
call costs at most O(k1

3) operations. This includes the cost of
the additional multiplications associated with bR . The total

cost of the modified block matrix multiplications in the
proposed inverse is hence O(Csp

2k1
3)N, which is linear. The

cost of the instantaneous collect operation has already been
counted in Section A.

C. O(N) Instantaneous Split Operation for Computing
1

22
−G

As mentioned before, a block multiplication can generate an
auxiliary block bR for a non-leaf block bG , and

hence b b+R G is used as the real matrix for b. If 22G is a non-

leaf block, to compute its inverse, we need to compute
1

22()−+G R instead of 1
22

−G . Unlike the R -associated

computation in a block matrix multiplication, it is difficult to
separate 1

22()−+G R into 22G -associated and R -associated

computation. In order to compute 1
22()−+G R efficiently,

based on a Split operation (Algorithm 1 [16]). we first obtain

22 +G R by splitting R to 22G ’s children blocks. The pseudo

code of this procedure is shown below.

()INVProcedure Split , (is a 22-position non-leaf block)

Apply Algorithm 1 to to form four children

for i=1,2 and j=1,2

 if is an admissible block

 (update

b

b bij

ij

bij bij bij

b b

b

R

R R

S S R= +



 the coupling matrix)

 else

 if is a full matrix block

 (update the full matrix)

 if is a non-leaf block

ij

bij bij ti bij sj

ij

b

b

F F V R V
Τ

= + 

 (update R block at children level)

 (update the collected admissible block)

Clear

bij bij bij

bij bij bij

b

R R R

S S R

R

= +

= +


  

 (39)

Based on (39), R is superposed with 22G . Then we can

compute 1
22
−G . Since the inverse procedure is recursive, in

order to compute the inverse of the non-leaf 22G , we have to

first compute the inverse of 22G ’s 11 child block and 22 child

block. If 11 and 22 blocks are both non-leaf blocks, in order to
compute their inverses, we again need to split the R blocks in
the 11 and 22 blocks respectively to their children. This
process continues until 11 and 22 blocks become full matrices,
the inverse of which can be directly computed. The
aforementioned procedure is illustrated in Fig. 6, and its
corresponding pseudo code is shown below.

()

()

2
22

INV

2
22 11 11

21 11 21 11 12 12 22 21 12 22

Procedure inverse , (is a 22-position non-leaf block)

 matrix is a non leaf matrix block

 Split (,)

 H inverse (,)

 , , ,

If

G X G

G

G R

G X

G G X G G X G X G G

Η −
−

−
× → × → + − × →

() ()

2
22 22 22

22 21 21 12 22 12 11 12 21 11

 H inverse (,)

 , , () ,

 DirectInverse normal full matrix inverse (40)

else

G X

G X G X G G G G X G

G

−
− × → − × → + − × →

As can be seen from Fig. 6 and (40), the non-leaf G22 blocks
and all their descendant non-leaf 11 and 22 blocks each is
associated with one “Split” operation denoted by “1S”.

Fig. 6. Illustration of the instantaneous split operation for
computing 1

22
−G .

 12

The cost of each Split operation from the parent level to the
children that is one level down is at most O(k1

3) [16]. This
operation is only done for the non-leaf 22

lG at each level l and

its descendant non-leaf 11 and 22 blocks. Therefore, the
processed blocks only cover a part of the entire 2 partition,

as can be seen from Fig. 6. Since the total number of blocks is
O(CspN) and each Split operation costs O(k1

3) time, the
complexity of the instantaneous split in the inverse procedure
is bounded by O(Cspk1

3)N, which is linear.

D. O(N) Backward Transformation after the Inverse
Procedure

After the inverse procedure is done, bR may be stored for a

non-leaf block b in a block cluster tree. For an 2 matrix, all

the matrix elements are actually stored in leaf blocks.
Therefore, bR stored in each non-leaf block should be

distributed back to leaf blocks to obtain a final 2 matrix. This

can be achieved by the matrix backward transformation after
the inverse procedure, which has a linear complexity.

