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Abstract 
 

State-of-the-art integral equation based solvers rely on techniques that can perform 

a dense matrix-vector multiplication in linear complexity. We introduce 2 matrix 

as a mathematical framework to enable a highly efficient computation of dense 
matrices. Under this mathematical framework, as yet, no linear complexity has 
been established for matrix inversion. In this work, we developed a matrix inverse 
of linear complexity to directly solve the dense system of linear equations for the 
capacitance extraction involving arbitrary geometry and non-uniform materials. 

We theoretically proved the existence of the 2 matrix representation of the 

inverse of the dense system matrix, and revealed the relationship between the block 
cluster tree of the original matrix and that of its inverse. We analyzed the 
complexity and the accuracy of the proposed inverse, and proved its linear 
complexity as well as controlled accuracy. The proposed inverse-based direct 
solver has demonstrated clear advantages over state-of-the-art capacitance solvers 
such as FastCap and HiCap: with fast CPU time and modest memory consumption, 
and without sacrificing accuracy. It successfully inverts a dense matrix that 
involves more than one million unknowns associated with a large-scale, on-chip, 3-
D interconnect embedded in inhomogeneous materials with fast CPU time and less 
than 5 GB memory.   
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Abstract—State-of-the-art integral equation based solvers rely 

on techniques that can perform a dense matrix-vector 
multiplication in linear complexity. We introduce 2 matrix as a 

mathematical framework to enable a highly efficient computation 
of dense matrices. Under this mathematical framework, as yet, no 
linear complexity has been established for matrix inversion. In 
this work, we developed a matrix inverse of linear complexity to 
directly solve the dense system of linear equations for the 
capacitance extraction involving arbitrary geometry and non-
uniform materials. We theoretically proved the existence of the 
2 matrix representation of the inverse of the dense system 

matrix, and revealed the relationship between the block cluster 
tree of the original matrix and that of its inverse. We analyzed 
the complexity and the accuracy of the proposed inverse, and 
proved its linear complexity as well as controlled accuracy. The 
proposed inverse-based direct solver has demonstrated clear 
advantages over state-of-the-art capacitance solvers such as 
FastCap and HiCap: with fast CPU time and modest memory 
consumption, and without sacrificing accuracy. It successfully 
inverts a dense matrix that involves more than one million 
unknowns associated with a large-scale, on-chip, 3-D 
interconnect embedded in inhomogeneous materials with fast 
CPU time and less than 5 GB memory.   
 

Index Terms— Integral-equation-based methods, 2 matrix, 

direct solver, matrix inversion, capacitance extraction.  
 

I. INTRODUCTION 

NTEGRAL-equation-based (IE-based) methods have been a 
popular choice in extracting the capacitive parameters of 3D 
interconnects since they reduce the solution domain by one 

dimension, and they model an infinite domain without the 
need of introducing a truncation boundary condition. 
Compared to their partial-differential-equation-based 
counterparts, however, IE-based methods generally lead to 
dense systems of linear equations. Using a naïve, direct 
method to solve a dense system takes O(N3) operations and 
requires O(N2) space, with N being the matrix size. When an 
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iterative solver is used, the memory requirement remains the 
same, and the time complexity is O(NrhsNitN

2), where Nit 
denotes the total number of iterations required to reach 
convergence, and Nrhs is the number of right hand sides. In 
state-of-the-art IE-based solvers [1-9, 22], fast multipole 
method and hierarchical algorithms were used to perform a 
matrix-vector multiplication in O(N) complexity, thereby 
significantly reducing the complexity of iterative solvers; 
efficient preconditioners [8-9] were developed to reduce the 
number of iterations; in the limited work reported on the direct 
IE solutions [6, 10, 22, 24, 25], the best complexity is shown 
to be O(NlogαN). No linear complexity has been achieved. 
Compared to iterative solvers, direct solvers have advantages 
when the number of iterations is large or the number of right 
hand sides is large. A linear-complexity, inverse based, direct 
solver has an additional advantage in memory compared to 
iterative solvers. Consider a system of Nc conductors. Using 
existing fast iterative solvers, even if each matrix solve is of 
linear complexity, to store the capacitance matrix one has to 
use O(Nc

2) storage units. In contrast, with an inverse having 
linear complexity in both CPU time and memory 
consumption, the capacitance matrix can be stored in O(Nc) 
units. 

The contribution of this paper is the development of a 
linear-complexity inverse based direct IE solver. To be 
specific, the inverse of a dense system matrix arising from a 
capacitance extraction problem is obtained in linear CPU time 
and memory consumption without sacrificing accuracy. Our 
solution hinges on the observation that the matrices resulting 
from an IE-based method, although dense, can be thought of 
as data-sparse, i.e., they can be specified by few parameters. 
There exists a general mathematical framework, called the 
“Hierarchical () Matrix” framework [10-12], which enables 

a highly compact representation and efficient numerical 
computation of dense matrices. Both storage requirements and 
matrix-vector multiplications using  matrices are of 

complexity O(NlogαN). 2-matrices, which are a specialized 

subclass of hierarchical matrices, were later introduced in [13-
16].  It was shown that the storage requirements and matrix-
vector products are of complexity O(N) for 2-based 

representation of both quasi-static [10] and electrodynamic 
problems [17-18]. It was also shown that an 2-based matrix-

matrix multiplication can be performed in linear complexity 
[16]. The nested structure is the key difference between -
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matrices and 2-matrices, since it permits an efficient reuse of 

information across the entire hierarchy.   

The 2-matrix-based direct matrix solution of linear 

complexity has not been established in the literature. In this 

work, we developed an 2-matrix-based inverse of linear 

complexity for large-scale capacitance extraction.  In [19], we 
outlined the basic idea of this work. In this paper, we complete 
the work from both theoretical and numerical perspectives. 
The significant extension over [19] is as follows.  

First, we prove the existence of an 2-matrix-based 

representation of the dense system matrix as well as its inverse 
for capacitance extraction involving arbitrary inhomogeneity 

and arbitrary geometry. We show that the 2-based 

representation of the original matrix is error bounded, and the 

same is true for the 2-based representation of its inverse. 

Moreover, we prove that the inverse and the original matrix 
share the same block cluster tree structure, and the cluster 
bases constructed from the original matrix can be used for the 

2-based representation of its inverse. This proof serves as a 

theoretical basis for developing 2-matrix-based fast direct 

solutions of controlled accuracy for capacitance extraction.  
Second, we show how to construct a block cluster tree to 

efficiently represent both original matrix and its inverse for the 
capacitance extraction in inhomogeneous media.  

Third, we present detailed linear-complexity algorithms in 
the proposed inverse and analyze their complexity. In [19], we 
only gave a very high level picture of the algorithm, and the 
complexity analysis is only for the multiplications involved in 
the inverse procedure. In this work, we give a complete 
inverse algorithm and its complexity analysis. To help better 
understand the proposed linear-complexity inverse, we use an 
analogy between a matrix-matrix multiplication and a matrix 

inverse to present the proposed algorithm since the 2-based 

matrix-matrix multiplication has been shown to have a linear 
complexity [16]. We first make a comparison between a 
matrix inverse and a matrix-matrix multiplication to reveal 
their similarity as well as difference. We show that although 
the two operations share the same number of block matrix 
multiplications, there is a major difference that prevents one 
from directly using the linear-time matrix-matrix 
multiplication algorithm to achieve a linear complexity in 
inverse. The major difference is that in the level-by-level 
computation of the inverse, at each level, the computation is 
performed based on updated matrix blocks obtained from the 
computation at the previous level instead of the original 
matrix. In contrast, in the level-by-level computation of the 
matrix-matrix multiplication, at each level, the computation is 
always performed based on the original matrix, which is never 
updated. This difference would render the inverse complexity 
higher than linear if one does not address it properly. We then 
detail the algorithms in the proposed inverse that overcome 
this issue. In addition, we greatly enrich the section of 
numerical results.  

The remainder of this paper is organized as follows. In 
Section II, we derive the 2-matrix-based representation of 

the dense system matrix resulting from capacitance extraction 
and show that this representation is error bounded. In addition, 
we prove the existence of the 2 representation of the inverse 

and reveal its relationship with the 2 representation of the 

original matrix. In Section III, we construct a block cluster 
tree for an efficient 2-based representation of the dense 

system matrix and its inverse. In Section IV, we provide an 
overall procedure of the proposed direct solver. In Section V, 
we make a comparison between a matrix-matrix product and a 
matrix inverse, from which one can clearly see the difference 
between these two. In Section VI, we detail the linear-
complexity algorithms in the proposed inverse. In Section VII, 
we give numerical results to demonstrate the accuracy and 
linear complexity of the proposed direct IE solver for 
capacitance extraction. Comparisons with state-of-the-art 
capacitance solvers such as FastCap and HiCap are also 
presented. We conclude in Section VIII. 

To help make the paper concise, in what follows, we do not 

repeat mathematics that can be referred to in the 2-matrix 

literature. We only keep those mathematical definitions that 
are necessary for the completeness of this paper so that we can 
focus on the proposed new algorithms. 

II. 2 MATRIX REPRESENTATION OF THE DENSE 

SYSTEM MATRIX AND ITS INVERSE FOR 
CAPACITANCE EXTRACTION 

Consider a multi-conductor structure embedded in an 
inhomogeneous material. An IE based solution for capacitance 
extraction results in the following dense system of equations 
[3, 19]:  

q v=G                                            (1) 

where 
   

   
cc cd

dc dd

 
=  
 

P P
G

E E
, c

d

q
q

q

 
=  
 

, and 
0

cv
v

 
=  
 

, in which cq  and 

dq  are the charge vectors of the conductor panels and 

dielectric-dielectric interface panels, respectively, and cv  is 

the potential vector associated with the conductor panels. The 
entries of P  and E  are 

1 1
( , )

i j
ij i j i jS S

i j

g r r dr dr
a a

=  P  

1 1
( ) ( , )

i j
ij a b i j i jS S

a i j

g r r dr dr
n a a

ε ε ∂= −
∂  E ,              (2) 

where ia  and ja  are the areas of panel iS  and jS , 

respectively, g is static Green’s function, and aε  and bε  are 

the permittivity of two different materials. The diagonal 
entries of ddE  are 0( ) / (2 )ij a b ie aε ε ε= + . 