VII. ACCURACY ANALYSIS

There exist three error sources in the proposed direct solver:
(1) 2-based representation of the original matrix; (2)

Orthogonalization; and (3) 2-based inverse. Next, we

analyze the three errors one by one.
First, the 2-based representation of the dense matrix

resulting from an IE-based analysis of capacitance extraction
problem is error bounded as shown in Section II. Exponential
convergence with respect to the number of interpolation
points, p, can be achieved irrespective of the problem size.

Second, the orthogonalization error can be minimized to
zero. In Section IV.A, orthogonal bases tV are constructed.

The best approximation of a general tV in the space tV is

given by ()t t tΤV V V  . The error of this approximation is:
2
2 1

|| () || t
t t t

k
λΤ

+
− =tV V V V  . (41)

where
1tk

λ
+

is the (1)tk th+ eigenvalue of t tΤ

V V , in which kt is

the rank of cluster basis tV . Clearly, if kt is chosen the same

as the rank of tV , the error of (41) is zero. Therefore
t t s sΤ Τ

V V GV V    is the best approximation of a matrix block ,t sG
in the bases tV and sV .
 Third, the inverse has a controlled accuracy. If one agrees
with the fact that the linear-time matrix-matrix multiplication
developed in [16] has a controlled accuracy, the same is true
for the proposed inverse since the inverse procedure is
essentially a full matrix inverse at leaf level, and a level-by-
level block matrix multiplication procedure at non-leaf levels.
The new instantaneous collect algorithm added for inverse has
the same accuracy as the matrix forward transformation since
the basic operations are the same. Similarly, the new
instantaneous split operation has the same accuracy as the
matrix backward transformation in the linear-time matrix-
matrix multiplication algorithm. The modified block matrix

multiplication algorithm has the same accuracy as the original
one since although three additional multiplications are added;
they are done with the same accuracy. In addition, it is worth
mentioning that no pivoting is needed in the proposed inverse
since capacitance matrix is a diagonally dominant matrix.
 The inverse accuracy can also be analyzed from another
perspective. The inverse procedure is essentially a number of
block matrix multiplications. The multiplication is performed
by a formatted multiplication in which the 2 tree of 1−G is

represented by the 2 tree of G . In addition, the same cluster

basis used for G is used for 1−G . Both have been theoretically
proved to be true in Section II.B.

From the aforementioned three facts, the accuracy of the
proposed direct solver is well controlled.

VIII. NUMERICAL RESULTS

 A number of examples were simulated to validate the
accuracy and demonstrate the linear complexity of the
proposed direct IE solver. For all these simulations, Dell 1950
Server was used except for the comparison with HiCap [20],
where a computer having a 1593 MHz SPARC v9 processor
was used, since HiCap available in the public domain can only
be run on a Sun SPARC platform.
 There are only three simulation parameters: η , leafsize

minn , and p to choose in the proposed method. From (16), the

smaller η is and the larger p is, the better the accuracy is. For

static problems, 1 2η≤ ≤ is generally sufficient for

achieving a good accuracy. With η chosen, based on

accuracy requirements, one can choose p accordingly. The

0 1 2 3 4

x 10
4

10
-3

10
-2

10
-1

Number of unknowns

E
rr

o
r

Capacitance error
Original matrix error

Fig. 8. Original matrix error and capacitance error of the
proposed solver with respect to N for the free space case.

Fig. 7. An m m× crossing bus structure.