In a uniform dielectric, (1) is reduced to  

cc c cq v=P .                                     (3)                   

Next, we show that the dense system matrix G shown in (1) 
can be represented by an 2 matrix with error well controlled. 
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Moreover, the inverse of G, also, has an 2 representation. 

Such a property holds true for any G, i.e., IE-based 
capacitance extraction involving arbitrary geometry and 
inhomogeneity. 

Definitions of an  matrix and an 2 matrix: An 2 

matrix is generally associated with a strong admissibility 
condition [10, pp. 145]. To define a strong admissibility 
condition, we denote the full index set of all the panels by  := 

{1, 2, …, N}, where N  is the total number of panels, and 
hence unknowns. Considering two subsets t and s of the , the 

strong admissibility condition is defined as 

max{diam(Ωt), diam(Ωs)} ≤ η dist(Ωt, Ωs),              (4) 

where tΩ  and sΩ  are the supports of the union of all the 

panels in t and s respectively, diam( . ) is the  Euclidean 
diameter of a set, dist(. , .) is the Euclidean distance between 
two sets, and η is a positive parameter. If subsets t and s 
satisfy (4), they are admissible, in other words, they are well 
separated; otherwise, they are inadmissible. Generally, it is not 
practical to directly measure the Euclidean diameter and 
Euclidean distance. We thus use an axis-parallel bounding box 

t tQ ⊇ Ω , which is the tensor product of intervals [10, pp 46-

48], to represent the support of the union of all the panels in t.  
Denoting the matrix block formed by t and s by Gt, s, if all 

the blocks Gt, s formed by the admissible (t, s) in G can be 
represented by a low-rank matrix, G is an  matrix. In other 

words, if G possesses the following property 
# #×∈G    :  Gt, s is low rank for all admissible (t, s),   (5) 

it is an   matrix.  

If G can be further written as a factorized form 
, , # , #: , , ,t s t t s s t t k t s k k s s kΤ × × ×= ∈ ∈ ∈G V S V V S V    ,    (6)                                       

where tV is nested, then G is an 2 matrix. In (6), tV  is 

called a cluster basis, ,S t s  is called a coupling matrix, k is the 
rank of tV , and “#” denotes the cardinality of a set. The 
nested property of tV  enables O(N) storage of a dense matrix 
and O(N) matrix-vector multiplication [10, pp. 146].  

A. 2-Matrix Representation of G with Error Well 

Controlled  

1) 2-Matrix Representation of G 

  If two subsets t and s of  satisfy the strong admissibility 

condition (4), the original kernel function ( , )i jg r r  in (2) can 

be replaced by a degenerate approximation 
, ( , ) ( , ) ( ) ( )

t s

t s t s t s
i j v v i j

v K K

g r r g L r L rμ μ
μ

ξ ξ
∈ ∈

=    ,              (7)  

where : { :  {1,..., }} {1,..., }d d
iK v v p for all i d p= ∈ Ν ≤ ∈ = ; d=1, 

2, 3, for 1-, 2-, and 3-D problems respectively; p is the number 
of interpolation points; ( ) t

t
v v K

ξ
∈

and ( ) s

s

Kμ μ
ξ

∈
are two families 

of interpolation points respectively in t and s; and ( ) t

t
v v K

L
∈

 and 

( ) t

t
v v K

L
∈

are the corresponding Lagrange polynomials. The 

interpolation in (7) is performed on the axis-parallel bounding 
boxes tQ  and sQ . 

With (7), the double integrals in (2) are separated into two 
single integrals:  

, 1 1
: ( , ) ( ) ( )

i jt s

t s t s t s
ij v v i i j jS S

v K K i j

g L r dr L r dr
a a μ μ

μ

ξ ξ
∈ ∈

= ⋅   P        (8)                   

, ( , )1 1
( ) ( ) ( )

i jt s

t s
vt s t s

ij a b v i i j jS S
v K K i j a

g
L r dr L r dr

a a n
μ

μ
μ

ξ ξ
ε ε

∈ ∈

∂
= − ⋅

∂   E (9)    

Hence, the submatrix ,t sG  can be written in a factorized form 

as:  
, , # # , # # # #: , , ,

t t s st s t t s s t t K t s K K s s KΤ × × ×= ∈ ∈ ∈G V S V V S V    (10)     

where 

,

( ) ,       ( ) '

( , ) / ( )                   (  contains conductor panels)

( , )
( ) / ( )    (  contains dielectric panels)

i j

v

t t s s
iv v i j jS S

t s
v i j

t s t s
v

a b i j
a

L r dr L r dr

g a a t

g
a a t

n
μ

μ μ

μ

μ

ξ ξ

ξ ξ
ε ε

= =




=  ∂
− ∂

 V V

S

for i t∈ , j s∈ , tv K∈ , and .sKμ ∈                                       (11) 

  If we use the same space of polynomials for all clusters, 
then V t  is nested. To explain, consider a set 't  which is a 

subset of t, ( )t
vL r  in (11) can be written as 

'

' '
' '

'

( ) ( )
t

t t t
v v v v

v K

L r L r
∈

=  T ,                           (12) 

where 
' '
' '( )t t t

v v v vL ξ=T .                                 (13) 

As a result,

 

t
ivV in (11) can be written as 

' '

' ' ' ' ' '
' ' ' '

' '

( ) ( ) ( )
i it t

t t t t t t t t
iv v v v v v v iv ivS S

v K v K

L r dr L r dr
∈ ∈

= = = =  V T T V V T
 

(14) 

where 
'' # #t tt K K×∈T   is called a transfer matrix for the subset 

't .  Hence, assuming that the set t is the union of two subsets 
t1 and t2, we have  

1 1 1 1

2 2 2 2

t t t t
t

t t t t

    
= =        
    

V T V T
V

V T V T
 .                 (15) 

Thus, V t is nested. 
From (10) and (15), we prove that the dense system matrix 

G for capacitance extraction can be represented by an 2 

matrix. In the next section, we show that such a representation 
is error bounded.   

2) Error Bound  

Following the derivation in [18], if the admissibility 
condition given in (4) is satisfied, the error of (7) is bounded 
by 

( , )
,

2

|| ( , ') ( , ') ||

4 1 2
( ) [1 2 ][1 ]

( , )

t s

t s
Q Q

d p
p

t s

g r r g r r

ed
p

dist Q Q
η

π η

∞ ×

−

−

≤ Λ + +



,     (16) 

where pΛ  is a constant related to p and the interpolation 

scheme. Clearly, exponential convergence with respect to p 
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can be obtained irrespective of the choice of η . Since ( , )t s
ijG  is 

proportional to 1/ ( , )t sdist Q Q , the relative error becomes a 

constant related toη  and p. The smaller η  is, the smaller the 

error is. The larger p is, the smaller the error is. In addition, all 
block entries represented by (10) can be kept to the same order 
of accuracy across the levels of a block cluster tree. 

B. 2-Matrix Representation of G−1  

In this section, to help better understand the existence of the 
2-matrix representation of G−1, we provide a mathematical 

proof. 
Consider a 3-D problem involving arbitrarily shaped 

conductors embedded in non-uniform materials. The 
electrostatic phenomena in such a problem are governed by 
Poisson’s equation: 

( ) svε ρ−∇ ⋅ ∇ = ,                                (17) 

where v is electric potential and sρ  is charge density. By 

using a differencing scheme to discretize the space derivatives 
in Poisson’s equations, like what is done in a partial 
differential equation based solution of (17), we obtain the 
following system of equations  

V QC = ,                                     (18) 

where V is a  vector consisting of the electric potential at each 
discretized point in the 3-D computational domain, and Q is a 
vector containing the charge density at each discretized point. 
Because of the nature of the partial differential operator, the 
charge density at each discretized point only needs to be 
evaluated from the electric potentials that are adjacent to the 
point. As a result, in each row of C, there are only a few 
nonzero elements, which are contributed by the electric 
potentials close to the point corresponding to the row index. 
Thus, the C in (18) is a sparse matrix, and also its blocks 
satisfying admissibility condition (4) are all zero.  
 Each row of equation in (1) states that the total electric 
potential at one point in space is the superposition of the 
electric potential generated by all of the discrete charges. 
Therefore, if (1) is formulated for all of the discretized points 
in a 3-D volumetric domain, then G−1 is nothing but C, and 
hence a sparse matrix. 