 13

leafsize, minn , can be chosen based on min 0.5 dn p≥ . This

can help make the 2-approximation more efficient in both

memory and CPU time.
 The first example is an m m× crossing bus structure
embedded in free space [3] as shown in Fig. 7. The m is from
4 to 16. The dimension of each bus is scaled to

31 1 (2 1) mm× × + . The spacing between buses in the same

layer is 1 m, and the distance between the two bus layers is 1
m. Although meter is not a realistic on-chip length unit, note
that capacitances are scalable with respect to the length unit.
 We first compared the performance of the proposed direct
solver with FastCap 2.0. The discretization in FastCap 2.0
resulted in 2736 to 38592 unknowns for the extraction of the
m m× bus from m = 4 to m = 16. A similar number of
unknowns were also generated in the proposed solver for a fair
comparison. The convergence tolerance was set to 1% when
using FastCap. The simulation parameters in the proposed
solver were chosen as minn = 10 and η = 1.6. The number of

interpolation points p was determined by a function
p= ()a b L l+ − , with a = 2, b = 1, L being the maximum
number of tree level, and l tree level. Such a choice of p
reduces the 2-approximation error without affecting the

linear cost [18].

 In Fig. 8, we plot the original matrix error, which is the error
of the 2-based representation of the original matrix G, as

well as the error of the capacitance matrix with respect to the
number of unknowns. The original matrix error is measured
by || || / || ||F F−G G G , where G is the 2-matrix

representation shown in (10), and || ||F⋅ is the Frobenius norm;

Fig. 10. Capacitance error of the proposed solver and
that of FastCap2.0 for the non-uniform dielectric case.

0 1 2 3

x 10
4

0

100

200

300

400

500

600

Number of unknowns

T
im

e(
se

co
nd

)

FastCap
Proposed Solver

(a)

0 1 2 3

x 10
4

0

100

200

300

400

500

600

Number of unknowns

M
em

or
y(

M
B

)

FastCap
Proposed Solver

(b)
Fig. 11. Comparison of time and memory complexity in

simulating the bus structure embedded in multiple
dielectrics. (a) Time Complexity. (b) Memory

Complexity.

0 1 2 3 4

x 10
4

0

100

200

300

400

500

Number of unknowns

T
im

e(
se

co
nd

)

FastCap
Proposed Solver

(a)

0 1 2 3 4

x 10
4

0

100

200

300

400

500

600

Number of unknowns

M
em

or
y(

M
B

)

FastCap
Proposed Solver

(b)

Fig. 9. Comparison of time and memory complexity in
simulating the bus structure in free space. (a) Time

Complexity. (b) Memory Complexity.

 14

the capacitance error is measured by || ' || / || ||−C C CF F , where

C is the capacitance matrix obtained from a full-matrix-based
direct solver, and C’ is that generated by the proposed solver.
As can be seen clearly from Fig. 8, excellent accuracy of the
proposed direct solver can be observed in both G and

capacitance matrix C’. In addition, the error of G is shown to
reduce with the number of unknowns. This is because of
increased p with respect to tree level, and hence increased
accuracy as can be seen from (16). In addition, we are able to
keep the accuracy of the capacitance to the same order in the
entire range.
 With the accuracy of the proposed direct solver validated, in
Fig. 9, we plot the total CPU time and memory consumption
of the proposed direct solver for the m m× bus structure in
free space. As can be seen clearly, both time and memory
complexity of the proposed solver are linear. In addition, in
Fig. 9, we plot the CPU time and memory cost of FastCap2.0.
It is clear that the proposed direct solver outperforms
FastCap2.0. In addition, FastCap2.0 does not exhibit a linear
scaling with respect to the number of unknowns although it
performs matrix-vector multiplication in linear complexity.
This could be attributed to the increased number of iterations
when the number of unknowns increases.
 Next, we simulated the same bus structure embedded in
non-uniform dielectrics. The dielectric surrounding the upper-
layer conductors has relative permittivity of 3.9, and that
surrounding the lower layer has relative permittivity 7.5. Each
bus is again scaled to 31 1 (2 1) mm× × + . The distance between

buses in the same layer is 1 m, and the distance between the
two bus layers is 2 m. The discretization in FastCap 2.0
resulted in 3636 to 23552 unknowns for the extraction of the
m m× bus from m = 4 to m = 16. A similar number of
unknowns were generated in the proposed solver.
 The simulation parameters of the proposed solver can be
chosen to achieve a various level of accuracy. For a fair
comparison with FastCap2.0, we chose the simulation
parameters in such a way that the proposed solver and
FastCap2.0 produced similar accuracy in capacitance as
shown in Fig. 10, where the reference capacitance matrix C
for both solvers was chosen as that generated by a full-matrix
based direct calculation. The resultant simulation parameters
were leafsize minn = 10, a = 2, and b = 1. We then compared

the time and memory performance of the two solvers. In Fig.
11, we plot the total CPU time and memory consumption of
the proposed direct solver for the m m× bus structure in non-
uniform dielectrics, and compare the performance with
FastCap2.0. Once again, the linear complexity of the proposed
direct IE solver can be clearly seen in both CPU time and
memory consumption. It is also worth mentioning that the
proposed solver used double precision to carry out the
computation. If single precision was used, more CPU time and
memory usage can be saved. In addition, we notice that for
capacitance extraction, single precision is generally sufficient
to achieve a good accuracy.
 Since capacitance extraction does not involve all the
columns of G−1, to assess the accuracy of the entire inverse, in
Fig. 12, we plot the inverse error versus unknown number for
both free-space and non-uniform dielectric cases. Good

accuracy is observed in the entire range. The inverse error is
assessed by 1|| || / || ||F F

−−I GG I . The simulation parameters

were minn = 10 and η = 1.6. The number of interpolation

points, p, was 2.

 Next, we compared the performance of the proposed direct
solver with HiCap downloaded from [20]. This version of
HiCap is for simulating free-space examples, and allows for at
most a 20 20× bus. We hence compared the performance of

0 1 2 3 4

x 10
4

10
-3

10
-2

10
-1

Number of unknowns
(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-3

10
-2

10
-1

Number of unknowns
(b)

Fig. 12. Inverse error of the proposed direct solver. (a)
Free space case. (b) Non-uniform case.

||I-GG-1||/||I||

||I-GG-1||/||I||

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-3

10
-2

10
-1

Number of unknowns

Fig. 13. Inverse error ||I-GG-1||/||I|| versus N.

 15

simulating the free-space m m× bus from m = 4 to m = 20.

The number of unknowns used in HiCap was from 1104 to
20880. A similar number of unknowns were generated in the
proposed direct solver for a fair comparison. The number of
unknowns used in the proposed direct solver was from 1216 to
26560. The simulation parameters in the proposed solver were
chosen as leafsize = 8, η = 1.2, and p = 1. Fig. 13 shows the
inverse error in the entire range. Good accuracy can be

observed. In Fig. 14(a)-(c), we plot the total CPU time,
memory consumption, and capacitance error of the proposed
solver and those of HiCap. The capacitance error was
measured by || ' || / || ||−C C CF F , where the reference C was

obtained from a full-matrix-based direct solver. The
simulation parameters of the proposed solver were chosen
such that both solvers yielded a similar level of accuracy as
can be seen from Fig. 14(c). From Fig. 14(a) and (b), it can be
seen that HiCap starts to become more expensive in both CPU
time and memory consumption when problem size becomes
large. In addition, the accuracy of the proposed solver is
shown to be better than HiCap on average. Considering the
fact that HiCap only solved the matrix for 4-20 right-hand
sides in simulating this bus structure, whereas the proposed
solver computed the entire inverse, the performance of the
proposed direct solver is satisfactory.
 To test the performance of the proposed direct solver in
simulating very large examples, we simulated a multilayer 3D
on-chip interconnect structure [3] shown in Fig. 15. We also
compared the performance of the proposed direct solver with a
HiCap-based solver in this simulation. The relative
permittivity of the interconnect structure is 3.9 in M1, 2.5
from M2 to M6, and 7.0 from M7 to M8. The structure
involves 48 conductors, the discretization of which results in
25,556 unknowns. To test the large-scale modeling capability
of the proposed solver, the 48-conductor structure was
duplicated horizontally, resulting in 72, 96, 120, 144, 192,
240, 288, and 336 conductors, the discretization of which
leads to more than 1 million unknowns including both
conducting-surface unknowns and dielectric-interface
unknowns.