However, due to a surface integral based formulation, in 
(1), the right hand side v is not the complete V; instead, it is a 
subset of V, which only consists of the electric potential on the 
conducting surface and that on the dielectric-dielectric 
interface. Therefore, G−1 is not directly C in (18). However, 
there exists a relationship between G−1 and C, which dictates 
the existence of the 2-matrix representation of G−1. To see 

this relationship, we rewrite (18) as 

11 12

21 22

  

  0else

v q

v

C C

C C

     
=    
   

,                         (19) 

where v and q are the same as those in (1), and elsev  denotes 

the electric potential elsewhere, which is not associated with 
the conducting surfaces and dielectric interfaces. Since the 
charge density is zero in a purely dielectric region, the right 
hand side corresponding to the second row in (19) is zero. 
From (19), we immediately obtain 

 1
11 12 22 21( )v qC C C C−− = .                        (20) 

Comparing (20) to (1), it is clear that 
1 1

11 12 22 21G C C C C− −= − .                         (21) 

 The second row of (19), 22 21elsev vC C= − , is what is 

traditionally solved by a partial differential equation based 
method: solving elsev  subject to boundary condition v. It is 

clear that 1
22C −  is the inverse of the matrix resulting from the 

discretization of a Poisson’s operator. It is proved in [23] that 
the inverse of the matrix resulting from the discretization of an 
elliptic partial differential operator has an -matrix 

representation. Therefore, 1
22C −  also has an -matrix 

representation, and hence an 2-matrix representation (An -

matrix representation can be converted to an 2-matrix 

representation [10]). This can also be seen clearly from the 
fact that 1

22C −  is nothing but 22G , the G matrix whose 

row/column dimension is the same as the length of elsev , and 

each column of 22G  represents the electric potential elsev  

generated by one charge configuration (The 21vC−  is in fact 

an equivalent charge vector). The G matrix’s 2 matrix 

representation has already been shown in the above section. 
Therefore, 1

22C −  has an 2 matrix representation.  

 To prove the existence of the 2-matrix representation of 
1G− , we need to prove that all the blocks 1 ,( )t sG−  formed by 

the admissible (t, s) in 1G−  can be represented by a factorized 
low-rank form shown in (6).  
 Consider a (t, s) block in 1G− that satisfies the admissibility 
condition (4). Since unknowns in subset t and those in s are 
well separated based on the definition of the admissibility 
condition, we have 

( , )
11 0t sC = ,                                         (22) 

because C11 is a sparse matrix whose nonzero elements only 
appear in the close-interaction blocks. Therefore, from (21),  

1 ( , ) 1 ( , )
12 22 21( ) ( )t s t sG C C C− −= − .                 (23) 

The (t, s) block of 1
12 22 21( )C C C−  can be evaluated as 

1 ( , ) ( , ') 1 ( ', ') ( ', )
12 22 21 12 22 21( ) ( ) ( ) ( )t s t t t s s sC C C C C C− −= ,     (24) 

where t’ denotes the subset that is physically close to t, s’ 
denotes the subset that is physically close to s. As shown in 
Fig. 1,  ( , ')

12( ) t tC  denotes the nonzero block in 12C  that 

occupies rows corresponding to subset t, and ( ', )
21( ) s sC  

denotes the nonzero block in 21C  that has columns 

corresponding to subset s. In (24), we only need to consider 
( , ')

12( ) t tC  among all of the ( , )
12( ) t iC  (i = 1, 2, …) blocks 

because all the other blocks are zero since the unknowns in 
corresponding two subsets are well separated from each other. 
This is the same reason why we only need to consider 

( ', )
21( ) s sC  block in 21C . As a result, among all the blocks in 

1
22C − , only the (t’, s’)  block participates in the computation 

of 1
12 22 21C C C− , as illustrated in Fig. 1. Since the subset t’ is 

close to subset t, subset s’ is adjacent to subset s, and subsets t 
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and s are well separated; the subset t’ and subset s’ also satisfy 
the admissibility condition (4). Thus,  1 ( ', ')

22( ) t sC −  has an 2 

representation since 1 ( ', ')
22( ) t sC −  is ( ', ')

22
t sG . By using the 2 

representation of the admissible block ( ', ')
22

t sG , we have 

1 ( , ) ( , ') # ' # ' ( ', )
12 22 21 12 21

# #

( ) ( ) ( ) ( )

                      ( )

t s t t t k k k T k s s s

t k k k T k s

C C C C V S V C

V S V

− × × ×

× × ×

=

=   .    (25) 

Thus, from (23) and (25), we prove that 1 ,( )t sG−  has an 2 

matrix representation. Since (t, s) is an arbitrary admissible 
block, we conclude that for all the admissible blocks in 1G− , 

there exists an 2 representation. With that, we prove the 

existence of 2 representation for 1G− .  

 The important findings can be identified from the above 
proof. First, G and 1G−  share the same block cluster tree 
structure in common. A block cluster tree determines which 
matrix block has an 2 form and which is a full matrix. As 

can be seen from the above proof, given an admissibility 
condition (4), if a block is admissible in G, it must also be 
admissible in  1G−  (i.e. has a factorized low rank form); if a 
block is inadmissible in G, it must also be inadmissible in 

1G− . Therefore, G and 1G−  share the same block cluster tree 
structure. In addition, they share the same rank distribution as 
can be seen from (25). The second finding is that the same 
cluster basis constructed from the original matrix can be used 
to represent its inverse as can be seen from (25). If the first 
order differencing scheme is used to discretize Poisson’s 
equations, the 21C  and 12C  are, in fact, diagonal matrices. For 

non-diagonal 21C  and 12C , the V  in (25) can always be 

spanned in the space of V . The only difference is that with V 
being the cluster basis of the inverse, the coupling matrix will 
be modified correspondingly from that in (25). This is similar 
to the fact that given a set of cluster bases, one can always 
orthogonalize it to construct a new set of cluster bases without 
losing accuracy. 

III. BLOCK CLUSTER TREE CONSTRUCTION FOR 
EFFICIENT STORAGE AND PROCESSING OF 2-

BASED G AND G-1  

  In this section, we show how to construct a block cluster 
tree for the capacitance extraction problem. A block cluster 
tree is a tree structure that can be used to efficiently capture 
the nested hierarchical dependence present in an 2 matrix 

[10, pp. 13-15]. Here, special care needs to be taken to make 
the 2-based representation of G and 1−G  efficient for 

capacitance extraction. 

A. Block Cluster Tree Construction for 2-Based G 

 To make the explanation clear, we use a simple example to 
show the procedure of constructing a block cluster tree 
without loss of generality of the procedure. Consider a 
capacitance system made of four conductors as shown in Fig. 
2(a). We discretize each conductor into two panels, resulting 
in a panel set of : = {1, 2, …, N}, where N is 8 in this 

example. We start from  and split it into two subsets as 

shown in Fig. 2(b). We continue to split until the number of 
panels involved in each subset is less than or equal to leafsize, 
which is a parameter to control the tree depth. For the specific 
example shown in Fig. 2(a), leafsize is 1. As a result, we 
generate a cluster tree as shown in Fig. 2(b). The cluster tree 
constructed for panel set   is denoted by T . All the nodes of 

the tree are called as clusters. The full panel set   is called the 

 
(a) 

 
(b) 

Fig. 2. (a) An example of a structure having four 
conductors. (b) The resultant cluster tree.  

0 0t

t’ s

s’t’

s’

0

0

=

× ×

× ×
( , ')

12( ) t tC 1 ( ', ')
22( ) t sC −

( ', )
21( ) s sC

12C 1
22C −

21C

 
Fig. 1. Illustration of the actual operation involved in 1

12 22 21C C C− . 

t∈T                                 s∈T 

 
Fig. 3. Construction of a block cluster tree. (Admissible link  
inadmissible link ) 
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root cluster, denoted by Root(T ). Clusters with indices no 

more than leafsize are leaves. The set of leaves of T  is 

denoted by  . Each non-leaf cluster has two children in our 

tree construction.  
The block cluster tree is recursively constructed from 

cluster trees T  and T  and a given admissibility condition, 

the process of which is shown in Fig. 3. We start from 
Root(T ) and Root(T ), and test the admissibility condition 

between clusters t T∈   and s T∈   level by level. Once two 

clusters t and s are found to be admissible based on (4), a cross 
link is formed between them, which is called an admissible 
link. Once two clusters are linked, we do not check the 
admissibility condition for the combination of their children. If 
clusters t and s are both leaf clusters but not admissible, they 
are also linked. For example, cluster {1} and cluster {1} as 
shown in Fig. 3. This link is called an inadmissible link.  

The aforementioned procedure results in a block cluster 
tree. Each link represents a leaf block cluster.  The block 
cluster tree can be mapped to a matrix structure shown in Fig. 
4. Each leaf block cluster corresponds to a matrix block. The 

un-shaded matrix blocks are admissible blocks in which the 
2-matrix-based representation is used; the shaded ones are 

inadmissible blocks in which a full matrix representation is 
employed.     
  Special treatment is required for structures involving 
multiple dielectrics. After discretizing the structure, the whole 
set that includes all the panels is divided into two subsets. One 
includes all the conductor panels, and the other includes all the 
dielectric panels, as shown in Fig. 5. The conductor set is 

denoted by C, and the dielectric set is denoted by D.  If the 

two subsets are almost balanced, we can directly use the 
procedure above to construct the block cluster tree. If not, for 
example, if the number of conductor panels is much larger 
than that of dielectric panels, the subset D constructed for 

dielectric panels is pushed down to the level where the size of 
clusters in C is almost the same as that in D. Then we start to 

check the admissibility condition from that level. By doing so, 
the 2-based representation of G can be made more efficient. 

B. Block Cluster Tree Construction for 2-Based G-1 

 As proved in Section II.B, G−1 is an 2 matrix, and also, 

has the same block cluster tree as G. Thus, using the 2 tree 

of G to represent that of G−1 is theoretically rigorous for the 
integral operator encountered in the capacitance extraction.  

IV. OVERALL PROCEDURE  

In this section, we give the overall procedure of the 
proposed linear-complexity direct solver for capacitance 
extraction.  

First, we introduce the concepts, notations, and parameters 
that are used throughout this paper: 

• For each cluster t T∈  , the cardinality of the sets  

{ : ( , ) }s T t s T ×∈ ∈    and  { : ( , ) }t T t s T ×∈ ∈   is bounded by 

a constant spC  [10, pp. 124]. Graphically, spC  is the maximum 

number of links that can be formed by a cluster at each level 
of a block cluster tree as shown in Fig. 3.  

• Each non-leaf cluster t has two child nodes.  
• Each non-leaf block b has four children blocks. 
• The rank of ( )t

t T∈=V V


is denoted by k.  

• The parameter leafsize is denoted by minn , and  

min# t n≤  if t ∈  .  

• 1 minmax( , )k n k= . 

There are three steps in the proposed direct solver. At the 
first step, to enable linear-time matrix inversion, we 
orthogonalize cluster basis tV  while still preserving the 

nested property of tV . Mathematically, the new basis tV  
should satisfy the following two properties: 

( )t tΤ =V V I  ,                                      (26) 

and  
1 1

2 2

t t
t

t t

 
=  
  

V T
V

V T

 


  ,                                     (27) 

where 1 2, ( )t t children t∈ . We employ the method in [14, pp. 

254-258] to construct orthogonal bases tV , which is shown to 
have a linear complexity.  

To give an example on how the orthogonalization helps 
achieve a linear complexity, consider one multiplication Gb1× 
Gb2→Gb involved in the inverse procedure, where 

 
Fig. 4. An 2-matrix structure. (   full matrix block,  

admissible block.) 

 
 
Fig. 5. Illustration of the treatment of the unbalanced case 
encountered in non-uniform dielectrics. 
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1 1b t b s Τ

=G V S V  and 2 2b s b r Τ

=G V S V  , and  ( , )b t r=  is an 

admissible block in the inverse. Then, 
1 2 1 2b b t b s s b rΤ Τ

× = ×G G V S V V S V    .               (28) 

Since V  is orthogonalized, we have 
1 2 1 2 1 2( )b b t b b r t b b rΤ Τ

× = =G G V S IS V V S S V    .          (29)                         

Thus the multiplication cost becomes the cost of multiplying 
two coupling matrices 1bS  and 2bS , each of which is a k by k 

matrix. Hence, the complexity of computing Gb1×Gb2→Gb is 
made 3( )O k , which is independent of the row dimension (#t) 

and the column dimension (#r) of Gb.  Notice that an 2 

matrix is stored in the format of the cluster basis V  and the 
coupling matrix S, and we always use the factorized form 

t r Τ

V SV  to perform efficient computation. Thus, we do not 

need to compute t r Τ

V SV  out to obtain a matrix of dimension #t 

by #r. In addition, from (29), it can be seen that the cluster 
basis of the matrix product Gb, which is an admissible block 
( , )t r  in G-1, is the same as that of the block ( , )t r  in G. Thus, 

the cluster bases of G are preserved in G-1 during the 
computation.  

At the second step, we perform a fast inverse of linear 
complexity. Rewriting the system matrix G as  

 
=  
 

11 12

21 22

G G
G

G G
,                                  (30) 

we can recursively obtain its inverse. In [10, p. 118], the 
inverse of (30) is performed in O(Nlog2N) complexity. No 
linear complexity inverse has been reported in the literature. 
The contribution of this paper is a successful development of 
O(N) inverse, which is described in the following Sections V 
and VI. 

After the inverse is done, we obtain all the capacitance data 
because 1−G is, in fact, the capacitance matrix formed for the 

system consisting of each discretized panel. As an 2 matrix, 

it is stored in linear complexity. The capacitance matrix is, in 
general, not the end goal of the analysis. It is often used in the 
simulation stage after capacitance extraction is done. The  1−G  
resulting from the proposed method can then be directly used 
for the simulation without any post-processing. If one needs to 
know explicitly the capacitances formed between one 
conductor and the other conductors, the 1−G  can be post-
processed to obtain them. For example, we can compute 

1q v−= G . By adding all the entries of q in each conductor, the 

capacitances can be obtained. Since the inverse is an 2 

matrix, and an 2-based matrix-vector multiplication has 

linear complexity, we can compute 1q v−= G  in linear time. 

For Nc conductors, we do not need to perform an 2-based 

matrix-vector multiplication Nc times. Instead, we can perform 
an 2-based matrix-matrix multiplication 1T −V G V  to obtain 

the capacitance matrix directly, in which V contains all the 
right hand side vectors. Since an 2-based matrix-matrix 

multiplication can be performed in linear complexity, we can 

obtain the capacitance matrix for Nc right hand sides in O(N) 
time also. With this, the capacitance matrix can also be 
directly stored in an 2 format, which only requires O(Nc) 

units. In contrast, using the conventional method, even if each 
solve is of linear complexity, to store Nc solutions, i.e. the 
capacitance matrix for Nc conductors, one has to use O(Nc

 2) 
storage units. 

V. COMPARISON BETWEEN MATRIX INVERSION AND MATRIX-
MATRIX MULTIPLICATION  

The 2-based matrix-matrix multiplication is shown to 

have a linear complexity in [16]. To help better understand the 
linear-time algorithms in the proposed inverse, in this section, 
we first make a comparison between a matrix inverse and a 
matrix-matrix multiplication to reveal their similarity as well 
as difference. We then show that if one straightforwardly uses 
the 2-based matrix-matrix multiplication algorithm for 

inverse, the complexity would be greater than linear. In 
Section VI, we detail the proposed inverse that addresses the 
issue of increased complexity, and renders the overall cost 
linear. 

A. Matrix Inverse  

For matrix G shown in (30), we can recursively obtain its 
inverse by using the Matrix Inversion Lemma [21]:  

1 1 1 1 1 1
11 11 12 21 11 11 121

1 1 1
21 11

− − − − − −
−

− − −

 + × × × × − × ×
=  

− × ×  

G G G S G G G G S
G

S G G S
(31) 

where 1
22 21 11 12( )−= + − × ×S G G G G . 

The above recursive inverse can be realized level by level 
by a pseudo-code shown below 

( )
( )2

2
11 11

21 11 21

Recursive Inverse  is temporarily used for storage

Procedure inverse ,   (  is input matrix,  output  is its inverse)

  matrix  is a non leaf matrix block

     H inverse ( , )

    ,

If

Η −
−

−
× →

X

G X G G

G

G X

G G X ( )

( ) ( )

11 12 12 22 21 12 22

2
22 22

22 21 21 12 22 12 11 12 21 11

  ,  ,

     H inverse ( , )

   ,  ,  ( ) ,

      

     DirectInverse   normal full matrix inverse               

else

× → + − × →

−
− × → − × → + − × →

G G X G X G G

G X

G X G X G G G G X G

G

 (32) 
in which the G that is different from the original G is 
underlined. The underlined G is overwritten by 1−G  in the 
recursive computation.  

As can be seen from (32), we compute the inverse level by 
level. We start from the root level. We descend the block 
cluster tree of G to the first level, the second level, and 
continue until we reach the leaf level. At this level, we 
perform a number of inverses and matrix-matrix 
multiplications. As can be seen from (32), first, we 
compute 1

11( )−G , and use it to overwrite 11G . We then use the 

updated 11G  , denoted by 11G , to compute two matrix 

multiplications: 21 11 21× →G G X  and 11 12 12× →G G X . We 
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then compute 22 21 12( )+ − ×G X G  to update 22G . The 1
22( )−G  

can then be directly computed, which overwrites 22G . We 

then use the updated 22G , denoted by 22G , to compute two 

matrix multiplications: 22 21 21− × →G X G  and 

12 22 12− × →X G G , which update 12G  and 21G . We then 

compute 11 12 21( )+ − ×G G X  to update 11G . At this point, the 

inverse of the parent block of leaf-level  
11G  is obtained. We 

repeat the above procedure across all the levels from bottom to 
top until the inverse at the root level is obtained.  

From the aforementioned procedure, it can be seen that in 
the level-by-level computation of 1−G , the matrix blocks of G 

are kept updated to their counterparts in 1−G . At each level, 
the computation is performed based on updated G obtained 
from the computation at the previous level instead of original 
G. To highlight this fact, we underline the updated G in (32). 
All the underlined G blocks in (32) are different from those in 
the original G. 
 

B. Matrix-Matrix Multiplication  

Similar to matrix inverse, a matrix-matrix multiplication 
×G G  can be recursively obtained from 

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22   

× + × × + × 
× =  × + × × + × 

G G G G G G G G
G G

G G G G G G G G
,   (33) 

which can be realized by the pseudo-code shown below. 

( )

( )

2

2
11 11

21 11 21 11 12 12 11 12 21 11

2

Procedure multiplication ,   (  is input matrix,    is output)

  matrix  is a non leaf matrix block

     H multiplication ( , )

    , , ,

     H multiplica

If

G X G X

G

G X

G G X G G X X G G X

Η −
−

−
× → × → + × →

−

( ) ( )

22 22

21 22 21 21 12 12 22 12 22 21 12 22

tion ( , )

   + ,  , ( ) ,

      

     DirectMultiply   normal full matrix multiplication                   (34)

else

G X

X G G X X G G X X G G X

G

× → + × → + × →

 

C. Comparison 

Comparing (32) with (34), it can be seen that the total 
number of block multiplications involved in a matrix inverse 
is exactly the same as that involved in a matrix-matrix 
multiplication; in addition, only a half number of additions in 
the matrix-matrix multiplication are involved in the inverse. In 

[16], it is shown that an 2-based matrix-matrix multiplication 

can be performed in linear complexity. Apparently, the inverse 

can also be obtained in linear complexity using the 2-based 

matrix-matrix multiplication algorithm. However, there exists 
a major difference between these two operations, which 
prevents one from directly using the matrix-matrix 
multiplication algorithm to achieve a linear-complexity 
inverse.  