The simulation parameters in the proposed solver were
chosen as leafsize = 10, η = 1, and p = 1. Since it is not

feasible to assess the error of 2-matrix-based representation

based on || || / || ||F F−G G G due to the need of storing the

original dense matrix G, we plot the maximal admissible
block error of the proposed solver in Fig. 16(a). The maximal
admissible block error is defined as

(,) (,)

(,)

|| ||
max

|| ||

t s t s

t s

 −
 
 

G G

G


,

which constitutes an upper bound of the entire matrix error
|| || / || ||F F−G G G . As can be seen from Fig. 16(a), less than

2% error is observed in the entire range from 25,556
unknowns to 1,047,236 unknowns. In Fig. 16(b), we plot the
inverse time and the total CPU time of the proposed direct
solver with respect to the number of unknowns. Clearly, a
linear complexity can be observed. The total CPU time of the
proposed direct solver includes orthogonalization time, inverse
time, and matrix-vector multiplication time for computing
unknown charge vector and capacitances. For comparison, the
solution time of a HiCap-based solver is also plotted in Fig.
16(b). Since HiCap for inhomogeneous dielectrics is not
available in public domain, we generated the HiCap time in
the following way to make the comparison as fair as possible.
We first constructed an 2-based representation of G with p =

1 since the center-point based scheme in HiCap can be viewed
as a rank 1 scheme. We then performed a matrix-vector

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

Number of unknowns

T
im

e(
se

co
nd

s)

Proposed Solver
Hicap

(a)

0 1 2 3

x 10
4

0

5

10

15

20

25

30

Number of unknowns

M
em

or
y(

M
B

)

Proposed Solver
Hicap

(b)

0 0.5 1 1.5 2 2.5 3

x 10
4

10
-2

10
-1

Number of unknowns

C
ap

ac
ita

nc
e

er
ro

r

Proposed Solver
Hicap

(c)

Fig. 14. Comparison with HiCap in simulating an m×m bus
with m being from 4 to 20. (a) CPU time. (b) Memory. (c)

Capacitance Error.

 16

multiplication based on the 2-based representation, which

has a similar CPU time as that reported in [3] if run on the
same computer platform. With the CPU time per matrix-vector
multiplication matched, we chose the same number of
iterations as reported in [3] to generate the CPU time required
by a HiCap algorithm based solver.

As can be seen from Fig. 16, the advantage of the proposed
direct solver is clearly demonstrated even though a HiCap-
based solver only calculated the results for m right hand sides
with m being the number of conductors, whereas the proposed
solver obtained the entire inverse, i.e., the results for N right
hand sides. In Fig. 16(c), we plot the memory complexity of
the proposed solver, which again demonstrates a linear
complexity.

Since we need to use the capacitance C generated from a
full-matrix based direct computation to assess the accuracy of
the capacitance C’ extracted by the proposed solver, and C is
not available within feasible computational resources for this
large example, we tested the solution error of the proposed
solver which is defined as /q v v−G . Table II shows the

solution error in the entire range. Good accuracy is observed
even with p = 1.

Table II. Solution Error v.s. the Unknown Number

Num. of Unknowns Solution Error (%)

25,556 3.33
53,400 5.01
94,752 5.06

164,672 7.26
253,792 6.63
362,122 5.28
605,472 5.59
802,272 6.23

1,047,236 5.98

The best complexity reported for the IE-based direct solver
is O(NlogαN) [10, 24-26], which is higher than O(N). Next, we
compare the proposed linear direct solver with an O(Nlog2N)

complexity -based direct solver [10-12, 26]. In order to have

a fair comparison, we employ the same matrix partition to

form an -based matrix. In addition, the interpolation-based

rank used in the -based block is the same as that in the 2-

0 5 10 15

x 10
5

10
-3

10
-2

10
-1

Number of unknowns

E
rr

or
 o

f m
ax

im
al

 a
dm

is
si

bl
e

bl
oc

k

(a)

0 2 4 6 8 10 12

x 10
5

0

0.5

1

1.5

2

2.5
x 10

4

Number of unknowns

T
im

e
(s

e
co

n
d

)

Total time of our direct sovler
Direct inverse time
HiCap algorithm based solver

(b)

0 2 4 6 8 10 12

x 10
5

0

1000

2000

3000

4000

5000

Number of unknowns

M
em

or
y(

M
B

)

(c)

Fig. 16. Simulation of a large-scale 3D M1-M8 on-chip
interconnect. (a) Error of maximal admissible block. (b) CPU

time. (c) Memory.

… ……

Fig. 15. A large-scale 3D M1-M8 on-chip interconnect embedded in inhomogeneosu media.

 17

based block. The direct inverse of such an -based matrix can be developed based on the direct matrix solution algorithm
given in [26], which has an O(Nlog2N) complexity. Fig. 17
compares the inverse time of the proposed solver with that of

the -based direct solver. Clearly, the proposed solver is

shown to be much faster than the -based direct solver. When

the number of unknowns is larger, the advantage of the
proposed solver will only become more obvious.

0 2 4 6 8 10 12

x 10
5

0

0.5

1

1.5

2

2.5
x 10

4

Number of unknowns

T
im

e(
se

co
nd

)

Proposed solver
H-based direct solver

Fig. 17. Inverse time comparison between the proposed solver

and an -based direct solver.

In the last example, we tested the capability of the proposed
solver in achieving a higher order of accuracy. We set the
required level of accuracy measured by capacitance error to be
10-5. The structure was the 3-D bus shown in Fig. 6. The
simulation parameters of the proposed solver were chosen as

min 32, =1, a=3, b=1n η= to satisfy the required accuracy. As

shown in Fig. 18(a), the required accuracy is achieved across
the entire range of unknowns, without sacrificing the linear
complexity in CPU time and memory consumption. This is
clearly demonstrated in Fig. 18(b) and (c). We tried to use
either FastCap or HiCap that can be accessed from the public
domain to produce 10-5 accuracy in capacitances so that we
can compare the performance for the same accuracy.
However, when we decreased the convergence tolerance or
increased the expansion order to a certain extent, the accuracy
of the two solvers became saturated. They failed to produce a
10-5 level of accuracy in capacitances. In Fig. 18(d) we plot
Cad, the maximal number of admissible blocks formed by a
cluster, which is a good measurement of Csp. The Cad is almost
a constant in the entire range of unknowns, as can be seen
from Fig. 18(d).

IX. CONCLUSION

In this work, we show that the dense matrix arising from the
IE-based analysis of capacitance problems can be represented

by an 2 matrix with error well controlled. In addition, we

theoretically proved that the inverse of this dense matrix, also,

has an 2 representation. More important, the same block

cluster tree and cluster bases constructed from the original

dense matrix can be used for the 2 representation of its

inverse. Based on this finding, we develop a direct inverse of

0 1 2 3 4

x 10
4

10
-6

10
-5

10
-4

10
-3

10
-2

Number of unknowns

C
ap

ac
ita

nc
e

er
ro

r

(a)

0 1 2 3 4

x 10
4

0

50

100

150

200

Number of unknowns

T
im

e(
se

co
nd

)

(b)

0 1 2 3 4

x 10
4

0

50

100

150

200

250

Number of unknowns

M
em

or
y(

M
B

)

(c)

0 1 2 3 4

x 10
4

30

35

40

45

50

Number of unknowns

C
ad

(d)

Fig. 18. Performance of the proposed solver in achieving a
higher order accuracy. (a) Capacitance error. (b) Time

complexity. (c) Memory. (d) Sparsity constant.