The major difference is that in the level-by-level 
computation of the inverse, at each level, the matrix blocks in 

G are updated by their counterparts in G−1. Thus, one has to 
use updated matrix blocks to perform computation as 
highlighted by the underlined G in (23). In contrast, in the 
level-by-level computation of the matrix-matrix 
multiplication, at each level, one always uses the original G to 
perform computation. Once the product is computed, it will be 
stored in the corresponding target block in X as can be seen 
from (25), and never be used again in the following 
computations. Unlike (23), in (25), none of the G is 
underlined, i.e. all of them come from the original matrix. 

This major difference does not cause any difference in 
operation counts if one performs a conventional matrix inverse 
or matrix-matrix multiplication that has a cubic complexity. 
However, this difference leads to a significant difference in 
devising a linear-complexity algorithm. The reasons are given 
below. 

The linear-complexity matrix-matrix multiplication is 
achieved by a matrix forward transformation algorithm, a 
matrix backward transformation algorithm, and a recursive 
multiplication algorithm, as shown in Algorithm 10 in [16, pp. 
21]. The matrix forward transformation used in the linear-time 
matrix-matrix multiplication cannot be used for inverse in the 
same way because in the inverse procedure, the matrix blocks 
in G are kept updated in the level-by-level computation. The 
matrix forward transformation (Algorithm 4 in [16, pp. 13]) is 
used to prepare an auxiliary admissible block form of each 
block in A and B, i.e., AS and BS . It is applicable to a matrix-

matrix multiplication because all the matrix blocks involved in 
the multiplication are from the original matrix. They are never 
updated, and hence a collected admissible block form S  can 
be prepared in advance and can be directly used in the 
“RecursiveMultiply” function for the recursive multiplication. 
However, for inverse, the blocks at each level are kept updated 
and then are used to update other blocks, and hence it is not 
possible to use the forward transformation to prepare the 
auxiliary admissible block forms ahead of the recursive 
inverse procedure. 

A block matrix multiplication, when the target product 
block b is a non-leaf block, may generate a product that has an 
auxiliary admissible block form, i.e., C

bS  as shown in 

Algorithm 9 in [16, pp. 21]. To get the real matrix in b, C
bS  

should be split to b’s leaf blocks. However, since C
bS  is never 

involved in the subsequent computations in the matrix-matrix 
multiplication, it can be stored in the non-leaf block without 
being split immediately. After the matrix-matrix multiplication 
is done, a backward transformation (Algorithm 5 in [16, pp. 
14]) can be used to split each C

bS  to the leaf blocks. Such a 

backward transformation, however, cannot be employed in the 
same way in the inverse procedure either. This is because in 
the inverse, C

bS  has to be used in the subsequent computations. 

We cannot wait until the inverse is done to process it. A 
straightforward way to overcome this problem is to split C

bS  to 

b’s leaf blocks immediately after it is generated. However, this 
would, in general, result in a complexity greater than linear. 
Thus, one has to do it properly. 
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If the two essential operations, matrix forward 
transformation and matrix backward transformation, cannot be 
used in the same way in the inverse, each block matrix 
multiplication cannot be done in constant time. For example, 
when we do the block matrix multiplication based on 
Algorithm 7 in [16], without the preparation of auxiliary 
admissible matrix S ,  the cost for directly computing a block 
matrix multiplication would not be O(k3). Instead, it would be 
proportional to the row and column dimension of the target 
block.  

Our strategy to solve the problem facing matrix forward 
transformation is that, instead of preparing the admissible 
block form for each block b by a forward transformation in 
advance before the inverse, we will create it and update it 
level by level during the recursive inverse procedure. To solve 
the problem facing matrix backward transformation, when an 
auxiliary admissible block bR  (This can be viewed as a 

counterpart of C
bS  used in a matrix-matrix multiplication) is 

generated during the block-block multiplication, instead of 
splitting bR  directly to its leaf blocks, we use b b+R G  as the 

real matrix block to perform next-level computation. The 
computation can be a b b+R G  based block matrix 

multiplication; it can also be a b b+R G  based inverse involved 

in the 1
22

−G  part. For the former, we modify the block matrix 

multiplication algorithms. For the latter, we perform an 
instantaneous split procedure that has a linear complexity.  

Along the above line of thought, we develop three new 
algorithms in the proposed inverse to render the total cost 
linear. The first algorithm is an instantaneous collect operation 
for generating the auxiliary admissible block form of  1−G , 

12X , and 21X . The second algorithm is a modified block 

matrix multiplication algorithm. The third one is an 
instantaneous split operation for computing the inverse of 

22G . To help better understand these three algorithms, the first 

algorithm can be viewed as the counterpart of the matrix 
forward multiplication. They fulfill the same task: when 
performing Gb1×Gb2→Gb or Gb1+Gb2→Gb, the auxiliary 
admissible block form of Gb1 and Gb2 should be ready so that 
each block matrix product or addition can be performed in 
constant complexity. The third algorithm can be viewed as the 
counterpart of matrix backward multiplication. Since the 
matrix forward and backward operations are modified, the 
block matrix multiplication should be modified 
correspondingly. That is the origin of the proposed second 
algorithm. In the next section, we detail these three 
algorithms. Their corresponding pseudo-codes are also given.  

VI.  ALGORITHMS IN THE PROPOSED INVERSE  

A. Instantaneous Collect Operation to Prepare the Auxiliary 
Admissible Block Form of  1−G , 12X , and 21X  in O(N) 

Complexity 

This operation can be viewed as the counterpart of the 
matrix forward transformation in [16] except that the collect 
operation is done instantaneously in the inverse procedure. As 
can be seen from (32), we need to perform a number of block 

matrix multiplications such as G21× G11→ X21,  G11× G12→ 
X12,  X21×G12→ G22 and etc. Here, the underlined G is 1−G . 
(Recall that in the inverse procedure, after the computation at 
each level is done, G is overwritten by its inverse.) Take G21× 
G11→ X21 as an example, to achieve the same complexity as 
that achieved in the linear-time matrix-matrix multiplication, 
we need to prepare for the auxiliary admissible block form of 
G21, and 1

11( )−G (G11 is 1
11( )−G ) respectively. Denoting the 

two auxiliary admissible block forms by 
21GS and 1

11
−G

S . The 

former can still be prepared in advance, i.e. before the inverse 
procedure since G21 is the original matrix. The latter, however, 
cannot be prepared in advance since  1

11( )−G  is updated level 

by level during the computation. To overcome this problem, 
our strategy is to generate 1

11
−G

S  instantaneously through 

collect operation when 1
11( )−G is computed.  The procedure of 

a collect operation can be referred to Algorithm 2 in [16]. 
As can be seen from (32), there are three matrices for which 

we need to collect their auxiliary admissible block form 
instantaneously during the inverse procedure: 1−G (including 

1
11

−G  , 1
22

−G , and 1
12

−G ), 12X , and 21X . Since these matrices 

are obtained by block matrix multiplications, the instantaneous 
collect operation can be performed in the level-by-level block 
matrix multiplication procedure that is given in the following 
Section VI.B. At each level, once the inadmissible block or a 
non-leaf block of the 1−G , 12X , or 21X is computed, we 

perform a collect operation to obtain its auxiliary admissible 
block form. The algorithm for a collect operation used in the 
inverse is shown below. 

( )INVProcedure Collect                       

 Form  based on Algorithm 2 in [16]

  is a non-leaf block

                                        

b

b b b

b

If b

= +

S

S S R



 

                       (35) 

The collect operation is done level by level from bottom to 
top. The admissible form of each block at level l can be 
directly obtained from the four children blocks at level l+1, 
instead of the blocks from level l+1 all the way down to the 
leaf level. Therefore, each collect operation only costs O(k1

3) 
time. There are O(N) blocks in  1−G , 12X , and 21X . Each 

block is associated with one collect operation. Hence, the total 
complexity of performing the instantaneous collect operation 
for 1−G , 12X , and 21X is linear. 

 For the original 12G  and original 21G that are involved in 

the matrix multiplication, and the original 22G  involved in the 

matrix addition of (32), since they are from the original 
matrix, we can prepare an auxiliary admissible block form of 
G in advance before the inverse procedure by using the matrix 
forward transformation (Algorithm 4 in [16]), which has a 
linear complexity. 

 

B. Modified Block Matrix Multiplication Algorithm of O(N) 
Complexity for Inverse 

Since neither matrix forward transformation nor matrix 
backward transformation can be directly used in the proposed 
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inverse, the algorithm for block matrix multiplications should 
be modified also. The matrix forward transformation is 
replaced by the instantaneous collect operation. Thus, when 
performing Gb1× Gb2→Gb, we need to collect an admissible 
form for the target block b, bS , for the use of b-involved block 
matrix multiplication. In addition, for a non-leaf block b, the 
real matrix block stored in it could have a form of b b+G R  

instead of only bG  (This will become clear in Section V.C). 

We cannot wait until the inverse is done to process bR  by 

matrix backward transformation because bR  is immediately 

involved in the next-level computation. Thus we need to 
perform ( 1bG + 1bR )×( 2bG + bR )→ bG  instead of Gb1× 

Gb2→Gb in the block matrix multiplication.  
There are three basic block multiplication cases: admissible 

leaf as target, inadmissible leaf as target, and nonleaf as target. 
They correspond to Algorithm 7, Algorithm 8, and Algorithm 
9 respectively in [16]. For the first case, next, we show how to 
modify the block matrix multiplication algorithm to 
accommodate the need in matrix inverse. Consider Gb1× 
Gb2→Gb with b1=(t, s), b2=(s, r), and b=(t, r). The blocks b1, 

b2, and b can be in any form:  an admissible form R, an 
inadmissible form F, or a non-leaf form NL. The possible b1 

and b2 combinations that are involved in the block matrix 
multiplications are R-R, NL-NL, F-F, F-NL (or NL-F), R-
NL(or NL-R), and R-F (or F-R).  

The algorithm for the modified block matrix multiplication 
with a target admissible leaf is developed as follows. 