 18

linear complexity for large-scale capacitance extraction
involving arbitrary inhomogeneity and arbitrary geometry. To
help better convey the idea of the proposed linear-time
inverse, we use an analogy between a matrix-matrix product
and a matrix inverse to present the proposed algorithm. We
show that these two matrix operations share the same number
of block matrix multiplications. However, in the matrix
inversion procedure, the matrix blocks used for computation
are kept updated level by level. In contrast, in a matrix-matrix
multiplication, the matrix blocks used for computation at each
level are always from the original matrix. They are never
updated. This difference makes it not feasible to achieve a
linear complexity in inverse by directly using the linear-time
matrix-matrix multiplication algorithm. We then present the
proposed algorithms that achieve a linear complexity in
inverse. Both theoretical analysis and numerical results have
demonstrated the accuracy and linear complexity of the
proposed direct IE solver. In addition, the proposed direct
solver is shown to outperform existing iterative IE solvers of
linear complexity. The proposed solver is kernel independent
in the sense that it does not rely on an analytical expansion of
kernels, and the underlying fast techniques are algebraic
methods that are not kernel specific. Moreover, it is applicable
to arbitrary inhomogeneity and arbitrary structures.

In this paper, we demonstrate that it is feasible to obtain an
inverse of a dense matrix in linear time and memory
consumption with controllable accuracy. Inverse is a
fundamental building block in computation. The significance
of the proposed work goes beyond just capacitance extraction.

ACKNOWLEDGMENT

The authors would like to thank Prof. Cheng-Kok Koh for
valuable suggestions to this work. The authors also appreciate
the interaction with Prof. Jacob White on FastCap.

REFERENCES
[1] K. Nabors and J. White, “FastCap: A multipole accelerated 3-d

capacitance extraction program,” IEEE Trans. on CAD, pp.1447–1459,
1991.

[2] W. Shi, J. Liu, N. Kakani, and T. Yu, “A fast hierarchical algorithm for
3-D capacitance extraction,” IEEE Trans. on CAD, pp. 330–336, 2002.

[3] S. Yan, V. Saren, and W. Shi, “Sparse Transformations and
Preconditioners for Hierarchical 3-D Capacitance Extraction with
Multiple Dielectrics,” DAC 2004, pp. 788-793.

[4] S. Kapur and D. E. Long, “IES3 : A fast integral equation solver for
efficient 3-dimensional extraction,” in Proc. 1997 ICCAD, Nov. 1997,
pp. 448–455.

[5] J. R. Phillips and J. White, “A precorrected FFT method for capacitance
extraction of complicated 3-D structures,” in Proc. 1994 ICCAD, pp.
268–271.

[6] D. Gope, I. Chowdhury, and V. Jandhyala, “DiMES: Multilevel fast
direct solver based on multipole expansions for parasitic extraction of
massively coupled 3D microelectronic structures,” DAC 2005, pp. 159-
162.

[7] Y. C. Pan, W. C. Chew, and L. X. Wan, “A fast multipole-method based
calculation of the capacitance matrix for multiple conductors above
stratified dielectric media,” IEEE Trans. Microw. Theory Tech., vol. 49,
no. 3, pp. 480–490, Mar. 2001.

[8] Rong Jiang, Yi-Hao Chang, and Charlie Chung-Ping Chen, “ICCAP: A
Linear Time Sparsification and Reordering Algorithm for 3D BEM
Capacitance Extraction,” IEEE Trans. Microw. Theory Tech., vol. 54,
no. 7, pp. 3060-3068, July 2006.

[9] W. Yu and Z. Wang, “Enhanced qmm-bem solver for three-dimensional

multiple-dielectric capacitance extraction within the finite domain,”
IEEE Trans. Microw. Theory Tech, vol. 52, no. 2, pp. 560-566, Feb.,
2004.