( )INV

1 2

1 2

1 2

1 2

Procedure TargetAdmissible  (  is an admissible leaf)   

 If -  combination is R-R, or F-F, or R-F

     Compute  based on Algorithm 7 

If -  combination is NL-NL

     Compute 

b b b

b b b

b b

b b

b b

G G G

G G G

× →

× → ( )INV

1 2 1 2

1 2

1 2

1 2

 based on TargetAdmissible

     Compute , , and 

         based on Algorithm 7 

If -  combination is R-NL  or F-NL

     Compute  based on Algorithm 7

     Com

b b b b b b

b b b

b b b

b

b b

R G G G R G

R R G

G G G

× → × →
× →

× →
1 2pute  based on Algorithm 7              b b bG R G× →

(36) 

As shown in the above, if b1-b2 combination is R-R, or F-F, or 
R-F type, Algorithm 7 in [16] can be directly used to compute 
the block matrix multiplication, the cost of which is at most 
O(k1

3). Once we meet the combination NL-NL, or R-NL, or 
F-NL, the block matrix multiplication has to be performed in a 
way that is different from that in Algorithm 7.  If b1-b2 
combination is NL-NL type, 1bR  and 2bR  may be stored in b1 

and b2, respectively. Therefore, the real blocks that should be 
used are 1bG + 1bR  and 2bG + 2bR  instead of 1bG  and 2bG .  

Then the block multiplication becomes 
( 1bG + 1bR )×( 2bG + 2bR )→ bG . To handle this multiplication, 

we separate it into two parts. One part is the original block 
multiplication 1bG × 2bG → bG , which belongs to the NL-

NL→R multiplication case. As shown in Algorithm 7 in [16], 
the computation of 1bG × 2bG → bG  in this case involves 

recursive descendent-block matrix multiplications, each of 
which can be categorized into the basic block multiplication 
with an admissible leaf being a target and can be computed by 
recursively calling Algorithm 7. In the modified algorithm for 
inverse, we call the TargetAdmissibleINV shown in (36)  
recursively. The other part is the three additional 
multiplications associated with 1( 2)b bR , i.e., 1bG × 2bR  → bG , 

1bR × 2bG → bG , and 1bR × 2bR → bG .  They, in fact, belong to 

the multiplication cases of NL-R, R-NL, and R-R 
respectively with target being an admissible block. Each of 
these three cases can be performed in O(k1

3) complexity using 
Algorithm 7 in [16]. 

If b1-b2 combination is R-NL or F-NL type, similar to NL-
NL type, we separate the computation to Gb1×Gb2→Gb 
and 1 2b b b× →G R G . The latter is a case of R-R or F-R 

multiplication with target block being an admissible block. It 
again can be performed in O(k1

3) complexity based on 
Algorithm 7 in [16].  

Since bG  itself is an admissible block, we do not need to 

perform a collect operation to prepare its auxiliary admissible 
block form bS .  

Consider the block matrix multiplication with an 
inadmissible block being a target block. We develop the 
following pseudo-code: 

( )INV

1 2

1 2

1 2

Procedure TargetDense  (  is an inadmissible leaf) 

If -  combination is F-F, or R-F, or R-R                       

     Compute   based on Algorithm 8

If -  combination is  R-NL or F-

b b b

b b

b b

b b

G G G× →

( )1 2
INV

1 2

INV

NL

     Compute   based on TargetDense

     Compute   based on Algorithm 8

Collect ( )                                                                                  (37)

b b b

b b b

b

b

G G G

G R G

× →

× →

 

As can be seen from the above, if b1-b2 combination is F-NL 
or R-NL, we separate the computation to Gb1×Gb2→Gb and 

1 2b b b× →G R G . The latter one can be directly handled by 

Algorithm 8 in [16]. The Gb1×Gb2→Gb involves recursive 
descendent-block matrix multiplications with inadmissible 
targets, each of which can be computed by recursively calling 
(37) instead of Algorithm 8. In addition, since the target is a 
full matrix block, for efficient computation, during the 
recursive computation, we do not perform the collect 
operation on the block intermediate results, but do the collect 
operation on the target block when the block matrix 
multiplication is done, as can be seen from (37).  All the other 
b1-b2 combinations in (37) can be directly computed based on 
Algorithm 8. In (37), each block matrix multiplication costs 
O(k1

3) time. After the full matrix target block is computed, we 
compute its bS  form by performing a collect operation, the 

cost of which is at most 2
min( )O n k .  

The modification to the third block multiplication case, i.e., 
the case with non-leaf as a target, can be derived in a similar 
way. Basically, the computation of 
( 1bG + 1bR )×( 2bG + bR )→ bG  is separated into two parts. One 
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part is the original 1bG × 2bG → bG . The other part is R-based 

computation. The second part involves three multiplications, 
each of which can be categorized as one case of the block 
multiplications that are handled by the Algorithms 7, 8, and 9 
in [16]. The procedure for this basic multiplication case is 
shown below. 

( )INV

1 2

1 2

1 2

1 2

Procedure TargetNonleaf  (  is a non-leaf)   

 If -  combination is R-R or R-F

     Compute  based on (36)

     

else  

     If -  combination is F-F

          Compute 

b b b

b b b

b b

b b

b b

b b

G G R

S S R

G G G

× →

= +

× →

 

( )

( )

INV

1 2

1 2

1 2
INV

1 2

 based on TargetNonleaf

     If -  combination is R-NL

          Compute  based on (36)

          Compute  based on TargetNonleaf

     If -  combination is NL-NL

        

b

b b b

b b b

b

b b

b

b b

G R R

G G G

× →
× →

( )

( )

1 2 1 2
INV

1 2

1 2
INV

INV

  Compute ,  based on TargetNonleaf  

          and  based on (36)   

          Compute   based on TargetNonleaf

     Collect ( )                          

b b b b b b

b b b

b b b

b

b

b

R G G G R G

R R R

G G G

× → × →

× →

× →
                                                  (38)   

 The instantaneous collect operation for each target block is 
done during the block matrix multiplication.  

In the modified block matrix multiplication derived in this 
work, we employ (36)-(38) to handle a block matrix 
multiplication with the target block being any form. The 
computation for each b1-b2 multiplication case performed by 
calling (36)-(38) has the same order of complexity as the 
corresponding multiplication case handled by Algorithms 7, 8 
and 9 in [16].  As proved in [16], for matrix-matrix 
multiplication, the three basic multiplication algorithms 
(admissible leaf as target, inadmissible leaf as target, and 
nonleaf as target) are called no more than O(3Csp

2N) times. 
The same is true in matrix inverse since it shares the same 
number of block multiplications with a matrix-matrix product 
as analyzed in Section V.C. The computation involved in each 
call costs at most O(k1

3) operations. This includes the cost of 
the additional multiplications associated with bR . The total 

cost of the modified block matrix multiplications in the 
proposed inverse is hence O(Csp

2k1
3)N, which is linear. The 

cost of the instantaneous collect operation has already been 
counted in Section A. 

C. O(N)  Instantaneous Split  Operation for Computing 
1

22
−G  

As mentioned before, a block multiplication can generate an 
auxiliary block bR  for a non-leaf block bG , and 

hence b b+R G is used as the real matrix for b. If 22G  is a non-

leaf block, to compute its inverse, we need to compute 
1

22( )−+G R  instead of 1
22

−G . Unlike the R -associated 

computation in a block matrix multiplication, it is difficult to 
separate 1

22( )−+G R  into 22G -associated and R -associated 

computation. In order to compute 1
22( )−+G R efficiently, 

based on a Split operation (Algorithm 1 [16]). we first obtain 

22 +G R   by splitting R  to 22G ’s children blocks. The pseudo 

code of this procedure is shown below. 

( )INVProcedure Split ,  (  is a 22-position non-leaf block)

Apply Algorithm 1 to  to form four children  

for i=1,2 and j=1,2 

      if  is an admissible block

             (update

b

b bij

ij

bij bij bij

b b

b

R

R R

S S R= +



  the coupling matrix)

      else                     

           if  is a full matrix block

                   (update the full matrix)  

           if  is a non-leaf block

    

ij

bij bij ti bij sj

ij

b

b

F F V R V
Τ

= + 

               (update R block at children level)

              (update the collected admissible block)

Clear                                                           

bij bij bij

bij bij bij

b

R R R

S S R

R

= +

= +


  

                          (39)

 

Based on (39), R  is superposed with 22G . Then we can 

compute 1
22
−G . Since the inverse procedure is recursive, in 

order to compute the inverse of the non-leaf 22G , we have to 

first compute the inverse of 22G ’s 11 child block and 22 child 

block. If 11 and 22 blocks are both non-leaf blocks, in order to 
compute their inverses, we again need to split the R blocks in 
the 11 and 22 blocks respectively to their children. This 
process continues until 11 and 22 blocks become full matrices, 
the inverse of which can be directly computed. The 
aforementioned procedure is illustrated in Fig. 6, and its 
corresponding pseudo code is shown below.  

( )

( )

2
22

INV

2
22 11 11

21 11 21 11 12 12 22 21 12 22

Procedure inverse ,  (  is a 22-position non-leaf block)

  matrix  is a non leaf matrix block

    Split ( , )     

    H inverse  ( , )

   ,   ,  ,

   

If

G X G

G

G R

G X

G G X G G X G X G G

Η −
−

−
× → × → + − × →

( ) ( )

2
22 22 22

22 21 21 12 22 12 11 12 21 11

  H inverse  ( , )

  ,  ,  ( ) ,

      

     DirectInverse   normal full matrix inverse                      (40) 

else

G X

G X G X G G G G X G

G

−
− × → − × → + − × →

 

As can be seen from Fig. 6 and (40), the non-leaf G22 blocks 
and all their descendant non-leaf 11 and 22 blocks each is 
associated with one “Split” operation denoted by “1S”. 

 
Fig. 6. Illustration of the instantaneous split operation for 
computing 1

22
−G . 
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The cost of each Split operation from the parent level to the 
children that is one level down is at most O(k1

3) [16]. This 
operation is only done for the non-leaf 22

lG  at each level l and 

its descendant non-leaf 11 and 22 blocks. Therefore, the 
processed blocks only cover a part of the entire 2 partition, 

as can be seen from Fig. 6. Since the total number of blocks is 
O(CspN) and each Split operation costs O(k1

3) time, the 
complexity of the instantaneous split in the inverse procedure 
is bounded by O(Cspk1

3)N, which is linear. 
 

D. O(N) Backward Transformation after the Inverse 
Procedure 

After the inverse procedure is done, bR  may be stored for a 

non-leaf block b in a block cluster tree. For an 2 matrix, all 

the matrix elements are actually stored in leaf blocks. 
Therefore, bR  stored in each non-leaf block should be 

distributed back to leaf blocks to obtain a final 2 matrix. This 

can be achieved by the matrix backward transformation after 
the inverse procedure, which has a linear complexity. 

VII. ACCURACY ANALYSIS  

There exist three error sources in the proposed direct solver: 
(1) 2-based representation of the original matrix; (2) 

Orthogonalization; and (3) 2-based inverse. Next, we 

analyze the three errors one by one. 
First, the 2-based representation of the dense matrix 

resulting from an IE-based analysis of capacitance extraction 
problem is error bounded as shown in Section II. Exponential 
convergence with respect to the number of interpolation 
points, p, can be achieved irrespective of the problem size. 

Second, the orthogonalization error can be minimized to 
zero. In Section IV.A, orthogonal bases tV  are constructed. 

The best approximation of a general tV  in the space tV is 

given by ( )t t tΤV V V  . The error of this approximation is:  
2
2 1

|| ( ) || t
t t t

k
λΤ

+
− =tV V V V   .                        (41) 

where
1tk

λ
+

is the ( 1)tk th+  eigenvalue of t tΤ

V V , in which kt is 

the rank of cluster basis tV . Clearly, if kt is chosen the same 

as the rank of tV , the error of (41) is zero. Therefore 
t t s sΤ Τ

V V GV V    is the best approximation of a matrix block ,t sG  
in the bases tV  and sV .  
  Third, the inverse has a controlled accuracy. If one agrees 
with the fact that the linear-time matrix-matrix multiplication 
developed in [16] has a controlled accuracy, the same is true 
for the proposed inverse since the inverse procedure is 
essentially a full matrix inverse at leaf level, and a level-by-
level block matrix multiplication procedure at non-leaf levels.  
The new instantaneous collect algorithm added for inverse has 
the same accuracy as the matrix forward transformation since 
the basic operations are the same. Similarly, the new 
instantaneous split operation has the same accuracy as the 
matrix backward transformation in the linear-time matrix-
matrix multiplication algorithm. The modified block matrix 

multiplication algorithm has the same accuracy as the original 
one since although three additional multiplications are added; 
they are done with the same accuracy. In addition, it is worth 
mentioning that no pivoting is needed in the proposed inverse 
since capacitance matrix is a diagonally dominant matrix.  
 The inverse accuracy can also be analyzed from another 
perspective. The inverse procedure is essentially a number of 
block matrix multiplications. The multiplication is performed 
by a formatted multiplication in which the 2 tree of 1−G is 

represented by the 2 tree of G . In addition, the same cluster 

basis used for G is used for 1−G . Both have been theoretically 
proved to be true in Section II.B.  

From the aforementioned three facts, the accuracy of the 
proposed direct solver is well controlled. 

VIII. NUMERICAL RESULTS 

 A number of examples were simulated to validate the 
accuracy and demonstrate the linear complexity of the 
proposed direct IE solver. For all these simulations, Dell 1950 
Server was used except for the comparison with HiCap [20], 
where a computer having a 1593 MHz SPARC v9 processor 
was used, since HiCap available in the public domain can only 
be run on a Sun SPARC platform.  
 There are only three  simulation parameters: η , leafsize 

minn , and p to choose in the proposed method. From (16), the 

smaller η  is and the larger p is, the better the accuracy is. For 

static problems, 1 2η≤ ≤  is generally  sufficient for 

achieving a good accuracy. With η  chosen, based on 

accuracy  requirements, one can choose p accordingly. The 
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Fig. 8. Original matrix error and capacitance error of the 
proposed solver with respect to N for the free space case. 

 
Fig. 7. An m m×  crossing bus structure.  
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leafsize, minn , can be chosen based  on min 0.5 dn p≥ . This 

can help make the 2-approximation more efficient in both 

memory and CPU time.  
 The first example is an m m×  crossing bus structure 
embedded in free space [3] as shown in Fig. 7. The m is from 
4 to 16. The dimension of each bus is scaled to 

31 1 (2 1) mm× × + . The spacing between buses in the same 

layer is 1 m, and the distance between the two bus layers is 1 
m.  Although meter is not a realistic on-chip length unit, note 
that capacitances are scalable with respect to the length unit.  
  We first compared the performance of the proposed direct 
solver with FastCap 2.0. The discretization in FastCap 2.0 
resulted in 2736 to 38592 unknowns for the extraction of the 
m m×  bus from m = 4 to m = 16. A similar number of 
unknowns were also generated in the proposed solver for a fair 
comparison. The convergence tolerance was set to 1% when 
using FastCap. The simulation parameters in the proposed 
solver were chosen as minn = 10 and η = 1.6. The number of 

interpolation points p was determined by a function 
p= ( )a b L l+ − , with a = 2, b = 1, L being the maximum 
number of tree level, and l tree level.  Such a choice of p 
reduces the 2-approximation error without affecting the 

linear cost [18].    

 In Fig. 8, we plot the original matrix error, which is the error 
of the 2-based representation of the original matrix G, as 

well as the error of the capacitance matrix with respect to the 
number of unknowns. The original matrix error is measured 
by || || / || ||F F−G G G , where G  is the 2-matrix 

representation shown in (10), and || ||F⋅ is the Frobenius norm; 

 
Fig. 10. Capacitance error of the proposed solver and 
that of FastCap2.0 for the non-uniform dielectric case.  
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Fig. 11. Comparison of time and memory complexity in 

simulating the bus structure embedded in multiple 
dielectrics. (a) Time Complexity. (b) Memory 

Complexity. 
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Fig. 9. Comparison of time and memory complexity in 
simulating the bus structure in free space. (a) Time 

Complexity. (b) Memory Complexity. 
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the capacitance error is measured by || ' || / || ||−C C CF F , where 

C is the capacitance matrix obtained from a full-matrix-based 
direct solver, and C’ is that generated by the proposed solver. 
As can be seen clearly from Fig. 8, excellent accuracy of the 
proposed direct solver can be observed in both G  and 

capacitance matrix C’. In addition, the error of G  is shown to 
reduce with the number of unknowns. This is because of 
increased p with respect to tree level, and hence increased 
accuracy as can be seen from (16). In addition, we are able to 
keep the accuracy of the capacitance to the same order in the 
entire range. 
  With the accuracy of the proposed direct solver validated, in 
Fig. 9, we plot the total CPU time and memory consumption 
of the proposed direct solver for the m m×  bus structure in 
free space. As can be seen clearly, both time and memory 
complexity of the proposed solver are linear. In addition, in 
Fig. 9, we plot the CPU time and memory cost of FastCap2.0. 
It is clear that the proposed direct solver outperforms 
FastCap2.0.  In addition, FastCap2.0 does not exhibit a linear 
scaling with respect to the number of unknowns although it 
performs matrix-vector multiplication in linear complexity. 
This could be attributed to the increased number of iterations 
when the number of unknowns increases.   
 Next, we simulated the same bus structure embedded in 
non-uniform dielectrics. The dielectric surrounding the upper-
layer conductors has relative permittivity of 3.9, and that 
surrounding the lower layer has relative permittivity 7.5. Each 
bus is again scaled to 31 1 (2 1) mm× × + . The distance between 

buses in the same layer is 1 m, and the distance between the 
two bus layers is 2 m. The discretization in FastCap 2.0 
resulted in 3636 to 23552 unknowns for the extraction of the 
m m×  bus from m = 4 to m = 16. A similar number of 
unknowns were generated in the proposed solver.  
 The simulation parameters of the proposed solver can be 
chosen to achieve a various level of accuracy. For a fair 
comparison with FastCap2.0, we chose the simulation 
parameters in such a way that the proposed solver and 
FastCap2.0 produced similar accuracy in capacitance as 
shown in Fig. 10, where the reference capacitance matrix C 
for both solvers was chosen as that generated by a full-matrix 
based direct calculation. The resultant simulation parameters 
were leafsize minn = 10, a = 2, and b = 1. We then compared 

the time and memory performance of the two solvers. In Fig. 
11, we plot the total CPU time and memory consumption of 
the proposed direct solver for the m m×  bus structure in non-
uniform dielectrics, and compare the performance with 
FastCap2.0. Once again, the linear complexity of the proposed 
direct IE solver can be clearly seen in both CPU time and 
memory consumption. It is also worth mentioning that the 
proposed solver used double precision to carry out the 
computation. If single precision was used, more CPU time and 
memory usage can be saved. In addition, we notice that for 
capacitance extraction, single precision is generally sufficient 
to achieve a good accuracy. 
 Since capacitance extraction does not involve all the 
columns of G−1, to assess the accuracy of the entire inverse, in 
Fig. 12, we plot the inverse error versus unknown number for 
both free-space and non-uniform dielectric cases.  Good 

accuracy is observed in the entire range. The inverse error is 
assessed by 1|| || / || ||F F

−−I GG I . The simulation parameters 

were minn = 10 and η = 1.6. The number of interpolation 

points, p, was 2.  