[10] S Börm, L. Grasedyck, and W. Hackbusch, “Hierarchical matrices,”
Lecture note 21 of the Max Planck Institute for Mathematics, 2003.

[11] W. Hackbusch and B. Khoromskij, “A Sparse Matrix arithmetic based
on -matrices. Part I: Introduction to -Matrices,” Computing, 62:89-

108, 1999.
[12] W. Hackbusch and B. N. Khoromskij, “A sparse -matrix arithmetic.

Part II: Application to multi-dimensional problems,” Computing, 64: 21-
47, 2000.

[13] S. Börm and W. Hackbusch, “2-matrix approximation of integral

operators by interpolation,” Applied Numerical Mathematics, 43: 129-
143, 2002.

[14] S. Börm. “Approximation of integral operators by 2-matrices with

adaptive bases”, Computing, 74: 249-271, 2005.

[15] S. Börm. “2-matrices — multilevel methods for the approximation of

integral operators,” Comput. Visual. Sci., 7: 173-181, 2004.

[16] S. Börm, “2-matrix arithmetics in linear complexity,” Computing, 77:

1-28, 2006.
[17] W. Chai and D. Jiao, “An 2-Matrix-Based Integral-Equation Solver of

Linear-Complexity for Large-Scale Full-Wave Modeling of 3D
Circuits,” IEEE 17th Conference on Electrical Performance of
Electronic Packaging (EPEP), pp. 283-286, Oct. 2008.

[18] W. Chai and D. Jiao, “An 2-Matrix-Based Integral-Equation Solver of

Reduced Complexity and Controlled Accuracy for Solving
Electrodynamic Problems,” IEEE Trans. Antennas Propagat., vol. 57,
no. 10, pp. 3147-3159, Oct. 2009.

[19] W. Chai, D. Jiao, and C. C. Koh, “A Direct Integral-Equation Solver of
Linear Complexity for Large-Scale 3D Capacitance and Impedance
Extraction,” pp. 752–757, 46th ACM/EDAC/IEEE Design Automation
Conference (DAC), July, 2009.

[20] HiCap: http://dropzone.tamu.edu/~wshi/pub.html.
[21] Matrix inversion lemma, Hans Boltz, 1923,

http://en.wikipedia.org/wiki/Invertible_matrix.
[22] J. Shaeffer, “Direct Solve of Electrically Large Integral Equations for

Problem Sizes to 1 M Unknowns,” IEEE Trans. Antennas Propagat.,
vol. 56, no. 8, pp. 2306-2313, Aug. 2008.

[23] M. Bebendorf and W. Hackbusch, “Existence of -matrix

approximants to the inverse FE-matrix of elliptic operators with
L∞-coefficients,” Numerische Mathematik, 95: 1-28, 2003.

[24] R. J. Adams, Y. Xu, X. Xu, S. D. Gedney, and F. X. Canning, “Modular
Fast Direct Electromagnetic Analysis Using Local-Global Solution
Modes,” IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2427–2441,
Aug. 2008.

[25] L. Greengard, D. Gueyffier, P.-G. Martinnson and V. Rokhlin, “Fast
Direct Solvers for Integral Equations in Complex Three-Dimensional
Domains,” Acta Numerica, 261-288, 2009.

[26] W. Chai and D. Jiao, “A Complexity-Reduced -Matrix Based Direct

Integral Equation Solver with Prescribed Accuracy for Large-Scale
Electrodynamic Analysis,” the 2010 IEEE International Symposium on
Antennas and Propagation, July 2010.

	Purdue University
	Purdue e-Pubs
	2-15-2011

	Dense Matrix Inversion of Linear Complexity for Integral-Equation Based Large-Scale 3-D Capacitance Extraction
	Wenwen Chai
	Dan Jiao

	TR-ECE-11-05 cover.pdf
	TR_DanJiao_on_H2Inverse.pdf
	H2-inverse-cover.pdf
	Wenwen_MTT_REV2