 Next, we compared the performance of the proposed direct 
solver with HiCap downloaded from [20]. This version of 
HiCap is for simulating free-space examples, and allows for at 
most a 20 20×  bus. We hence compared the performance of 
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Fig. 12. Inverse error of the proposed direct solver. (a) 
Free space case. (b) Non-uniform case.  
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simulating the free-space m m×  bus from m = 4 to m = 20. 

The number of unknowns used in HiCap was from 1104 to 
20880. A similar number of unknowns were generated in the 
proposed direct solver for a fair comparison. The number of 
unknowns used in the proposed direct solver was from 1216 to 
26560. The simulation parameters in the proposed solver were 
chosen as leafsize = 8, η = 1.2, and p = 1. Fig. 13 shows the 
inverse error in the entire range. Good accuracy can be 

observed. In Fig. 14(a)-(c), we plot the total CPU time, 
memory consumption, and capacitance error of the proposed 
solver and those of HiCap. The capacitance error was 
measured by || ' || / || ||−C C CF F , where the reference C  was 

obtained from a full-matrix-based direct solver. The 
simulation parameters of the proposed solver were chosen 
such that both solvers yielded a similar level of accuracy as 
can be seen from Fig. 14(c). From Fig. 14(a) and (b), it can be 
seen that HiCap starts to become more expensive in both CPU 
time and memory consumption when problem size becomes 
large. In addition, the accuracy of the proposed solver is 
shown to be better than HiCap on average. Considering the 
fact that HiCap only solved the matrix for 4-20 right-hand 
sides in simulating this bus structure, whereas the proposed 
solver computed the entire inverse, the performance of the 
proposed direct solver is satisfactory.  
 To test the performance of the proposed direct solver in 
simulating very large examples, we simulated a multilayer 3D 
on-chip interconnect structure [3] shown in Fig. 15. We also 
compared the performance of the proposed direct solver with a 
HiCap-based solver in this simulation. The relative 
permittivity of the interconnect structure is 3.9 in M1, 2.5 
from M2 to M6, and 7.0 from M7 to M8. The structure 
involves 48 conductors, the discretization of which results in 
25,556 unknowns. To test the large-scale modeling capability 
of the proposed solver, the 48-conductor structure was 
duplicated horizontally, resulting in 72, 96, 120, 144, 192, 
240, 288, and 336 conductors, the discretization of which 
leads to more than 1 million unknowns including both 
conducting-surface unknowns and dielectric-interface 
unknowns.  

The simulation parameters in the proposed solver were 
chosen as leafsize = 10, η = 1, and p = 1. Since it is not 

feasible to assess the error of 2-matrix-based representation 

based on || || / || ||F F−G G G due to the need of storing the 

original dense matrix G, we plot the maximal admissible 
block error of the proposed solver in Fig. 16(a). The maximal 
admissible block error is defined as  

( , ) ( , )

( , )

|| ||
max

|| ||

t s t s

t s

 −
 
 

G G

G


, 

which constitutes an upper bound of the entire matrix error 
|| || / || ||F F−G G G . As can be seen from Fig. 16(a), less than 

2% error is observed in the entire range from 25,556 
unknowns to 1,047,236 unknowns. In Fig. 16(b), we plot the 
inverse time and the total CPU time of the proposed direct 
solver with respect to the number of unknowns. Clearly, a 
linear complexity can be observed. The total CPU time of the 
proposed direct solver includes orthogonalization time, inverse 
time, and matrix-vector multiplication time for computing 
unknown charge vector and capacitances. For comparison, the 
solution time of a HiCap-based solver is also plotted in Fig. 
16(b). Since HiCap for inhomogeneous dielectrics is not 
available in public domain, we generated the HiCap time in 
the following way to make the comparison as fair as possible. 
We first constructed an 2-based representation of G with p = 

1 since the center-point based scheme in HiCap can be viewed 
as a rank 1 scheme. We then performed a matrix-vector 
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Fig. 14. Comparison with HiCap in simulating an m×m bus 
with m being from 4 to 20. (a) CPU time. (b) Memory. (c) 

Capacitance Error. 
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multiplication based on the 2-based representation, which 

has a similar CPU time as that reported in [3] if run on the 
same computer platform. With the CPU time per matrix-vector 
multiplication matched, we chose the same number of 
iterations as reported in [3] to generate the CPU time required 
by a HiCap algorithm based solver.  

As can be seen from Fig. 16, the advantage of the proposed 
direct solver is clearly demonstrated even though a HiCap-
based solver only calculated the results for m right hand sides 
with m being the number of conductors, whereas the proposed 
solver obtained the entire inverse, i.e., the results for N right 
hand sides. In Fig. 16(c), we plot the memory complexity of 
the proposed solver, which again demonstrates a linear 
complexity.  

Since we need to use the capacitance C generated from a 
full-matrix based direct computation to assess the accuracy of 
the capacitance C’ extracted by the proposed solver, and C is 
not available within feasible computational resources for this 
large example, we tested the solution error of the proposed 
solver which is defined as /q v v−G .  Table II shows the 

solution error in the entire range. Good accuracy is observed 
even with p = 1. 

Table II. Solution Error v.s. the Unknown Number  

Num. of Unknowns Solution Error (%) 

25,556 3.33 
53,400 5.01 
94,752 5.06 

164,672 7.26 
253,792 6.63 
362,122 5.28 
605,472 5.59 
802,272 6.23 

1,047,236 5.98 
 

The best complexity reported for the IE-based direct solver 
is O(NlogαN) [10, 24-26], which is higher than O(N). Next, we 
compare the proposed linear direct solver with an O(Nlog2N) 

complexity -based direct solver [10-12, 26]. In order to have 

a fair comparison, we employ the same matrix partition to 

form an -based matrix. In addition, the interpolation-based 

rank used in the -based block is the same as that in the 2-
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Fig. 15. A large-scale 3D M1-M8 on-chip interconnect embedded in inhomogeneosu media. 
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based block. The direct inverse of such an -based matrix can be developed based on the direct matrix solution algorithm 
given in [26], which has an O(Nlog2N) complexity. Fig. 17 
compares the inverse time of the proposed solver with that of 

the -based direct solver. Clearly, the proposed solver is 

shown to be much faster than the -based direct solver. When 

the number of unknowns is larger, the advantage of the 
proposed solver will only become more obvious. 
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Fig. 17. Inverse time comparison between the proposed solver 

and an -based direct solver. 

In the last example, we tested the capability of the proposed 
solver in achieving a higher order of accuracy. We set the 
required level of accuracy measured by capacitance error to be 
10-5. The structure was the 3-D bus shown in Fig. 6. The 
simulation parameters of the proposed solver were chosen as 

min 32,  =1, a=3, b=1n η=  to satisfy the required accuracy. As 

shown in Fig. 18(a), the required accuracy is achieved across 
the entire range of unknowns, without sacrificing the linear 
complexity in CPU time and memory consumption. This is 
clearly demonstrated in Fig. 18(b) and (c). We tried to use 
either FastCap or HiCap that can be accessed from the public 
domain to produce 10-5 accuracy in capacitances so that we 
can compare the performance for the same accuracy. 
However, when we decreased the convergence tolerance or 
increased the expansion order to a certain extent, the accuracy 
of the two solvers became saturated. They failed to produce a 
10-5 level of accuracy in capacitances. In Fig. 18(d) we plot 
Cad, the maximal number of admissible blocks formed by a 
cluster, which is a good measurement of Csp. The Cad is almost 
a constant in the entire range of unknowns, as can be seen 
from Fig. 18(d). 

IX. CONCLUSION 

In this work, we show that the dense matrix arising from the 
IE-based analysis of capacitance problems can be represented 

by an 2 matrix with error well controlled. In addition, we 

theoretically proved that the inverse of this dense matrix, also, 

has an 2 representation. More important, the same block 

cluster tree and cluster bases constructed from the original 

dense matrix can be used for the 2 representation of its 

inverse. Based on this finding, we develop a direct inverse of 
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Fig. 18. Performance of the proposed solver in achieving a 
higher order accuracy. (a) Capacitance error. (b) Time 
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linear complexity for large-scale capacitance extraction 
involving arbitrary inhomogeneity and arbitrary geometry. To 
help better convey the idea of the proposed linear-time 
inverse, we use an analogy between a matrix-matrix product 
and a matrix inverse to present the proposed algorithm. We 
show that these two matrix operations share the same number 
of block matrix multiplications. However, in the matrix 
inversion procedure, the matrix blocks used for computation 
are kept updated level by level. In contrast, in a matrix-matrix 
multiplication, the matrix blocks used for computation at each 
level are always from the original matrix. They are never 
updated. This difference makes it not feasible to achieve a 
linear complexity in inverse by directly using the linear-time 
matrix-matrix multiplication algorithm. We then present the 
proposed algorithms that achieve a linear complexity in 
inverse. Both theoretical analysis and numerical results have 
demonstrated the accuracy and linear complexity of the 
proposed direct IE solver. In addition, the proposed direct 
solver is shown to outperform existing iterative IE solvers of 
linear complexity. The proposed solver is kernel independent 
in the sense that it does not rely on an analytical expansion of 
kernels, and the underlying fast techniques are algebraic 
methods that are not kernel specific. Moreover, it is applicable 
to arbitrary inhomogeneity and arbitrary structures.  

In this paper, we demonstrate that it is feasible to obtain an 
inverse of a dense matrix in linear time and memory 
consumption with controllable accuracy. Inverse is a 
fundamental building block in computation. The significance 
of the proposed work goes beyond just capacitance extraction.  
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